當前位置:育文網(wǎng)>教學文檔>教案> 三角形內(nèi)角和教案

三角形內(nèi)角和教案

時間:2024-04-17 07:18:30 教案 我要投稿

三角形內(nèi)角和教案

  作為一名教職工,很有必要精心設(shè)計一份教案,教案有利于教學水平的提高,有助于教研活動的開展。教案應(yīng)該怎么寫才好呢?下面是小編收集整理的三角形內(nèi)角和教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

三角形內(nèi)角和教案

三角形內(nèi)角和教案1

  教學內(nèi)容:

  人教版義務(wù)教育課程標準試驗教科書數(shù)學四年級下冊第67頁。

  設(shè)計理念:

  遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設(shè)計的主要特點之一!稊(shù)學課程標準》指出,讓學生學習有價值的數(shù)學,讓學生帶著問題、帶著自己的思想、自己的思維進入數(shù)學課堂,對于學生的數(shù)學學習有著重要作用。因此,我嘗試著將數(shù)學文本、課外預習、課堂教學三方有機整合,在質(zhì)疑、解疑、釋疑中展開教學,培養(yǎng)學生提出問題、分析問題和解決問題的探究能力。

  教材分析:

  三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學習三角形的概念及分類之后進行的,它是學生以后學習多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。學生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學生充分進行自主探索和交流的'空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180。

  學情分析:

  學生已經(jīng)掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數(shù)學生已經(jīng)在課前通過不同的途徑知道三角形的內(nèi)角和是180度的結(jié)論,但不一定清楚道理,所以本課的設(shè)計意圖不在于了解,而在于驗證,讓學生在課堂上經(jīng)歷研究問題的過程是本節(jié)課的重點。四年級的學生已經(jīng)初步具備了動手操作的意識和能力,并形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經(jīng)驗,通過交流、比較、評價尋找解決問題的途徑和策略。

  教學目標:

  1. 使學生經(jīng)歷自主探索三角形的內(nèi)角和的過程,知道三角形的內(nèi)角和是180°,能運用這一規(guī)律解決一些簡單的問題。

  2. 使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數(shù)學思考能力。

  3. 使學生在參與數(shù)學學習活動的過程中,獲得成功的體驗,感受探索數(shù)學規(guī)律的樂趣,產(chǎn)生喜歡數(shù)學的積極情感,培養(yǎng)積極與他人合作的意識

三角形內(nèi)角和教案2

  一、教學目標:

  1、理解掌握三角形內(nèi)角和是180°,并運用這一性質(zhì)解決一些簡單的問題。

  2、通過直觀操作的方法,引導學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°,在實驗活動中,體驗探索的過程和方法。

  3、在探索和發(fā)現(xiàn)三角形內(nèi)角和的過程中獲得成功的體驗。

  二、教學重、難點:

  重點:探索并發(fā)現(xiàn)三角形內(nèi)角和等于180°。

  難點:運用三角形內(nèi)角和等于180°的性質(zhì)解決一些實際問題。

  教具:課件、三角形若干。

  學具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

  三、教學過程

 。ㄒ唬﹦(chuàng)設(shè)情境,導入新課

  我們已經(jīng)學過了三角形的知識,我們來復習一下,看看大屏幕,各是什么三角形?誰能說說什么是銳角三角形、直角三角形、鈍角三角形?追問:不管是什么三角形它們都有幾個角呢?這三個角都叫做三角形的內(nèi)角,而這三個內(nèi)角的和就是這個三角形的內(nèi)角和。那么誰來說一說什么是三角形的內(nèi)角和?三角形有大有小,形狀也各不相同,那么它們的內(nèi)角和有沒有什么特點和規(guī)律呢?我們來看一個小片段,仔細聽它們都說了什么?

  教師放課件。

  課件內(nèi)容說明:一個大的直角三角形說:“我的個頭大,我的內(nèi)角和一定比你們大!币粋鈍角三角形說:“我有一個鈍角,我的內(nèi)角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

  都聽清它們在爭論什么嗎?(它們在爭論誰的內(nèi)角和大。)誰能說一說你的想法?(學生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內(nèi)角和”。

 。ò鍟n題:三角形內(nèi)角和)

  (二)自主探究,發(fā)現(xiàn)規(guī)律

  1、探究三角形內(nèi)角和的特點。

 。1)檢查作業(yè),并提出要求:

  昨天老師讓每位學生都分別剪出了銳角三角形、直角三角形和鈍角三角形,并量出了每個角的度數(shù),都完成了嗎?拿出來吧,一會我們要算出三角形的`內(nèi)角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

  小組活動記錄表

  小組成員的姓名

  三角形的形狀

  每個內(nèi)角的度數(shù)

  三角形內(nèi)角的和

 。ㄒ螅禾钔瓯砗,請小組成員仔細觀察你發(fā)現(xiàn)了什么?)

  ②小組合作。

  會使用表格了嗎?下面我們就以小組為單位,按照要求把結(jié)果填在小組長手中的表格內(nèi)。

  各組長進行匯報。發(fā)現(xiàn)了三角形的內(nèi)角和都是180°左右。

  師:實際上,三角形三個內(nèi)角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數(shù)據(jù)。

  2、驗證推測。

  那么同學們有沒有什么辦法知道三角形的內(nèi)角和就是180°呢?大家可以討論一下,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學們在下面操作進行體驗,再用課件演示把三個內(nèi)角折疊在一起(這時要注意平行折,把一個頂點放在邊上)學生也動手試一試。

  通過我們的驗證我們可以得出三角形的內(nèi)角和是180°。

  板書:(三角形內(nèi)角和等于180°。)

  3、師談話:三個三角形討論的問題現(xiàn)在能解決了嗎?你現(xiàn)在想對這三個三角形說點什么嗎?(讓學生暢所欲言,對得出的三角形內(nèi)角和是180°做系統(tǒng)的整理。)

  4、同學們還有什么疑問嗎?大家想一想我們知道了三角形內(nèi)角和是180°可以干什么呢?(知道三角形中兩個角,可以求出第三個角)

  出示書28頁,試一試第3題,并講解。

  說明:在直角三角形中一個銳角等于30°,求另一個銳角。

  生獨立做,再訂正格式、以及強調(diào)不要忘記寫度。

  小結(jié):同學們有沒有不明白的地方?如果沒有我們來做練習。

 。ㄈ╈柟叹毩暎卣箲(yīng)用

  1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

  完成,并填在書上。講一講直角三角形還有什么解法。

  2、出示29頁第2題。

  說明:一個鈍角三角形說:我的兩個銳角之和大于90°。

  一個直角三角形說:我的兩個銳角之和正好等于90°。讓學生判斷。

  3、畫一畫:

  出示四邊形和六邊形。運用三角形內(nèi)角和是180°計算出各自的內(nèi)角和。你能推算出多邊形的內(nèi)角和嗎?

  三角形內(nèi)角和180度是科學家帕斯卡12歲時發(fā)現(xiàn)的。我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發(fā)現(xiàn)。

  (四)課堂總結(jié)

  讓學生說說在這節(jié)課上的收獲!

三角形內(nèi)角和教案3

  探索與發(fā)現(xiàn):三角形內(nèi)角和

  課型

  新授課

  設(shè)計說明

  本節(jié)課是在學生已經(jīng)掌握了鈍角、銳角、直角、平角及三角形分類的基礎(chǔ)上,讓學生通過直觀操作來認識和學習的。

  1.重視知識的探究與發(fā)現(xiàn)。

  在教學中,概念的形成沒有直接給出,而是整節(jié)課都是在引導學生的實驗操作、活動探究中進行。在探究活動中,不但重視知識的形成過程,而且注意留給學生充分進行主動探究和交流的空間,讓學生歸納出三角形內(nèi)角和等于180°。

  2.重視學生的合作探究學習。

  使學生能夠積極主動地參與到數(shù)學活動中,能在實踐中感知、發(fā)表自己的見解,學生感受到通過自己的努力取得成功所帶來的滿足感,同時也培養(yǎng)了學生的探究能力和創(chuàng)新能力。

  課前準備

  教師準備:PPT課件 量角器 直尺 三角尺

  學生準備:量角器 三角尺

  教學過程

  一、常識導入。(3分鐘)

  1.介紹帕斯卡:早在300多年前有一個科學家,他在12歲時驗證了任意三角形的內(nèi)角和都是180°,他就是法國科學家、物理學家帕斯卡。

  2.導入新課:這節(jié)課我們也來驗證一下三角形的內(nèi)角和。

  1.傾聽教師的介紹,了解帕斯卡。

  2.明確本節(jié)課的學習內(nèi)容。

  1.填空。

  (1)有一個角是鈍角的三角形是( )三角形;有一個角是直角的三角形是( )三角形;三個角都是銳角的三角形是( )三角形。

  (2)平角=( )°

  直角=( )°

  周角=( )°

  二、合作交流,探究新知。(18分鐘)

  (一)量算法。

  1.探究特殊三角形的內(nèi)角和。

  (1)出示一副三角尺,引導學生說一說各個角的度數(shù)。

  (2)引導學生算一算它們的內(nèi)角和各是多少度。

  (3)引導學生得出結(jié)論。

  2.探究一般三角形的內(nèi)角和。

  (1)引導學生猜一猜其他三角形的內(nèi)角和是多少度。

  (2)組織學生驗證一般三角形的內(nèi)角和是180°。

 、僖龑W生量出每個內(nèi)角的度數(shù),再計算三個內(nèi)角的和。

 、谝龑W生分工合作,把結(jié)果填入記錄表中。

  ③引導學生說說自己的發(fā)現(xiàn)。

  (3)引導學生明確由于測量有誤差,實際上三角形的內(nèi)角和是180°。

  (二)剪拼法。

  1.組織學生用剪拼的方法求三角形的內(nèi)角和。

  2.引導學生總結(jié)發(fā)現(xiàn)。

  3.課件演示,得出三角形的.內(nèi)角和是180°的結(jié)論。

  (三)折拼法。

  1.引導學生結(jié)合剪拼法嘗試折拼法。

  2.引導學生得出結(jié)論。

  3.課件演示折拼法。

  (一)1.(1)說出每個三角尺中各個角的度數(shù)。

 、90°;60°;30°。

 、90°;45°;45°。

  (2)獨立算出每個三角尺的內(nèi)角和。

  (3)得出結(jié)論:這兩個三角尺的內(nèi)角和都是180°。

  2.(1)同桌之間互相說說自己的看法。

  猜測:一種是內(nèi)角和可能是180°,另一種是內(nèi)角和一定是180°。

  (2)小組合作進行探究,量一量,算一算,說一說。

三角形種類


每個內(nèi)角


的度數(shù)


三個內(nèi)


角的和


銳角三角形


65°


46°


68°


179°


鈍角三角形


110°


25°


46°


181°


等腰三角形


70°


55°


55°


180°


等邊三角形


60°


60°


60°


180°


  通過觀察發(fā)現(xiàn):三角形的內(nèi)角和都在180°左右。

  (3)聽老師講解,明確三角形的內(nèi)角和是180°。

  (二)1.把一個三角形的三個內(nèi)角剪下來,小組內(nèi)拼合。在拼合過程中要注意:頂點重合,三個角拼合。

  2.發(fā)現(xiàn)三角形的三個內(nèi)角正好拼成了一個平角,也就是180°。

  3.觀看課件演示,明確三角形的三個內(nèi)角拼成了一個平角,所以它的內(nèi)角和是180°。

  (三)1.動手折一折、拼一拼。

  2.得出結(jié)論:三角形的三個內(nèi)角拼在一起正好是一個平角,所以三角形的內(nèi)角和是180°。

  3.觀看課件演示,再次明確三角形的內(nèi)角和是180°。

  2.算一算。

  在一個直角三角形中,已知一個銳角是35°,另一個銳角是多少度?

  3.在能組成三角形的三個角的后面畫“√”。

  (1)90°;20°;70°。 ( )

  (2)100°;50°;50°。( )

  (3)70°;70°;70°。( )

  (4)80°;70°;30°。( )

  4.猜一猜。

  有一個三角形,其中一個角是20°,它可能是什么三角形?

  5.已知∠1、∠2、∠3是三角形的三個內(nèi)角,請你計算出每個三角形中∠1的度數(shù)。

  (1)∠2=58° ∠3=48°

  (2)∠2=∠3=70°

  (3)∠1=∠2=∠3

  三、鞏固練習。(16分鐘)

  把正確答案的序號填在括號里。

  1.把兩個小三角形合成一個大三角形,這個大三角形的內(nèi)角和是( )。

  A.90° B.180° C.360°

  2.一個三角形中有兩個銳角,則第三個角( )。

  A.也是銳角

  B.一定是直角

  C.一定是鈍角

  D.無法確定

  小組合作,選一選,明確答案。

  1.明確任何一個三角形的內(nèi)角和都是180°,三角形的內(nèi)角和與三角形的大小無關(guān)。

  2.通過討論,明確任何一個三角形都至少有兩個銳角,所以無法確定。

  6.如下圖,在直角三角形中,已知∠2=30°,不計算,你知道∠1的度數(shù)嗎?

  四、課堂總結(jié),拓展延伸。(3分鐘)

  1.總結(jié)本節(jié)課的學習內(nèi)容。

  2.布置課后作業(yè)。

  談自己本節(jié)課的收獲。

三角形內(nèi)角和教案4

尊敬的各位評委老師:

  大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鉆研教材,充分了解學生的基礎(chǔ)上,我準備從以下幾個方面進行說課:

  一、教材分析

  “三角形的內(nèi)角和”是三角形的一個重要性質(zhì),它有助于學生理解三角形內(nèi)角之間的關(guān)系,是進一步學習幾何的基礎(chǔ)。

  二、教學目標

  1、知識與技能:明確三角形的內(nèi)角的概念,使學生自主探究發(fā)現(xiàn)三角形內(nèi)角和等于180°,并運用這一規(guī)律解決問題。

  2、過程和方法:通過學生猜、量、拼、折、觀察等活動,培養(yǎng)學生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。

  3、情感與態(tài)度:使學生感受數(shù)學圖形之美及轉(zhuǎn)化思想,體驗數(shù)學就在我們身邊。

  三、教學重難點

  教學重點:動手操作、自主探究發(fā)現(xiàn)三角形的內(nèi)角和是180°,并能進行簡單的運用。

  教學難點:采用多種途徑驗證三角形的內(nèi)角和是180°。

  四、學情分析

  通過前面的學習,學生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會量角,部分學生已經(jīng)知道三角形內(nèi)角和是180°,但不知道怎樣得出這個結(jié)論。

  五、教學法分析

  本節(jié)課采用自主探索、合作交流的教學方法,學生自主參與知識的構(gòu)建。領(lǐng)悟轉(zhuǎn)化思想在解決問題中的應(yīng)用。

  六、課前準備

  1、教師準備:多媒體課件、三角形教具。

  2、學生準備:銳、直、鈍角三角形各兩個,量角器、剪刀。

  七、教學過程

  (一)、創(chuàng)設(shè)情境,激趣導入

  導入:“同學們,有三位老朋友已經(jīng)恭候我們多時了!埃ǔ鍪救切蝿赢嬚n件),讓學生依次說出各是什么三角形。

  課件分別閃爍三角形三個內(nèi)角,并介紹:“這三個角叫做三角形的內(nèi)角,把三個角的度數(shù)加起來,就是三角形的內(nèi)角和。請學生畫一個三角形,要求:有兩個直角。為什么不能畫,問題在哪呢?這節(jié)課我們就一起來探究三角形的內(nèi)角和。板書課題。

  (二)、自主探究、合作交流

  1、探索特殊三角形內(nèi)角和

  拿出自己的一副三角板,同桌之間互相說一說各個角的度數(shù)。

  三角形內(nèi)角和是多少度呢?指名匯報。90°+30°+60°=180°

  90°+45°+45°=180°

  從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?

  2、探索一般三角形的內(nèi)角和

  一般三角形的內(nèi)角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們采用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。

  3、匯報交流

  請小組代表匯報方法。

  1)量:你測量的三個內(nèi)角分別是多少度?和呢?(有不同意見)

  沒有統(tǒng)一的結(jié)果,有沒有其他方法?

  2)剪―拼:把三角形的三個內(nèi)角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結(jié)論。(學生嘗試驗證)

  3)折拼:學生邊演示邊匯報。把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角。所以得出三角形的內(nèi)角和是180°。(學生嘗試驗證)

  4)教師課件驗證結(jié)果。

  請看屏幕,老師也來驗證一下,是不是和你們的結(jié)果一樣?播放課件。我們可以得到一個怎樣的結(jié)論?學生回答后教師板書:三角形的內(nèi)角和是180°,為什么有的小組用測量的.方法不能得到180°?(誤差)

  4、驗證深化

  質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎?(一樣)誰能說一說不能畫出有兩個直角的三角形的原因?

 。ㄈ、應(yīng)用規(guī)律,解決問題:

  揭示規(guī)律后,學生要掌握知識,就要通過解答實際問題。

  1、為了讓學生積極參與,我設(shè)計了闖關(guān)的活動來激勵學生的興趣。闖關(guān)成功會獲得小獎?wù)隆?/p>

  第一關(guān):基礎(chǔ)練習,要求學生利用“三角形內(nèi)角和是180°”這一規(guī)律在三角形內(nèi)已知兩個角,求第三個角(課件出示)

  第二關(guān),提高練習,①已知等腰三角形的底角,求頂角。②求等邊三角形每個角的度數(shù)是多少。直角三角形已知一個銳角,求另一個。讓學生靈活應(yīng)用隱含條件來解決問題,進一步提高能力。

  2、小組合作練習,完成相應(yīng)做一做。

 。ㄋ模、課堂總結(jié),效果檢測。

  一節(jié)成功的好課要有一個好的開頭,更要有一個完美的結(jié)尾,數(shù)學是使人變聰明的學科,通過這節(jié)課的學習,你收獲了什么?學生們暢所欲言。接下來老師要檢查大家的學習效果,學生完成答題卡,組長評判,集體匯報。

 。ㄎ澹┳鳂I(yè)課下繼續(xù)探究三角形,看你有什么新發(fā)現(xiàn)。

  八、板書設(shè)計

  通過這樣的設(shè)計,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,使學生在自主中學習,在探究中發(fā)現(xiàn),在發(fā)現(xiàn)中成長。以上便是我對《三角形的內(nèi)角和》這一堂課的說課,謝謝大家!

三角形內(nèi)角和教案5

  教學目標:

  1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。

  2、在活動交流中培養(yǎng)學生合作學習的意識和能力,讓學生經(jīng)歷猜測探索總結(jié)的數(shù)學學習過程,在實驗活動中體驗探索的過程和方法。

  3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學生體會數(shù)學與現(xiàn)實生活的聯(lián)系,體會到數(shù)學的價值,增加學生學數(shù)學的信心和興趣。

  教學重點:

  探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。

  教學難點:

  三角形內(nèi)角和是180的探索和驗證。

  教學過程:

  一、創(chuàng)設(shè)情境,提出問題

  師:大家喜歡猜謎語嗎?

  生:喜歡。

  師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

 。ù蛞粠缀螆D形))

  生:三角形。

  師:三角形中都有哪些學問?

  生:三角形有三條邊,三個角,具有穩(wěn)定性。

  生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

  生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

  生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

  生:三角形的內(nèi)有和是180。

  生:(一臉疑惑)

  師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?

  生:每個三角形的內(nèi)角和都是180嗎?

 。ǜ鶕(jù)學生的問題,在三角形的內(nèi)角和是180后面加上一個?)

  二、自主探索,實踐驗證

  1、理解內(nèi)角 師:什么是內(nèi)角?

  生:我認為三角形的內(nèi)角就是指三角形的三個角。

  師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。

  2、理解內(nèi)角和。

  師:那三角形的內(nèi)角和又是指什么?

  生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。

  師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。

  3、實踐驗證

  師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?

  生:量一量每個角的度數(shù),然后加起來看看是不是180。

  師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

  師:誰愿意把你的勞動成果和大家分享一下?

  生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。

  師:這位同學量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。

  生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。

  師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。

  生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。

  師:你發(fā)現(xiàn)了什么?

  生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。

  師:看來三角形的內(nèi)角和不一定是180。

  生:老師,測量會有誤差,量出來的'不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。

  生:都接近180就能說一定是180嗎?

  師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

  (學生在小組內(nèi)進行探索驗證。教師巡視,參與到學生的研究中)

  師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

  生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。

  師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?

  生:我們小組也有折的直角三角形,鈍角三角形。

  (其它的成員展示不同的三角形)

  師:看這個小組的同學想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

  師:哪個小組和他們的方法不一樣?

  生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。

  師:這個小組的方法簡便,易操作,很好。

  生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

  4、小結(jié)

  師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?

  生:沒有。

  師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。

  三、鞏固應(yīng)用,加深理解

  1、說一說每個三角形的內(nèi)角和是多少度

  師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?

  生: 180

  師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?

  生:180

  師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?

  生:180

  師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?

  生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180

  師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?

  生:180

  2、求下面各角的度數(shù)

  師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?

 。ǔ觯

  生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77

  生:用180-90-35,C =55。

  生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

  生:第三個三角形中,用180-20-45,B=115。

  3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

  生:等腰三角形的兩個底角相等,所以用180-70-70 4、

  師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋在建筑中應(yīng)用的例子。

  在設(shè)計這座大橋時,如果設(shè)計師將斜拉的鋼索與橋柱形成的夾角設(shè)計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

  生:用量角器量一量

  師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

  生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

  師:你真是個善于觀察、善于思考的孩子,努力學習,將來一定會成為一名優(yōu)秀的建筑師。

  四、回顧總結(jié),拓展延伸

  師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?

  生:我知道了三角形的內(nèi)角和是180。

  生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。

  生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。

  生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。

  師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

  師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?

  生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。

  生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

  師:我們學習知識,必須知其然并知其所以然。

  師:三角形中還有許許多多的學問,讓我們在以后的學習中繼續(xù)去研究。

三角形內(nèi)角和教案6

  一、學生知識狀況分析

  學生技能基礎(chǔ):學生在以前的幾何學習中,已經(jīng)學習過平行線的判定定理與平行線的性質(zhì)定理以及它們的嚴格證明,也熟悉三角形內(nèi)角和定理的內(nèi)容,而本節(jié)課是建立在學生掌握了平行線的性質(zhì)及嚴格的證明等知識的基礎(chǔ)上展開的,因此,學生具有良好的基礎(chǔ)。

  活動經(jīng)驗基礎(chǔ): 本節(jié)課主要采取的 活動形式是學生非常熟悉的自主探究與合作交流的學習方式,學生具有較熟悉的活動經(jīng)驗.

  二、教學任務(wù)分析

  上一節(jié)課的學習中,學生對于平行線的判定定理和性質(zhì)定理以及與平行線相關(guān)的簡單幾何證明是比較熟悉的,他們已經(jīng)具有初步的幾何意識,形成了一定的邏輯思維能力和推理能力,本節(jié)課安排《三角形內(nèi)角和定理的證明》旨在利用平行線的相關(guān)知識來推導出新的定理以及靈活運用新的定理解決相關(guān)問題。為此,本節(jié)課的教學目標是:

  知識與技能:(1)掌握三角形內(nèi)角和定理的證明及簡單應(yīng)用。

  (2)靈活運用三角形內(nèi)角和定理解決相關(guān)問題。

  數(shù)學能力:用多種方法證明三角形定理,培養(yǎng)一題多解的能力。

  情感與態(tài)度:對比過去撕紙等探索過程,體會思維實驗和符號化 的理性作用.

  三、教學過程分析

  本節(jié)課的設(shè)計分為四個環(huán)節(jié):情境引入探索新知反饋練習課堂小結(jié)

  第一環(huán)節(jié):情境引入

  活動內(nèi)容:(1)用折紙的方法驗證三角形內(nèi)角和定理.

  實驗1:先將紙片三角形一角折向其對邊,使頂點落在對邊上,折線與對邊平行(圖6-38(1))然后把另外兩角相向?qū)φ郏蛊漤旤c與已折角的頂點相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果

  (1) (2) (3) (4)

  試用自己的語言說明這一結(jié)論的證明思路。想一想,還有其它折法嗎?

  (2)實驗2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。

  試用自己的語言說明這一結(jié)論的證明思路。想一想,如果只剪下一個角呢?

  活動目的:

  對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。將自己的操作轉(zhuǎn)化為符號語言對于學生來說還存在一定困難,因此需要一個臺階,使學生逐步過渡到嚴格的證明.

  教學效果:

  說理過程是學生所熟悉的,因此,學生能比較熟練地說出用撕紙的方法可以驗證三角形內(nèi)角和定理的原因。

  第二環(huán)節(jié):探索新知

  活動內(nèi)容:

 、 用嚴謹?shù)淖C明來論證三角形內(nèi) 角和定理.

 、 看哪個同學想的方法最多?

  方法一:過A點作DE∥BC

  ∵DE∥BC

  DAB=B,EAC=C(兩直線平行,內(nèi)錯角相等)

  ∵DAB+BAC+EAC=180

  BAC+ C=180(等量代換)

  方法二:作BC的延長線CD,過點C作射線CE∥BA.

  ∵CE∥BA

  ECD(兩直線平行,同位角相等)

  ACE(兩直線平行,內(nèi)錯角相等)

  ∵BCA+ACE+ECD=180

  B+ACB=180(等量代換)

  活動目的:

  用平行線的判定定理及性質(zhì)定理來推導出新的.定理,讓學生再次體會幾何證明的嚴密性和數(shù)學的嚴謹,培養(yǎng) 學生的邏輯推理能力。

  教學效果:

  添輔助線不是盲目的,而是為了證明某一結(jié)論,需要引用某個定義、公理、定理,但原圖形不具備直接使用它們的條件,這時就需要添輔助線創(chuàng)造條件,以達到 證明的目的.

  第三環(huán)節(jié):反饋練習

  活動內(nèi)容:

  (1)△ABC中可以有3個銳角嗎? 3個直角呢? 2個直角呢?若有1個直角另外兩角有什么特點?

  (2)△ABC中 ,C=90,A=30,B=?

  (3)A=50,C,則△ABC中B=?

  (4)三角形的三個內(nèi)角中,只能有____個直角或____個鈍角.

  (5)任何一個三角形中,至少有____個銳角;至多有____個銳角.

  (6)三角形中三角之比 為1∶2∶3,則三個角各為多少度?

  (7)已知:△ABC中,B=2A。

  (a)求B的度數(shù);

  (b)若BD是AC邊上的高,求 DBC的度數(shù)?

  活動目的:

  通過學生的 反饋練習,使教師能全面了解學生對三角形內(nèi)角和定理的概念是否清楚,能否靈活運用三角形內(nèi)角和定理,以便教師能及時地進行查缺補漏.

  教學效果:

  學生對于三角形內(nèi)角和定理的掌握是非常熟練,因此,學生能較好地解決與三角形內(nèi)角和定理相關(guān)的問題。

  第四環(huán)節(jié):課堂小結(jié)

  活動內(nèi)容:

 、 證明三角形內(nèi)角和定理有哪幾種方法?

  ② 輔助線的作法技巧.

 、 三 角形內(nèi)角和定理的簡單應(yīng)用.

  活動目的:

  復習鞏固本課知識,提高學生的掌握程度.

  教學效果:

  學生對于三角形內(nèi)角和定理的幾種不同的證明方法的理解比較深刻,并能熟練運用三角形內(nèi)角和定理進行相關(guān)證明.

  課后練習:課本第239頁隨堂練習;第241頁習題6.6第1,2,3題

  四、教學反思

  三角形的有關(guān)知識是空間與圖形中最為核心、最為重要的內(nèi)容,它不僅是最基本的直線型平面圖形,而且?guī)缀跏茄芯克衅渌鼒D形的工具和基礎(chǔ).而三角形內(nèi)角和定理又是三角形中最為基礎(chǔ)的知識,也是學生最為熟悉且能與小學、中學知識相關(guān)聯(lián)的知識,看似簡單,但如果處理不好,會導致學生有厭煩心理,為此,本節(jié)課的設(shè)計力圖實現(xiàn)以下特點:

  (1) 通過折紙與剪紙等操作讓學生獲得直接經(jīng)驗,然后從學生的直接經(jīng)驗出發(fā),逐步轉(zhuǎn)到符號化處理,最后達到推理論證的要求。

  (2) 充分展示學生的個性,體現(xiàn)學生是學習的主人這一主題。

  (3) 添加輔助線是教學中的一個難點, 如何添加輔助線則應(yīng)允許學生展開思考并爭論,展示學生的思維過程,然后在老師的引導下達成共識。

三角形內(nèi)角和教案7

  一、教材與學生知識現(xiàn)狀分析:

  三角形的內(nèi)角和定理是從“數(shù)量關(guān)系”來揭示三角形內(nèi)角之間的關(guān)系的,這個定理是任意三角形的一個重要性質(zhì),它是學習以后知識的基礎(chǔ),并且是計算角的度數(shù)的方法之一。三角形內(nèi)角和定理的內(nèi)容,學生在小學已經(jīng)熟悉,小學時學生通過觀察、實驗得到了結(jié)論,七年級時學生又通過“拼”“折”“畫”等感知了三角形內(nèi)角和為180°的結(jié)論,完成了第一、二學段的學習。而到了第三學段,八年級學生需要運用演繹推理的方式加以證明。同時說明今后在幾何里,常常用這種方法得到新知識,而定理的證明需要添輔助線,讓學生明白添加輔助線是解決數(shù)學問題(尤其是幾何問題)的重要思想方法。學生在小學里已知三角形的內(nèi)角和是180°,前面又學習了三角形的有關(guān)概念,平角定義和平行線的性質(zhì),用輔助線將三角形的三個內(nèi)角巧妙地轉(zhuǎn)化為一個平角或兩平行線間的同旁內(nèi)角,為定理的證明提供了必備條件。盡管前面學生接觸過推理論證的知識,但并末真正去論證過,特別是在論證的格式上,沒有經(jīng)過很好的鍛煉。因此定理的證明應(yīng)是本節(jié)引導和探索的重點。

  從本節(jié)開始訓練學生將命題翻譯為幾何符號語言,寫出已知、求證,學會分析命題的證明思路,對培養(yǎng)學生的思維能力和推理能力將起到重要的作用。

  二、教學目標:

  知識與技能:三角形內(nèi)角和定理的證明。

  能力訓練要求:掌握三角形內(nèi)角和定理,并初步學會利用輔助線證題,同時培養(yǎng)學生觀察、猜想和論證能力。

  情感與價值觀要求:通過新穎、有趣的實際問題,來激發(fā)學生的求知欲。

  三、教學重點:探索證明三角形內(nèi)角和定理的不同方法。

  教學難點:三角形的內(nèi)角和定理的證明方法的討論。

  四、教法、學法和數(shù)學手段:

  采用“問題情景——建立模型——解釋、應(yīng)用與拓展”的模式展開教學。

  采用多媒體教學。

  五、教學過程

  第一環(huán)節(jié):

  情境引入:學校教務(wù)處有一個折疊長梯(電腦顯示圖像),當打開時頂端的角是多少度?一名學生測出了兩個梯腿

  活動內(nèi)容:為了回答這個問題,先觀察如下的實驗:

  用橡皮筋構(gòu)成△ABC,其中頂點B、C為定點,A為動點(如下圖),放松橡皮筋后,點A自動收縮于BC上,請同學們考察點A變化時所形成的一系列的三角形:△A1BC、△A2BC、△A3BC其內(nèi)角會產(chǎn)生怎樣的變化呢?

  請同學們猜一猜:三角形的內(nèi)角和可能是多少?

 。1)用折紙的方法驗證三角形內(nèi)角和定理.

  實驗1:先將紙片三角形一角折向其對邊,使頂點落在對邊上,折線與對邊平行(如下圖(1))然后把另外兩角相向?qū)φ,使其頂點與已折角的頂點相嵌合(圖(2)、(3)),最后得圖(4)所示的結(jié)果

  試用自己的語言說明這一結(jié)論的證明思路。想一想,還有其它折法嗎?

 。2)實驗2:將紙片三角形三頂角剪下,隨意將它們拼湊在一起。

  試用自己的語言說明這一結(jié)論的證明思路。想一想,如果只剪下一個角呢?

  活動目的':

  對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。將自己的操作轉(zhuǎn)化為符號語言對于學生來說還存在一定困難,因此需要一個臺階,使學生逐步過渡到嚴格的證明.

  第二環(huán)節(jié):探索新知

  但觀察與實驗得到的結(jié)論,并不一定正確、可靠,這樣就需要通過數(shù)學證明。那么怎樣證明呢?請同學們再來看實驗。

  這里有兩個全等的三角形,我把它們重疊固定在黑板上,然后把△ABC的上層∠B剝下來,沿BC的方向平移到∠ECD處固定,再剝下上層的∠A,把它倒置于∠C與∠ECD之間的空隙∠ACE的上方。

  這時,∠A與∠ACE能重合嗎?

  因為同位角∠ECD=∠B。所以CE∥BA,所以能重合。

  這樣我們就可以證明了:三角形的內(nèi)角和等于180°。接下來來證明:三角形的內(nèi)角和等于180°這個真命題。

  活動內(nèi)容:

  由實驗可知,我們猜對了!三角形的內(nèi)角和正好為一個平角。

  這是一個文字命題,證明時需要先干什么呢?

  需要先畫出圖形,根據(jù)命題的條件和結(jié)論,結(jié)合圖形寫出已知、求證。

  已知,如圖,△ABC,求證:∠A+∠B+∠C=180°

  方法一:證明:作BC的延長線CD,過點C作射線CE∥AB。

  ∵CE∥BA(已作)

  ∴∠ACE=∠A(兩直線平行,內(nèi)錯角相等)

  ∠ECD=∠B(兩直線平行,同位角相等)

  ∵∠ACB+∠ACE+∠ECD=180°(1平角=180°)

  ∴∠A+∠B+∠ACB=180°(等量代換)

  即:∠A+∠B+∠C=180°。

  方法二:證明:過A點作DE∥BC

  ∵DE∥BC(已作)

  ∴∠DAB=∠B,∠EAC=∠C(兩直線平行,內(nèi)錯角相等)

  ∵∠DAB+∠BAC+∠EAC=180°(1平角=180°)

  ∴∠BAC+∠B+∠C=180°(等量代換)

  活動目的:

  用平行線的判定定理及性質(zhì)定理來推導出新的定理,讓學生再次體會幾何證明的嚴密性和數(shù)學的嚴謹,培養(yǎng)學生的邏輯推理能力。

  第三環(huán)節(jié):反饋練習

  活動內(nèi)容:

 。1)△ABC中可以有3個銳角嗎?3個直角呢?2個直角呢?若有1個直角另外兩角有什么特點?

 。2)△ABC中,∠C=90°,∠A=30°,∠B=?

  (3)∠A=50°,∠B=∠C,則△ABC中∠B=?

 。4)三角形的三個內(nèi)角中,只能有____個直角或____個鈍角.

 。5)任何一個三角形中,至少有____個銳角;至多有____個銳角.

  (6)三角形中三角之比為1∶2∶3,則三個角各為多少度?

  C D A E C D

  (7)已知:△ABC中,∠C=∠B=2∠A。

 。╝)求∠B的度數(shù);

 。╞)若BD是AC邊上的高,求∠DBC的度數(shù)?

  活動目的:

  通過學生的反饋練習,使教師能全面了解學生對三角形內(nèi)角和定理的概念是否清楚,能否靈活運用三角形內(nèi)角和定理,以便教師能及時地進行查缺補漏.

  第四環(huán)節(jié):課堂小結(jié)

  活動內(nèi)容:

  我們證明了一個很有用的三角形內(nèi)角和定理,證明思想是,運用輔助線將原三角形中處于不同位置的三個內(nèi)角集中在一起,拼成一個平角。輔助線是聯(lián)系命題的條件和結(jié)論的橋梁,今后我們還要學習它。活動目的:

  復習鞏固本課知識,提高學生的掌握程度.

  六、課后作業(yè):課本第241頁習題6.6第1,2,3題

三角形內(nèi)角和教案8

  設(shè)計說明

  三角形的內(nèi)角和等于180°是三角形的一個重要特征,明確三角形的內(nèi)角和等于180°是以后學習和解決實際問題的基礎(chǔ)。

  1.讓學生在生動具體的情境中學習數(shù)學。

  《數(shù)學課程標準》指出:在教學中,教師應(yīng)充分利用學生的生活經(jīng)驗,設(shè)計生動有趣、直觀形象的數(shù)學教學活動,如講故事、直觀演示、模擬表演等,激發(fā)學生的學習興趣,讓學生在生動具體的情境中理解和掌握數(shù)學知識。在本節(jié)課的教學設(shè)計中,為了增強學生的學習興趣,使其快速、積極、主動地投入到學習中,上課伊始的故事導入以及新知識的情境創(chuàng)設(shè)都能把學生帶入快樂的學習氛圍中。

  2.通過操作、觀察、猜測、交流,使學生體驗數(shù)學知識的形成過程。

  在本節(jié)課的設(shè)計中,對于三角形的內(nèi)角和等于180°這一結(jié)論沒有直接給出,而是通過量、算、剪、拼、折等活動證實了三角形的內(nèi)角和等于180°,使學生在自主獲取知識的過程中,培養(yǎng)了創(chuàng)新意識、探索精神和實踐能力。

  課前準備

  教師準備 PPT課件 量角器 直尺

  學生準備 量角器 直尺 各種三角形

  教學過程

  第1課時 三角形內(nèi)角和(1)

  ⊙故事引入

  三角形的'家庭是一個團結(jié)的大家庭。但今天,三角形的家庭內(nèi)部卻發(fā)生了爭論,一個鈍角三角形說:“我的鈍角比你們的角都大,所以我的內(nèi)角和最大!币粋銳角三角形說:“我的個子比你高,我是大三角形,你是小三角形,所以我的內(nèi)角和肯定比你大!币粋直角三角形說:“不能只看一個鈍角大就說內(nèi)角和大,也不能只看個子,這樣不公平!逼渌娜切我哺鵂巿(zhí)不休,都說自己的內(nèi)角和最大。這時,家庭里的王者來了,聽了它們的訴說,也糊涂了。什么是三角形的內(nèi)角?什么是三角形的內(nèi)角和呢?

  (課件演示三條線段圍成三角形的過程)

  師生共同小結(jié):三條線段圍成三角形后,在三角形內(nèi)形成了三個角,這三個角就是三角形的三個內(nèi)角(課件閃爍三個內(nèi)角)。這三個內(nèi)角的度數(shù)之和就是這個三角形的內(nèi)角和。

  導入:到底誰說得對呢?這節(jié)課我們一起來探究三角形的內(nèi)角和。[板書課題:三角形內(nèi)角和(1)]

  設(shè)計意圖:由故事引入,激發(fā)學生的學習興趣,并通過故事提出問題,帶著對問題的思考,喚起學生的求知欲望,從而使他們主動投入到學習中去。

  ⊙自主探究,合作交流

  1.提出問題。

  師:你有什么辦法來比較兩個三角形的內(nèi)角和?

  2.量一量,算一算。

  (1)出示活動要求。

 、僭诰毩暠旧袭嬕粋銳角三角形、一個直角三角形和一個鈍角三角形。

 、谟昧拷瞧鳒y量所畫三角形的各個內(nèi)角的度數(shù),把測量結(jié)果記錄在表格中,并計算出每個三角形的內(nèi)角和。

  (2)小組合作,量一量,算一算。

  (3)交流匯報。

  師:觀察計算結(jié)果,你發(fā)現(xiàn)了什么?

  引導學生發(fā)現(xiàn)每個三角形的內(nèi)角和都在180°左右。

三角形內(nèi)角和教案9

  教學目標

  1、通過創(chuàng)設(shè)生動、有趣的操作情境,使學生了解三角形的內(nèi)角和是180度,初步感知計算多邊形內(nèi)角和的公式,并會運用這個性質(zhì)靈活解決一些簡單的實際問題。

  2、在猜測、實踐、驗證等過程中,進一步培養(yǎng)學生的猜想、驗證、及動手能力。

  3、使學生聯(lián)系實際感受在日常生活中的應(yīng)用,能積極參與操作、實驗等學習活動,能主動與他人合作交流并獲得積極的情感體驗。

  重點難點

  感受并掌握三角形內(nèi)角和等于180度。

  實踐操作驗證這個特性。

  教學準備

  三角板、三個三角形紙片,正方形紙。

  教學過程

  教學環(huán)節(jié)

  過程目標

  教師活動

  學生活動

  反思

  計算三角尺三個內(nèi)角的和。

  自主探索,解決問題

  試一試

  鞏固提高

  板書設(shè)計:

  通過計算每塊三角尺的內(nèi)角和引發(fā)學生思考“是不是其他三角形的內(nèi)角和也是180度?由此激發(fā)學生的探知欲望。

  適當指導把三角形的三個角拼在一起的操作示范,可以由教師先示范,再讓學生模仿著做一做,培養(yǎng)學生的動手能力,并進一步使學生體會三角形的內(nèi)角和是180度。

  通過練習使學生的新知得到進一步的鞏固和加深。

  在學習的過程中進一步激發(fā)學生探索數(shù)學規(guī)律的興趣,初步感知計算多邊形內(nèi)角和的公式。

  一、計算三角尺三個內(nèi)角的和。

  出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

  引導學生說出90度、60度、30度。

  出示另一個三角尺,引導學生分別說出三個角的度數(shù):90度、45度、45度。

  提問:請同學們?nèi)芜x一個三角尺,算出他們?nèi)齻角一共多少度?

  學生計算后指名回答。

  師小結(jié):三角尺三個角的和是180度。

  二、自主探索,解決問題

  提問:是不是任一個三角形三個角的和都是180度呢?

  請同學們在自備本上任畫一個三角形,量出它們?nèi)齻角分別是多少度,再求出它們的和,然后小組內(nèi)交流。

  學生小組活動,教師了解學生情況,個別同學加以輔導。

  全班交流:讓學生分別說出三個角的度數(shù)以及它們的和。

  提問:你發(fā)現(xiàn)了什么?

  小結(jié):任何一個三角形三個角的和都是180度。利用三角形的這一性質(zhì),我們可以解決許多問題。

  三、試一試

  要求學生先計算,再用量角器量,最后比較結(jié)果是否相同?

  讓學生說說計算的方法。

  教師說明:即使結(jié)果不完全一樣,是因為測量的結(jié)果存在誤差,我們還是以計算的結(jié)果為準。

  四、鞏固提高

  完成想想做做的題目。

  第1題

  要求學生用量角器量出結(jié)果,和計算的'結(jié)果想比較。

  第2題

  指導學生看圖,弄清拼成的三角形的三個內(nèi)角指的是哪三個角。

  計算三角形三個角的內(nèi)角和,幫助學生進一步理解:三角形三個內(nèi)角的和是

  180度。

  第3題

  通過操作、計算,使學生認識到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會變化的。

  第4、5、6題

  引導學生運用三角形的分類及三角形內(nèi)角和的有關(guān)知識解決有關(guān)問題,重點培養(yǎng)學生靈活運用知識解決問題的能力。

  三角形的內(nèi)角和

  三角形的內(nèi)角和是180度

  觀察之后

  指名回答

  計算后指名回答。

  師生小結(jié)

  在自備本上任畫一個三角形,量出它們?nèi)齻角分別是多少度,再求出它們的和,然后小組內(nèi)交流。

  學生小組活動

  全班交流:讓學生分別說出三個角的度數(shù)以及它們的和。

  小結(jié)

  先計算,再用量角器量,最后比較結(jié)果是否相同?

  讓學生說說計算的方法。

  學生獨立計算,交流算法。

  看圖,弄清拼成的三角形的三個內(nèi)角指的是哪三個角。

  計算三角形三個角的內(nèi)角和

  通過操作、計算,使學生認識到:不管三角形的大小怎樣變化,它的內(nèi)角和是不會變化的。

  有許多同學在把每個三角形的3個角拼在一起時,不知道如何拼,有些無從下手,教師一定要指導好。其實我覺得還不如讓學生把每個三角形內(nèi)的三個角都剪下來,然后拼在一起,更清楚。

三角形內(nèi)角和教案10

  【教學內(nèi)容】:人教版第八冊第85頁例5及“做一做”和練習十四的第9、10、12題。

  【課程標準】:認識三角形,通過觀察、操作、了解三角形內(nèi)角和是180度。

  【學情分析】:

  學生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內(nèi)角和是多少度,學生是不陌生的,因為學生有以前認識角、用量角器量三角板三個角的度數(shù)以及三角形的分類的基礎(chǔ),學生也有提前預習的習慣,很多孩子都能回答出三角形的內(nèi)角和是180度,但是他們卻不知道怎樣才能得出三角形的內(nèi)角和是180度。另外,經(jīng)過三年多的學習,學生們已具備了初步的動手操作能力、主動探究能力以及小組合作的能力。

  【學習目標

  1、結(jié)合具體圖形能描述出三角形的內(nèi)角、內(nèi)角和的含義。

  2、在教師的引導下,通過猜測和計算能說出三角形的內(nèi)角和是180°。

  3、在小組合作交流中,通過動手操作,實驗、驗證、總結(jié)三角形的內(nèi)角和是180°,同時發(fā)展動手動腦及分析推理能力。

  4、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。

  【評價任務(wù)設(shè)計

  1、利用孩子已有經(jīng)驗,通過教師的提問和引導以及學生的直觀觀察,說出三角形的內(nèi)角、內(nèi)角和的含義。達成目標1。

  2、在教師的引導下,以游戲的形式學生通過猜測三角形的內(nèi)角和是多少度,然后通過計算說出三角形的內(nèi)角和是180°的結(jié)論。達成目標2。

  3、在小組合作交流中,通折一折、拼一拼和擺一擺的動手操作、實驗、驗證并歸納總結(jié)出三角形的內(nèi)角和是180°。達成目標3。

  4、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”和習題第9、10、12題達成目標4和目標3。

  【重難點

  教學重點:探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°。

  教學難點: 充分發(fā)揮學生的主體作用,自主探索和發(fā)現(xiàn)三角形的內(nèi)角和是180°

  【教學過程】

  一、復習準備。

  1、三角形按角的不同可以分成哪幾類?

  2、一個平角是多少度?1個平角等于幾個直角?兩個三角板上各個角的度數(shù)?

  二、探究新知

 。ㄒ唬﹦(chuàng)設(shè)情境,生成問題,認識三角形的內(nèi)角及內(nèi)角和

  (播放課件)在圖形王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大!变J角三角形也不示弱:“你雖然有一個鈍角,可其它兩個角都很小。但是我的三個角都不是很小。我的內(nèi)角和比你大”。直角三角形說:“別爭了,三角形的內(nèi)角和是180°,我們的內(nèi)角和是一樣大的!

  師:動畫片看完了,請大家想一想,什么是三角形的內(nèi)角和?

  師引導學生說出三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。

  多媒體展示:三條線段在圍成三角形后,在三角形內(nèi)形成了三個角(課件閃爍三個角的弧線),我們把三角形內(nèi)的這三個角,分別叫做三角形的內(nèi)角(板書:內(nèi)角),這三個內(nèi)角的度數(shù)的和就叫做三角形的內(nèi)角和。

  (達成目標1:利用多媒體播放動畫和孩子已有的經(jīng)驗,通過教師的提問和引導,學生說出什么叫三角形的內(nèi)角及內(nèi)角和達成目標1。多媒體創(chuàng)設(shè)的情景也為目標二打好鋪墊

 。ǘ、引導猜測三角形的內(nèi)角和是180度

  師:在課件展示的直角三角形、鈍角三角形、銳角三角形的對話中,你贊同誰的觀點?

  預設(shè):學生回答直角三角形。

  師:你為什么這么認為呢?

  生:我是想三角板上三個角的度數(shù)是90度、45度、45度加起來是180度,90度、60度、30度加起來也是180度。

  (達成目標2:激發(fā)引導學生運用已有經(jīng)驗猜三角形的內(nèi)角和而不是盲目猜,激起學生的疑問和好奇心,這樣在教師的引導下,學生通過猜測三角形的內(nèi)角和是多少度,然后通過計算說出三角形的內(nèi)角和是180°的'結(jié)論。)

 。ㄈ、驗證三角形的內(nèi)角和是180度

  1.確定研究范圍

  師:研究三角形的內(nèi)角和,是不是應(yīng)該包括所有的三角形?只研究這一個行不行?(不行)那就隨便畫,挨個研究吧。(學生反對)那該怎樣去驗證呢?請你們想個辦法吧!

  師:分類驗證是科學驗證的一種好方法,下面我們就用分類驗證的方法來驗證一下,看看三角形的內(nèi)角和是不是180°?

  2.操作驗證

  教師讓每個學習小組拿出課前制作的各種各樣的三角形,先找到三個內(nèi)角,在每個內(nèi)角標上序號1、2、3。然后請任意用一個三角形,想辦法驗證我們的猜想。如果有困難,可以啟用老師提供的“智慧錦囊”或者尋求同學的幫助。

  智慧錦囊:

 。1)要知道三個內(nèi)角的和,只要知道三個角分別是多少度就可以了,你覺得哪個工具可以測出角的度數(shù)?試一試。

 。2)180°的角是個特殊的角,它是個什么角?你能想辦法將這三個內(nèi)角轉(zhuǎn)化成這樣的角嗎?

  3.匯報交流

  師:誰來匯報你的驗證結(jié)果?

 。1)測算法

  師小結(jié):用量的方法驗證既然有誤差、不準,結(jié)論就難以讓人信服,那有沒有辦法更好地驗證我們的猜測呢?誰還有別的方法?

  (2)剪拼法

 。3)折拼法

  師小結(jié):用拼和折的方法都能將三角形的三個內(nèi)角轉(zhuǎn)化成一個平角,從而借助我們學過的平角知識證明三角形的內(nèi)角和確實是180°,你們真會動腦筋!

 。4)推算法

 、侔岩粋長方形沿對角線分成兩個完全一樣的直角三角形。因為長方形的內(nèi)角和是360°,所以一個直角三角形的內(nèi)角和等于180°。(課件演示過程)

  師直角三角形的內(nèi)角和已經(jīng)證明了是180°,現(xiàn)在我們只要能證明:銳角三角形和鈍角三角形的內(nèi)角和也是180°就可以了。

  課件演示

 、谝粋銳角三角形,從頂點往下畫一條垂線,將三角形分為兩個直角三角形,因為我們已經(jīng)知道直角三角形的內(nèi)角和是180°,所以兩個直角三角形的度數(shù)和就是360°,減去兩個直角的和180°,就是要證明的三角形內(nèi)角和,肯定是180°。

  4.總結(jié)提煉

  師:孩子們,剛才我們通過“量——————推”的方法分類驗證了三角形的內(nèi)角和是( )度?

  現(xiàn)在可以下結(jié)論了嗎?

  (板書:三角形三個內(nèi)角和等于180°。)

  師:那在“三角形的爭吵中”誰是對的?

  (達成目標3。此環(huán)節(jié)讓學生通過“量——拼——折——推”的方法分類驗證了三角形的內(nèi)角和是180度。此環(huán)節(jié)充分體現(xiàn)了學生學習的主動性。)

  (四)利用三角形內(nèi)角和是180解決問題

  1、看圖,求出未知角的度數(shù)。

  2、書本85頁“做一做”

  在一個三角形中,∠1=140。,∠3=25。,求∠2的度數(shù)。

  (達成目標3和目標4:能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。通過“做一做”達成目標3和目標4.)

  三、目標達成檢測方案:

  1、求出三角形各個角的度數(shù)。

  2、埃及金字塔建于4500年前的埃及古王朝時期,它是用巨大石塊修砌成的方錐形建筑物,外形像中文“金”字,故名“金字塔”。金字塔大小、高矮各異,外表有四個側(cè)面,每個側(cè)面都是等腰三角形。人們量得這個三角形的一個底角是64度。

  四、課堂小結(jié),提升認識

  同學們,這節(jié)課你有哪些收獲?我們是怎樣得到“三角形內(nèi)角和等于180度”這個結(jié)論的?

  師:是啊,今天咱們不但知道了三角形的內(nèi)角和是180°,更重要的是我們經(jīng)歷了探究三角形內(nèi)角和的驗證方法。咱們從猜想出發(fā),經(jīng)過驗證(用量、拼、折、推等)得到了結(jié)論并利用結(jié)論解決了一些問題。孩子們,其實我們在不知不覺中已經(jīng)走了數(shù)學家的探究歷程……希望同學們在今后的學習中大膽應(yīng)用,勇于創(chuàng)新,做最棒的自己

三角形內(nèi)角和教案11

  教學內(nèi)容:

  課本第67頁。

  教學目標:

  通過操作活動探索發(fā)現(xiàn)和驗證“三角形的內(nèi)角和是180度”的規(guī)律。

  通過量一量、剪一剪、拼一拼,培養(yǎng)學生合作能力、動手實踐能力和運用新知識解決問題的能力。

  使學生體驗數(shù)學學習的樂趣,激發(fā)學生主動學習數(shù)學的興趣。教學重點:探索發(fā)現(xiàn)和驗證三角形內(nèi)角和是180度。教學難點:對不同探究方法的指導和學生對規(guī)律的應(yīng)用。教學準備:課件,三角形,量角器。教學

  一、復習舊知,引出課題。誰能說說它們分別是什么三角形?

  預設(shè):銳角三角形,直角三角形,鈍角三角形。

  請一位同學分別標出這些三角形的角,其余的同學在自己準備的三角形中標角。獨立完成,集體訂正。

  其實這些角是三角形的內(nèi)角,誰能大膽猜一猜三角形內(nèi)角和是多少度?預設(shè):360°,180°,90°…….今天我們一起來探究三角形內(nèi)角和。板書課題:三角形內(nèi)角和

  二、探究新知

  1、小組合作。

  課件展示:活動要求(1)4人一組,每人任選一個三角形用你的方法驗證三角形內(nèi)角和。

 。2)小組交流各自的驗證方法和驗證結(jié)果,評選出較好的驗證方法并說明理由。(3)每組選派一名同學匯報。

  預設(shè):我們組選用的是量角法,依次測量出三角形內(nèi)角和是170°,185°,180°…哪一組和這一組驗證方法不同?

  預設(shè):我們是把三角形的3個角剪下來拼在一起發(fā)現(xiàn)得到一個平角因此得知三角形內(nèi)角和是180°。

  你能把你拼的過程給大家說詳細一些嗎?

  預設(shè):選出一個角,再選出一個角使得它的一邊與前一個角的一邊重合,剩下的角的一邊和前一個角的另一條邊重合,此時拼出一個平角因此三角形內(nèi)角和是180°。

  我發(fā)現(xiàn)你選用的是銳角三角形,那直角三角形,鈍角三角形的.內(nèi)角和是怎樣的?請同學們嘗試用這種方法驗證三角形內(nèi)角和。

  預設(shè):直角三角形內(nèi)角和是180°,鈍角三角形內(nèi)角和是180°?偨Y(jié):通過撕(剪)拼法,我們驗證任意三角形內(nèi)角和是180°。

  追問:同學們我有一個困惑剛才有部分同學通過測量角計算內(nèi)角和為什么不是180°,問題出在哪里?

  預設(shè):測量角的方法不正確。預設(shè):三角形做得不規(guī)范。

  預設(shè):測量過程中存在誤差,導致不精確。

  總結(jié):撕(剪)拼法在驗證三角形內(nèi)角和精確性上優(yōu)勝于量角法。還有沒有同學想出不一樣的驗證方法呢?

  預設(shè)1:課件展示折拼法,請一位同學說出具體的操作過程。剩下的同學仿照這種方法任選一個三角形驗證三角形內(nèi)角和。

  預設(shè)2:同學上臺展示操作過程,其余同學觀察后并自行操作。

  總結(jié):

  折拼法依然能驗證任意三角形內(nèi)角和是180°?磥斫鉀Q數(shù)學問題的方法不是唯一的,希望同學們在今后的學習當中能多思,多想充分挖掘自己的聰明才智。

  三、知識運用,鞏固練習。

  請同學們獨立完成下題。(每題10分共100分。)

  1、如圖∠1=140°,∠3=25°,∠2=(°)。

  2、一個直角三角形,一個銳角是50°,另一個銳角是(°)。

  3、一個頂角是50°的等腰三角形的底角是(°)。

  4、等邊三角形每個角是(°)。

  5、等腰直角三角形的一個底角是(°)。

  6、在一個三角形中,∠A=90°,∠B+∠C=(°)。

  7、一個三角形中,有一個角是65°,另外的兩個角可能是(°)和(°)。

  8、某同學把一塊三角形的玻璃打碎成三片,現(xiàn)在他要到玻璃店去配一塊形狀完全一樣的玻璃,那么最省事的辦法是帶()去。為什么?

 、冖邰

  9、把下面這個三角形沿虛線剪成兩個三角形,每個小三角形的內(nèi)角和是多少度?

  10、根據(jù)三角形內(nèi)角和是180 °。你能求出下面四邊形的內(nèi)角和嗎?

  四、課后小結(jié)

  請你談?wù)劚竟?jié)課的收獲。

  五、板書設(shè)計

  任意三角形內(nèi)角和是180°。

三角形內(nèi)角和教案12

  探索三角形內(nèi)角和的度數(shù)以及已知兩個角度數(shù)求第三個角度數(shù)。

  教學目標:

  1、通過測量、撕拼、折疊等探索活動,使學生發(fā)現(xiàn)三角形內(nèi)角和的度數(shù)是180?

  2、已知三角形兩個角的度數(shù),會求第三個角的度數(shù)。

  3、培養(yǎng)學生動手實踐,動腦思考的習慣。

  教學重點:

  了解三角形三個內(nèi)角的度數(shù)。

  教學難點:

  理解三角形三個內(nèi)角大小的關(guān)系。

  教具學具準備:

  課件三角形若干量角器剪刀。

  教材與學生

  教材創(chuàng)設(shè)了一個有趣的問題情境,通過對大小兩個三角形內(nèi)角和的大小比較來激發(fā)學生探索的興趣。教材為了得到三角形內(nèi)角和是180的結(jié)論安排了兩個活動,通過學生測量,折疊,撕拼來找到答案。

  學生在已有的會用量角器來度量一個角的度數(shù)的基礎(chǔ)上,會首先想到這種方法。但測量的誤差會導致測量不同,因此,學生會想到采取其他更好的辦法,通過親手實踐,得出結(jié)論。

  教學過程:

  一、呈現(xiàn)真實狀態(tài)。

  師:今天我們來研究三角形內(nèi)角和度數(shù)。這里有兩個三角形,一個是大三角形,一個是小三角形(圖略),到底哪一個三角形的內(nèi)角和比較大呢?

  學生各抒己見。

  二、提出問題:

  師;剛才我們觀察三角形哪個內(nèi)角和大,同學們有兩種不同的猜想,可以肯定,必定有錯下面我們來測量驗證。

  (1)以小組為單位請同學們拿出量角器,量一量,算一算圖中大小兩個三角形內(nèi)角和度數(shù),并做好記錄,記錄每個內(nèi)角的度數(shù)。

 。2)組內(nèi)交流。

 。3)全班交流。由小組匯報測出結(jié)果(三角形內(nèi)角和)

 。4)師小結(jié):我們通過測量發(fā)現(xiàn),每個三角形的內(nèi)角和測出結(jié)果接近180。

  三。自主探索、研究問題、歸納總結(jié):

  師引導提問:三角形的內(nèi)角和會不會就是180呢?

 。ㄒ唬┙M內(nèi)探索:

 。1)以小組為單位探索更好的辦法。

 。2)以小組為單位邊展示邊匯報探索的過程與發(fā)現(xiàn)的結(jié)果。

  (有的小組想不出來,可以安排小組和小組之間進行交流,目的是讓學生通過實踐發(fā)現(xiàn)結(jié)果,在探索中發(fā)現(xiàn)問題,在討論中解決問題,是學生學習到良好的學習方法)

  (3)把你沒有想到的方法動手做一次

 。ㄊ箤W生更直觀地理解三角形的內(nèi)角和是180的證明過程)

 。4)根據(jù)學生的反饋情況教師進行操作演示。

 。ǘ┙處熝菔

  撕拼法1。教師取出三角形教具,把三個角撕下來,拼在一起,如圖所示

  2.師:這三個內(nèi)角放在一起你有什么發(fā)現(xiàn)?

  生:發(fā)現(xiàn)三個內(nèi)角拼成一個平角。

  師:平角是多少度呢?說明什么?

  生:180?說明三個內(nèi)角和剛好等于180。

  師:這種方法是不是適用各種三角形呢?

  3。學生每人動手實踐,看看是不是不同的三角形是否都有這個特點,也能拼出一個平角呢?

  進行實驗后,結(jié)果發(fā)現(xiàn)同樣存在這一規(guī)律,三角形三個內(nèi)角和是180。

  折疊法:師:剛才我們通過測量發(fā)現(xiàn)三角形內(nèi)角和接近180,那是因為測量的不那么精確,所以說“接近”,又通過撕拼方法發(fā)現(xiàn)三角形的三個內(nèi)角剛好拼成一個平角,進一步說明三個內(nèi)角和是180,現(xiàn)在再來演示另一種實驗,再次證明我們的發(fā)現(xiàn)。

  你們也來試一試好嗎?

  在學生完成這一實踐后肯定這一發(fā)現(xiàn)

  三角形三個內(nèi)角和等于180?

  :充分發(fā)揮了學生的主觀能動性,讓學生大膽去思考發(fā)言,把課堂交給學生,最后老師在演示達成共識,這樣學生學到知識印象頗深,也理解最為透徹,提高課堂教學的效率

  四。鞏固練習,知識升華。

  1.完成課本第28頁的“試一試”第三題。

  2.想一想:鈍角三角形最多有幾個鈍角?為什么?

  銳角三角形中的兩個內(nèi)角和能小于90嗎?

  3.有一個四邊形,你能不用量角器而算出它的四個內(nèi)角和嗎?

  試一試,看誰算得快。

  師:誰來說說自己的計算過程?

  角的和叫做三角形的內(nèi)角和。(板書課題)下面請大家認真觀察這兩個算式,從結(jié)果上看,你發(fā)現(xiàn)了什么?

  生:它們的內(nèi)角和都是 180 度。

  師:觀察的真仔細。c擊課件,出示多種多樣的三角形后提問)同學們,咱們都知道,這兩個三角形是特殊三角形,在我們的生活中還有許許多多不是這個樣子的三角形,請看大屏幕,這些任意三角形,它們的內(nèi)角和是不是都是 180 度呢?

 。刍卮鹂赡苡卸荩

 。ㄒ环N全部說是:)

  師:請問,你們是怎么想的,為什么這么認為?

  生: ……

  師:看來,大家是通過這兩個三角形猜想的,是嗎?想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧。◣熢谡n題“內(nèi)角和”下面劃上橫線,打上問號)

 。ㄒ环N有一部分同學說是,有一部分同學說不是:)

  師:看來,大家的意見不一致, 想不想驗證一下你們的猜想,(生:想)好,咱們一起走進三角形王國,一起去研究它們內(nèi)角和的秘密吧!(師在課題“內(nèi)角和”下面劃上橫線,打上問號)

 。ǘ﹦邮植僮,探究新知

  師:老師看你們有答案了,哪位同學愿意說一說你的奇思妙想?

  生:我準備用量的方法。

  師:然后呢?

  生:然后把它們?nèi)齻內(nèi)角的度數(shù)相加起來,就知道了三角形的內(nèi)角和是多少?

  師:說的真不錯,還有沒有其它的方法?

  生:我是把三角形的三個角剪下來,拼在一起( 師鼓勵: 你的想法很有創(chuàng)意, 等一會兒用你的行動來驗證你的猜想吧。

  生:……

  (如生一時想不到,師可引導:他是把三個內(nèi)角的度數(shù)相加在一起,我們能不能想辦法把三個內(nèi)角放在一起進行觀察,看看能不能發(fā)現(xiàn)些什么呢?)

  師: 好啦, 老師相信咱們班的同學個個都是小數(shù)學家, 一定能找出更多的方法的, 請你們在研究之前,也像老師一樣,在三個內(nèi)角上編上序號,角一、角二、角三,現(xiàn)在就請同學們對銳角三角形、直角三角形和鈍角三角形等各種類型的三角形進行研究,看看它們的內(nèi)角和各有什么特點。咱們比一比,看一看,哪個小組的方法多,方法好!

  開始吧。▽W生研究,師巡回指導)預設(shè)時間:5 分鐘

  師:老師看各小組已經(jīng)研究好了,哪位同學愿意上來交流一下?

  師:請你告訴大家,你是怎么研究的,最后發(fā)現(xiàn)了什么結(jié)果?

 。 預設(shè): 如果第一類同學說的是量的方法)

  師:你是用什么來研究的?

  生:量角器。

  師: 那請你說一下你度量的結(jié)果好嗎?

 。 生匯報度量結(jié)果)

  師: 剛才有的同學測量的結(jié)果是180 度,有的同學測量的結(jié)果是179 度,有的同學測量的結(jié)果是182 度,各不相同,但是這些結(jié)果都比較接近于多少?

  生:180 度。

  師:那到底三角形的內(nèi)角和是不是180 度呢?還有哪位同學有其它的方法進行驗證嗎?

  生:我是先把三角形的三個角剪掉以后粘在一起,然后在量出它們?nèi)齻角組成的度數(shù)。

  師:他演示的真好,你們聽明白了嗎? 李 老師把他的過程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點擊 FLASH :把三角形按照三個內(nèi)角撕成三塊,先把角一放在右邊,再把角二放在左邊,最后把角三調(diào)個頭,插在角一角二的中間,這樣它們?nèi)齻內(nèi)角就形成了一個大角,角一的這條邊,角二這條邊看起來在一條直線上,那到底是不是在一條直線上呢,我們一起用直尺來量一下,師演示后問學生:是不是在一條直線上,那這個大角是個什么角呢?通過剛才拼的過程,你有什么發(fā)現(xiàn)?)

  師:好極了,剛才這個小組的同學用拼的方法得到XX 三角形的內(nèi)角和是180 度,你們還有別的方法嗎?

  生:我們還用了折的方法(生介紹方法)

  師: 你們聽明白了嗎? 李老師把他的過程給大家在大屏幕上演示一下。

 。◣熯呏v解邊點擊 FLASH :先找到兩條邊的中點,把它連起來,把角一沿著中間的這條線向?qū)厡φ郏侔呀嵌蚶飳φ,使它的頂點與角一對齊,最后把角三也用同樣的方法對折,這樣它們?nèi)齻內(nèi)角就形成了一個大角,這個大角是個什么角呢?)

  生:是個平角。180 度。

  師:除了用了量、拼、折的方法來研究以外,剛才在操作的過程中老師還發(fā)現(xiàn)了一個同學用了一種方法來進行研究,大家想知道嗎?

  師:請這位同學來說給大家聽聽吧!

  生:我把兩個相同的直角三角形拼成了一個長方形,因為長方形里面有四個直角,所以它的內(nèi)角和是360 度,那么一個三角形的內(nèi)角和就是180 度。

  師:剛才我們用量、拼、折、推理的方法都得到了三角形的`內(nèi)角和是 180 度,同學們,現(xiàn)在我們回想一下,剛才測量的不同結(jié)果是一個準確數(shù)還是一個近似數(shù)?為什么會出現(xiàn)這種情況呢?

  生 1 :量的不準。

  生 2 :有的量角器有誤差。

  師:對,這就是測量的誤差,如果測量儀器再精密一些,我們的方法再準確一些,那么任意一個三角形的內(nèi)角和也將是 180 度。

  師:同學們,我們剛才用不同的方法,不同的三角形研究了三角形的內(nèi)角和,得到了一個相同的發(fā)現(xiàn),這個發(fā)現(xiàn)就是?

  生:三角形的內(nèi)角和是180 度。(師板書)

  師:把你們偉大的發(fā)現(xiàn)讀一讀吧!

 。ㄈ┩卣箲(yīng)用,深化認識

  師:請看老師手上的這兩個三角形,左邊這個內(nèi)角和是多少度?(生: 180 度)右邊呢(生:也是 180 度)

  師:現(xiàn)在老師把它們拼在一起,這個大三角形的內(nèi)角和又是多少度呢?

 。ㄉ鸷髱熞龑w納得出:三角形的內(nèi)角和與形狀大小無關(guān),組成的大三角形的內(nèi)角和依然是 180 度。)

  師:剛才我們在討論學習三角形知識的時候,三角形中的兩個好朋友卻爭執(zhí)了起來,想知道怎么回事嗎?讓我們一起去看看吧。ǔ鍪菊n件,課件內(nèi)容:一個大一些的直角三角形說:“我的個頭比你大,我的內(nèi)角和一定比你大”。另一個稍小的銳角三角形說:“是這樣嗎”?)

  師:到底誰說的對呢?今天我們就用我們今天學到的知識來為它們解決解決吧!

  師:真不錯,你們當了一回小法官,幫助三角形兄弟解決了問題,它倆很感謝你們,三角形王國中還有很多生活中的問題,小博士們,你們愿意解答嗎?

  師:好,請看大屏幕!

 。ǔ鍪净A(chǔ)練習)在一個三角形中角一是 140 度,角三是 25 度,求角二的度數(shù)。

  生答后,師提問:你是怎樣想的?

  生陳述后,師鼓勵:說的真好!

  出示自行車、等邊三角形的路標牌、告訴頂角求底角的房頂、直角三角形的電線桿架進行練習。

 。ǔ鍪荆┬〖t的爸爸給小紅買了一個等腰三角形的風箏,它的一個底角是 70 度,它的頂角是多少度?

  師:看來啊,三角形的知識在咱們生活中還有著這么廣泛的運用呢!昨天,我們班發(fā)生了一件事情,小明不小心將鏡框上的一塊三角形玻璃摔破了,(課件呈現(xiàn)情境)他想重新買一塊玻璃安上,小明非常聰明,只帶了其中的一塊到玻璃店去,就配到了和原來一模一樣的玻璃了。你知道他帶的是哪一塊嗎?

 。A設(shè):師:根據(jù)三角形的內(nèi)角和是180 度,你能求出下面四邊形、五邊形、六邊形的內(nèi)角和嗎?

  師:太棒了,這位同學把這個四邊形分割成了二個三角形求出了它的內(nèi)角和,你能像他一樣棒求出五邊形和六邊形的內(nèi)角和嗎?

  師: 同學們,今天我們一起學習了三角形的內(nèi)角和,你有哪些收獲呢?

  師:嗯,真不錯, 你們知道嗎? 三角形的內(nèi)角和等于 180 度是 法國著名的數(shù)學家帕斯卡 在 1635 年他 12 歲時獨自發(fā)現(xiàn)的, 今天憑著同學們的聰明智慧也研究出了三角形的內(nèi)角和是180 度,老師為你們感到驕傲,老師相信在你們的勤奮學習和刻苦鉆研下,你們就是下一個“帕斯卡”!

  師:好,下課!同學們再見!

三角形內(nèi)角和教案13

  [教學目標]

  1、通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角和的度數(shù)和等于180o。

  2、已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。

  [教學重、難點]

  1、探索和發(fā)現(xiàn)三角形三個內(nèi)角和的度數(shù)和等于180o。

  2、已知三角形的兩個角的度數(shù),會求出第三個角的度數(shù)。

  [教學準備]學生、老師準備幾個形狀不同的三角形、量角器。

  [教學過程]

  一、創(chuàng)設(shè)情境,激趣質(zhì)疑

  教材第30頁創(chuàng)設(shè)的情境,激發(fā)探索的興趣。

  二、自主探索

  1、提出問題:怎樣得到一個三角形的內(nèi)角和?

  大多數(shù)學生會想到測量角度。

  2、小組活動:測量三角形的三個內(nèi)角的度數(shù),并記錄在第30頁的表格中。

  3、匯報測量結(jié)果和得到的結(jié)論。

  發(fā)現(xiàn)大小、形狀不同的'每個三角形,三個內(nèi)角和的度數(shù)和都接近180o。

  4、進一步探索:三角形的三個內(nèi)角的和是否正好等于180o呢?

  小組活動探索方法。

  5、得出結(jié)論。

  三、試一試:

  已知三角形的兩個角的度數(shù),運用三角形的三個角的度數(shù)和是180o,求出第3個角的度數(shù)。

  四、練一練

  運用三角形內(nèi)角和等于180o,判斷題中的三個三角形說的對嗎?

  [板書設(shè)計]

  三角形的內(nèi)角和

  測量三個角的度數(shù)求和:結(jié)論:

三角形內(nèi)角和教案14

  教學內(nèi)容:

  p.28、29

  教材簡析:

  本節(jié)課的教學先通過計算三角尺的3個內(nèi)角的度數(shù)的和,激發(fā)學生的好奇心,進而引發(fā)三角形內(nèi)角和是180度的猜想,再通過組織操作活動驗證猜想,得出結(jié)論。

  教學目標:

  1、讓學生通過觀察、操作、比較、歸納,發(fā)現(xiàn)三角形的內(nèi)角和是180。

  2、讓學生學會根據(jù)三角形的內(nèi)角和是180 這一知識求三角形中一個未知角的度數(shù)。

  3、激發(fā)學生主動參與、自主探索的意識,鍛煉動手能力,發(fā)展空間觀念。

  教學準備:

  三角板,量角器、點子圖、自制的三種三角形紙片等。

  教學過程:

  一、提出猜想

  老師取一塊三角板,讓學生分別說說這三個角的度數(shù),再加一加,分別得到這樣的2個算式:90+60+30=180,90+45+45=180

  看了這2個算式你有什么猜想?

  (三角形的三個角加起來等于180度)

  二、驗證猜想

  1、畫、量:在點子圖上,分別畫銳角三角形、直角三角形、鈍角三角形。畫好后分別量出各個角的度數(shù),再把三個角的度數(shù)相加。

  老師注意巡視和指導。交流各自加得的結(jié)果,說說你的發(fā)現(xiàn)。

  2、折、拼:學生用自己事先剪好的圖形,折一折。

  指名介紹折的方法:比如折的是一個銳角三角形,可以先把它上面的一個角折下,頂點和下面的邊重合,再分別把左邊、右邊的角往里折,三個角的頂點要重合。發(fā)現(xiàn):三個角會正好在一直線上,說明它們合起來是一個平角,也就是180度。

  繼續(xù)用該方法折鈍角三角形,得到同樣的結(jié)果。

  直角三角形的折法有不同嗎?

  通過交流使學生明白:除了用剛才的方法之外,直角三角形還可以用更簡便的方法折;可以直角不動,而把兩個銳角折下,正好能拼成一個直角;兩個直角的`度數(shù)和也是180度。

  3、撕、拼:可能有個別學生對折的方法感到有困難。那么還可以用撕的方法。

  在撕之前要分別在三個角上標好角1、角2和角3。然后撕下三個角,把三個角的一條邊、頂點重合,也能清楚地看到三個角合起來就是一個平角180度。

  小結(jié):我們可以用多種方法,得到同樣的結(jié)果:三角形的內(nèi)角和是180。

  4、試一試

  三角形中,角1=75,角2=39,角3=( )

  算一算,量一量,結(jié)果相同嗎?

  三、完成想想做做

 。、算出下面每個三角形中未知角的度數(shù)。

  在交流的時候可以分別學生說說怎么算才更方便。比如第1題,可先算40加60等于100,再用180減100等于80。第2題則先算180減110等于70,再用70減55更方便。第3題是直角三角形,可不用180去減,而用90減55更好。

  指出:在計算的時候,我們可根據(jù)具體的數(shù)據(jù)選擇更佳的算法。

  2、一塊三角尺的內(nèi)角和是180 ,用兩塊完全一樣的三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少度?

  可先猜想:兩個三角形拼在一起,會不會它的內(nèi)角和變成1802=360 呢?為什么?

  然后再分別算一算圖上的這三個三角形的內(nèi)角和。得出結(jié)論:三角形不論大小,它的內(nèi)角和都是180 。

  3、用一張正方形紙折一折,填一填。

  4、說理:一個直角三角形中最多有幾個直角?為什么?

  一個鈍角三角形中最多有幾個直角?為什么?

  四、布置作業(yè)

  第4、5題

三角形內(nèi)角和教案15

  【教學目標】

  1、知識與技能:

 。1)理解和掌握三角形的內(nèi)角和是180°。

 。2)運用三角形的內(nèi)角和知識解決實際問題和拓展性問題。

  2、過程與方法:

 。1)通過測量、撕拼、折疊等方法,探索和發(fā)現(xiàn)三角形三個內(nèi)角的和等于180°。

 。2)知道三角形兩個角的度數(shù),能求出第三個角的度數(shù)。

 。3)發(fā)展學生動手操作、觀察比較和抽象概括的能力。

  3、情感態(tài)度與價值觀:

  讓學生體驗數(shù)學活動的探索樂趣,通過教學中的活動體會數(shù)學的轉(zhuǎn)化思想。

  【教學重、難點】

  教學重點:理解掌握三角形的內(nèi)角和是180°。

  教學難點:運用三角形的內(nèi)角和知識解決實際問題。

  【教具準備】

  教學課件、各種三角形

  【教學過程】

  一、創(chuàng)設(shè)情景,引出問題

  1、猜謎語:

  形狀似座山,穩(wěn)定性能堅。三竿首尾連,學問不簡單。

  (打一圖形名稱)

  2、猜三角形

  師:老師這有1個三角形,它的一部分被智慧星給遮住了,猜猜這是什么三角形?它里面會出現(xiàn)兩個直角嗎?為什么?

  3、引出課題。

  師:為什么不會出現(xiàn)兩個直角?今天我們就再次走進數(shù)學王國,探討三角形的內(nèi)角和的奧秘。(板書課題)

  二、探究新知

  1、三角形的內(nèi)角和

  師:三角形內(nèi)角和指的是什么?

  2、猜一猜。

  師:這個三角形的內(nèi)角和是多少度?

  3、驗證。

  讓學生用自己喜歡的方式驗證三角形的內(nèi)角和是不是180°。

  4、學生匯報。

  (1)測量

  師:匯報的測量結(jié)果,有的.是180°,有的不是180°,為什么會出現(xiàn)這種情況?有沒有別的方法驗證?

 。2)剪拼

  A、學生上臺演示。

  B、請大家三人小組合作,用剪拼的方法驗證其它三角形。

  C、師演示。

 。3)折拼

  師:有沒有別的驗證方法?我在電腦里收索到折的方法,請同學們看一看他是怎么折的(課件演示)。

  (4)結(jié)論:三角形的內(nèi)角和是180。

 。5)數(shù)學小知識。

  5、鞏固知識。

 。1)解決課前問題,為什么一個三角形不可能有兩個直角?一個三角形中可以有2個鈍角嗎?

 。2)把兩個小三角形拼在一起,問:大三角形的內(nèi)角和是多少度。

  教師:為什么不是360°?

  三、解決相關(guān)問題

  師:接下來,利用三角形的內(nèi)角和我們來解決一些相關(guān)的問題吧!

  1、看圖,求未知角的度數(shù)。

  2、判斷。

  3、如果一個都不知道,或只知道1個角,你能知道三角形各角的度數(shù)嗎?

  求出下面三角形各角的度數(shù)。

 。1)我三邊相等。

 。2)我是等腰三角形,我的頂角是96°。

 。3)我有一個銳角是40°。

  4、求四邊形、五邊形內(nèi)角和。

  四、總結(jié)。

  師:這節(jié)課你有什么收獲?

  五、板書設(shè)計:(略)

【三角形內(nèi)角和教案】相關(guān)文章:

三角形內(nèi)角和教案02-19

《三角形的內(nèi)角和》教案03-01

三角形內(nèi)角和教案【精品】02-10

《三角形內(nèi)角和》數(shù)學教案06-18

三角形內(nèi)角和教案15篇02-20

三角形內(nèi)角和教案(15篇)02-20

三角形內(nèi)角和教案10篇05-14

有關(guān)三角形內(nèi)角和教案三篇05-15

三角形內(nèi)角和教案匯總6篇05-15

【實用】三角形內(nèi)角和教案11篇01-11