- 相關(guān)推薦
函數(shù)數(shù)學教案
在教學工作者開展教學活動前,有必要進行細致的教案準備工作,教案是教材及大綱與課堂教學的紐帶和橋梁。優(yōu)秀的教案都具備一些什么特點呢?以下是小編整理的函數(shù)數(shù)學教案,僅供參考,希望能夠幫助到大家。
函數(shù)數(shù)學教案1
一、本課數(shù)學內(nèi)容的本質(zhì)、地位、作用分析
普通高中課標教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應用。本節(jié)課方程的根與函數(shù)的零點,正是在這種建立和運用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學內(nèi)容是函數(shù)零點的定義和函數(shù)零點存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應用”服務的,同時也為后續(xù)學習的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊綜合成一個整體,學好本節(jié)意義重大。
函數(shù)在數(shù)學中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識具有廣泛的聯(lián)系,而函數(shù)的零點就是其中的一個鏈結(jié)點,它從不同的角度,將數(shù)與形,函數(shù)與方程有機地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點來研究方程,就是將局部放入整體中研究,進而對整體和局部都有一個更深層次的理解,并學會用聯(lián)系的觀點解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識的聯(lián)系奠定基礎(chǔ)。
二、教學目標分析
本節(jié)內(nèi)容包含三大知識點:
一、函數(shù)零點的定義;
二、方程的根與函數(shù)零點的等價關(guān)系;
三、零點存在性定理。
結(jié)合本節(jié)課引入三大知識點的方法,設(shè)定本節(jié)課的知識與技能目標如下:
1.結(jié)合方程根的幾何意義,理解函數(shù)零點的定義;
2.結(jié)合零點定義的探究,掌握方程的實根與其相應函數(shù)零點之間的等價關(guān)系;
3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法.
本節(jié)課是學生在學習了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識的基礎(chǔ)上,通過對特殊函數(shù)圖象的分析進行展開的,是培養(yǎng)學生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。
結(jié)合本節(jié)課教學主線的設(shè)計,設(shè)定本節(jié)課的過程與方法目標如下:
1.通過化歸與轉(zhuǎn)化思想的引導,培養(yǎng)學生從已有認知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習慣;
2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學生主動應用數(shù)學思想的意識;
3.通過習題與探究知識的相關(guān)性設(shè)置,引導學生深入探究得出判斷函數(shù)的零點個數(shù)和所在區(qū)間的方法;
4.通過對函數(shù)與方程思想的不斷剖析,促進學生對知識靈活應用的能力。
由于本節(jié)課將以教師引導,學生探究為主體形式,故設(shè)定本節(jié)課的情感、態(tài)度與價值觀目標如下:
1.讓學生體驗化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;
2.培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣。
3.使學生感受學習、探索發(fā)現(xiàn)的樂趣與成功感。
三、教學問題診斷
學生具備的認知基礎(chǔ):
1.基本初等函數(shù)的圖象和性質(zhì);
2.一元二次方程的根和相應函數(shù)圖象與x軸的聯(lián)系;
3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識。
學生欠缺的實際能力:
1.主動應用數(shù)形結(jié)合思想解決問題的意識還不強;
2.將未知問題已知化,將復雜問題簡單化的化歸意識淡薄;
3.從直觀到抽象的概括總結(jié)能力還不夠;
4.概念的內(nèi)涵與外延的探究意識有待提高。
對本節(jié)課的教學,教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來引入函數(shù)零點的。這樣處理,主要是想讓學生在原有二次函數(shù)的'認知基礎(chǔ)上,使其知識得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點,再來理解其他復雜的函數(shù)零點就會容易一些。但學生對如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學生感到平淡,激發(fā)不起他們的興趣,他們對零點的理解也只會浮于表面,也無法使其體會引入函數(shù)零點的必要性,理解不了方程根存在的本質(zhì)原因是零點的存在。
教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點的一種條件的,如果不能有效地對該過程進行引導,容易出現(xiàn)學生被動接受,盲目記憶的結(jié)果,而喪失了對學生應用數(shù)學思想方法的意識進行培養(yǎng)的機會。
教材中零點存在性定理只表述了存在零點的條件,但對存在零點的個數(shù)并未多做說明,這就要求教師對該定理的內(nèi)涵和外延要有清晰的把握,引導學生探究出只存在一個零點的條件,否則學生對定理的內(nèi)容很容易心存疑慮。
四、本節(jié)課的教法特點以及預期效果分析
本節(jié)課教法的幾大特點總結(jié)如下:
1.以問題為主線貫穿始終;
2.精心設(shè)置引導性的語言放手讓學生探究;
3.注重在引導學生探究問題解法的過程中滲透數(shù)學思想;
4.在探究過程中引入新知識點,在引入新知識點后適時歸納總結(jié),進行探究階段性成果的應用。
由于所設(shè)置的主線問題具有很高的探究價值,所以預期學生熱情會很高,積極性調(diào)動起來,那整節(jié)課才能活起來;
由于為了更好地組織學生探究所設(shè)置的引導性語言,重在去挖掘?qū)W生內(nèi)心真實的想法和他們最真實體會到的困難,所以通過學生活動會更多地暴露他們在基礎(chǔ)知識掌握方面的缺憾,免不了要隨時糾正對過往知識的錯誤理解;
因為在探究過程中不斷滲透數(shù)學思想,學生對親身經(jīng)歷的解題方法就會有更深的體會,主動應用數(shù)學思想的意識在上升,對于主線問題也應該可以迎刃而解;
因為在探究過程中引入新知識點,學生對新知識產(chǎn)生的必要性會有更深刻的體會和認識,同時在新知識產(chǎn)生后,又適時地加以應用,學生對新知識的應用能力不斷提高。
函數(shù)數(shù)學教案2
教學目標:
1.理解的概念,了解三要素.
2.通過對抽象符號的認識與使用,使學生在符號表示方面的能力得以提高.
3.通過定義由變量觀點向映射觀點得過渡,使學生能從發(fā)展與聯(lián)系的角度看待數(shù)學學習.
教學重點難點:重點是在映射的基礎(chǔ)上理解的概念;
難點是對抽象符號的認識與使用.
教學用具:投影儀
教學方法:自學研究與啟發(fā)討論式.
教學過程:
一、復習與引入
今天我們研究的內(nèi)容是的概念.并不象前面學習的集合,映射一樣我們一無所知,而是比較熟悉,所以我先找同學說說對的認識,如是什么?學過什么?
(要求學生盡量用自己的話描述初中的定義,并試舉出各類學過的例子)
學生舉出如 等,待學生說完定義后教師打出投影片,給出定義之后教師也舉一個例子,問學生.
提問1. 是嗎?
(由學生討論,發(fā)表各自的意見,有的認為它不是,理由是沒有兩個變量,也有的認為是,理由是可以可做 .)
教師由此指出我們爭論的焦點,其實就是定義的不完善的地方,這也正是我們今天研究定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點,將它完善與深化.
二、新課
現(xiàn)在請同學們打開書翻到第50 頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)
提問2.新的的定義是什么?能否用最簡單的語言來概括一下.
學生的'回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導形式發(fā)現(xiàn)定義的本質(zhì).
(板書)2.2
一、的概念
1.定義:如果A,B都是非空的數(shù)集,那么A到B的映射 就叫做A到B的,記作 .其中原象集合A稱為定義域,象集C 稱為值域.
問題3:映射與有何關(guān)系?(一定是映射嗎?映射一定是嗎?)
引導學生發(fā)現(xiàn),是特殊的映射,特殊在集合A,B必是非空的數(shù)集.
2.本質(zhì):是非空數(shù)集到非空數(shù)集的映射.(板書)
然后讓學生試回答剛才關(guān)于 是不是的問題,要求從映射的角度解釋.
此時學生可以清楚的看到 滿足映射觀點下的定義,故是一個,這樣解釋就很自然.
教師繼續(xù)把問題引向深入,提出在映射的觀點下如何解釋 是個?
從映射角度看可以是 其中定義域是 ,值域是 .
從剛才的分析可以看出,映射觀點下的定義更具一般性,更能揭示的本質(zhì).這也是我們后面要對進行理論研究的一種需要.所以我們著重從映射角度再來認識.
3.的三要素及其作用(板書)
是映射,自然是由三件事構(gòu)成的一個整體,分別稱為定義域.值域和對應法則.當我們認識一個時,應從這三方面去了解認識它.
例1 以下關(guān)系式表示嗎?為什么?
(1) ; (2) .
解:(1)由 有意義得 ,解得 .由于定義域是空集,故它不能表示.
(2) 由 有意義得 ,解得 .定義域為 ,值域為 .
由以上兩題可以看出三要素的作用
(1)判斷一個關(guān)系是否存在.(板書)
例2 下列各中,哪一個與 是同一個.
(1) ; (2) (3) ; (4) .
解:先認清 ,它是 (定義域)到 (值域)的映射,其中
。
再看(1)定義域為 且 ,是不同的; (2)定義域為 ,是不同的;
(4) ,法則是不同的;
而(3)定義域是 ,值域是 ,法則是乘2減1,與 完全相同.
求解后要求學生明確判斷兩個是否相同應看定義域和對應法則完全一致,這時三要素的又一作用.
(2)判斷兩個是否相同.(板書)
下面我們研究一下如何表示,以前我們學習時雖然會表示,但沒有相系統(tǒng)研究的表示法,其實表示法有很多,不過首先應從記號 說起.
4.對符號 的理解(板書)
首先讓學生知道 與 的含義是一樣的,它們都表示 是 的,其中 是自變量, 是值,連接的紐帶是法則 ,所以這個符號本身也說明是三要素構(gòu)成的整體.下面我們舉例說明.
例3 已知 試求 (板書)
分析:首先讓學生認清 的含義,要求學生能從變量觀點和映射觀點解釋,再進行計算.
含義1:當自變量 取3時,對應的值即 ;
含義2:定義域中原象3的象 ,根據(jù)求象的方法知 .而 應表示原象 的象,即 .
計算之后,要求學生了解 與 的區(qū)別, 是常量,而 是變量, 只是 中一個特殊值.
最后指出在剛才的題目中 是用一個具體的解析式表示的,而以后研究的 不一定能用一個解析式表示,此時我們需要用其他的方法表示,具體的方法下節(jié)課再進一步研究.
三、小結(jié)
1. 的定義
2. 對三要素的認識
3. 對符號的認識
四、作業(yè):略
五、板書設(shè)計
2.2 例1. 例3.
一. 的概念
1. 定義
2. 本質(zhì) 例2. 小結(jié):
3. 三要素的認識及作用
4. 對符號的理解
探究活動
在數(shù)學及實際生活中有著廣泛的應用,在我們身邊就存在著很多與有關(guān)的問題如在我們身邊就有不少分段的實例,下面就是一個生活中的分段.
夏天,大家都喜歡吃西瓜,而西瓜的價格往往與西瓜的重量相關(guān).某人到一個水果店去買西瓜,價格表上寫的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一個西瓜,稱重后店主說5元1角,1角就不要了,給5元吧,可這位聰明的顧客馬上說,你不僅沒少要,反而多收了我錢,當顧客講出理由,店主只好承認了錯誤,照實收了錢.
同學們,你知道顧客是怎樣店主坑人了呢?其實這樣的數(shù)學問題在我們身邊有很多,只要你注意觀察,積累,并學以至用,就能成為一個聰明人,因為數(shù)學可以使人聰明起來.
答案:
若西瓜重9斤以下則最多應付4.5元,若西瓜重9斤以上,則最少也要5.4元,不可能出現(xiàn)5.1元這樣的價錢,所以店主坑人了.
函數(shù)數(shù)學教案3
一、銳角三角函數(shù)
正弦和余弦
第一課時:正弦和余弦(1)
教學目的
1,使學生了解本章所要解決的新問題是:已知直角三角形的一條邊和另一個元素(一邊或一銳角),求這個直角三角形的其他元素。
2,使學生了解“在直角三角形中,當銳角A取固定值時,它的對邊與斜邊的比值也是一個固定值。
重點、難點、關(guān)鍵
1,重點:正弦的概念。
2,難點:正弦的概念。
3,關(guān)鍵:相似三角形對應邊成比例的性質(zhì)。
教學過程
一、復習提問
1、什么叫直角三角形?
2,如果直角三角形ABC中∠C為直角,它的直角邊是什么?斜邊是什么?這個直角三角形可用什么記號來表示?
二、新授
1,讓學生閱讀教科書第一頁上的插圖和引例,然后回答問題:
(1)這個有關(guān)測量的實際問題有什么特點?(有一個重要的測量點不可能到達)
。2)把這個實際問題轉(zhuǎn)化為數(shù)學模型后,其圖形是什么圖形?(直角三角形)
。3)顯然本例不能用勾股定理求解,那么能不能根據(jù)已知條件,在地面上或紙上畫出另一個與它全等的直角三角形,并在這個全等圖形上進行測量?(不一定能,因為斜邊即水管的長度是一個較大的數(shù)值,這樣做就需要較大面積的平地或紙張,再說畫圖也不方便。)
。4)這個實際問題可歸結(jié)為怎樣的數(shù)學問題?(在Rt△ABC中,已知銳角A和斜邊求∠A的對邊BC。)
但由于∠A不一定是特殊角,難以運用學過的定理來證明BC的長度,因此考慮能否通過式子變形和計算來求得BC的值。
2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的對邊與斜邊的'比值都等于1/2,根據(jù)這個比值,已知斜邊AB的長,就能算出∠A的對邊BC的長。
類似地,在所有等腰的那塊三角尺中,由勾股定理可得∠A的對邊/斜邊=BC/AB=BC/=1/=/2 這就是說,當∠A=450時,∠A的對邊與斜邊的比值等于/2,根據(jù)這個比值,已知斜邊AB的長,就能算出∠A的對邊BC的長。
那么,當銳角A取其他固定值時,∠A的對邊與斜邊的比值能否也是一個固定值呢?
(引導學生回答;在這些直角三角形中,∠A的對邊與斜邊的比值仍是一個固定值。)
三、鞏固練習:
在△ABC中,∠C為直角。
1,如果∠A=600,那么∠B的對邊與斜邊的比值是多少?
2,如果∠A=600,那么∠A的對邊與斜邊的比值是多少?
3,如果∠A=300,那么∠B的對邊與斜邊的比值是多少?
4,如果∠A=450,那么∠B的對邊與斜邊的比值是多少?
四、小結(jié)
五、作業(yè)
1,復習教科書第1-3頁的全部內(nèi)容。
2,選用課時作業(yè)設(shè)計。
函數(shù)數(shù)學教案4
教學目標
1.理解的概念,了解的三種表示法,會求的定義域.
。1)了解是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解是由定義域,值域,對應法則三要素構(gòu)成的整體.
。2)能正確認識和使用的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點.
(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類的定義域.
2.通過概念的學習,使學生在符號表示,運算等方面的能力有所提高.
。1)對記號 有正確的理解,準確把握其含義,了解 ( 為常數(shù))與 的區(qū)別與聯(lián)系;
(2)在求定義域中注意運算的合理性與簡潔性.
3.通過定義由變量觀點向映射觀點的過渡,是學生能從發(fā)展的角度看待數(shù)學的學習.
教學建議
1.教材分析
。1)知識結(jié)構(gòu)
(2)重點難點分析
本小節(jié)的重點是在映射的基礎(chǔ)上理解的概念.,主要包括對的定義,表示法,三要素的作用的理解與認識.
教學難點是的定義和符號的認識與使用.
、儆捎趯W生在初中已學習了的變量觀點下的定義,并具體研究了幾類最簡單的,對并不陌生,所以在高中重新定義時,重要的是讓學生認識到它的優(yōu)越性,它從根本上揭示了的本質(zhì),由定義域,值域,對應法則三要素構(gòu)成的整體,讓學生能主動將與解析式區(qū)分開來.對這一點的認識對于后面的性質(zhì)的研究都有很大的幫助.
、谠诒竟(jié)中首次引入了抽象的符號 ,學生往往只接受具體的.解析式,而不能接受 ,所以應讓學生從符號的含義認識開始,在符號中, 在法則 下對應 ,不是 與 的乘積,符號本身就是三要素的體現(xiàn).由于 所代表的對應法則不一定能用解析式表示,故表示的方法除了解析法以外,還有列表法和圖象法.此外 本身還指明了誰是誰的,有利于我們分清解析式中的常量與變量.如 ,它應表示以 為自變量的二次,而如果寫成 ,則我們就不能準確了解誰是變量,誰是常量,當 為變量時,它就不代表二次.
2.教法建議
。1)高中對內(nèi)容的學習是初中內(nèi)容的深化和延伸.深化首先體現(xiàn)在的定義更具一般性.故教學中可以讓學生舉出自己熟悉的例子,并用變量觀點加以解釋,教師再給出如: 是不是的問題,用變量定義解釋顯得很勉強,而如果從集合與映射的觀點來解釋就十分自然,所以有重新認識的必要.
。2)對是三要素構(gòu)成的整體的認識,一方面可以通過對符號 的了解與使用來強化,另一方面也可通過判斷兩個是否相同來配合.在這類題目中,可以進一步體現(xiàn)出三要素整體的作用.
。3)關(guān)于對分段的認識,首先它的出現(xiàn)是一種需要,可以給出一些實際的例子來說明這一點,對自變量不同取值,用不同的解析式表示同一個關(guān)系,所以是一個而不是幾個,其次還可以舉一些數(shù)學的例子如 這樣的,若利用絕對值的定義它就可以寫成 ,這就是一個分段,從這個題中也可以看出分段是一個.
函數(shù)數(shù)學教案5
教學準備
1.教學目標
1、知識與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依
賴關(guān)系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.
2、過程與方法:
(1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學模型,在此基礎(chǔ)上學習用集合與對應的語言來刻畫函數(shù),體會對應關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
。3)會求一些簡單函數(shù)的定義域和值域;
。4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;
3、情感態(tài)度與價值觀,使學生感受到學習函數(shù)的必要性和重要性,激發(fā)學習的積極性.
教學重點/難點
重點:理解函數(shù)的模型化思想,用集合與對應的語言來刻畫函數(shù);
難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學用具
多媒體
4.標簽
函數(shù)及其表示
教學過程
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1、復習初中所學函數(shù)的概念,強調(diào)函數(shù)的模型化思想;
2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:
(1)炮彈的`射高與時間的變化關(guān)系問題;
。2)南極臭氧空洞面積與時間的變化關(guān)系問題;
。3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題.
3、分析、歸納以上三個實例,它們有什么共同點;
4、引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關(guān)系;
5、根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.
(二)研探新知
1、函數(shù)的有關(guān)概念
。1)函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
、佟皔=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.
。2)構(gòu)成函數(shù)的三要素是什么?
定義域、對應關(guān)系和值域
。3)區(qū)間的概念
、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
②無窮區(qū)間;
③區(qū)間的數(shù)軸表示.
。4)初中學過哪些函數(shù)?它們的定義域、值域、對應法則分別是什么?
通過三個已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對應語言刻畫的定義,談談體會.
師:歸納總結(jié)
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
。1)求函數(shù)的定義域;
(2)求f(-3),f()的值;
。3)當a>0時,求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.
分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.
所以s==(40-x)x(0<x<40)
引導學生小結(jié)幾類函數(shù)的定義域:
。1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.
2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.
(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合.
(4)如果f(x)是由幾個部分的數(shù)學式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)
(5)滿足實際問題有意義.
鞏固練習:課本P19第1
2、如何判斷兩個函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個與函數(shù)y=x相等?
分析:
1構(gòu)成函數(shù)三個要素是定義域、對應關(guān)系和值域.由于值域是由定義域和對應關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))
2兩個函數(shù)相等當且僅當它們的定義域和對應關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
解:
課本P18例2
(四)歸納小結(jié)
、購木唧w實例引入了函數(shù)的概念,用集合與對應的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.
(五)設(shè)置問題,留下懸念
1、課本P24習題1.2(A組)第1—7題(B組)第1題
2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應關(guān)系.
課堂小結(jié)
函數(shù)數(shù)學教案6
一、教學目的
1.使學生進一步理解自變量的取值范圍和函數(shù)值的意義.
2.使學生會用描點法畫出簡單函數(shù)的圖象.
二、教學重點、難點
重點:1.理解與認識函數(shù)圖象的意義.
2.培養(yǎng)學生的看圖、識圖能力.
難點:在畫圖的三個步驟的列表中,如何恰當?shù)剡x取自變量與函數(shù)的對應值問題.
三、教學過程
復習提問
1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?
3.說出下列各點所在象限或坐標軸:
新課
1.畫函數(shù)圖象的方法是描點法.其步驟:
(1)列表.要注意適當選取自變量與函數(shù)的對應值.什么叫“適當”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.
一般地,我們把自變量與函數(shù)的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數(shù)的對應值列出表來.
(2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標,在直角坐標系中描出相應的點.
(3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的'兩個點(0,0),(3,9)連成直線.
一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).
2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.
小結(jié)
本節(jié)課的重點是讓學生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.
練習
①選用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線)
、谘a充題:畫出函數(shù)y=5x-2的圖象.
作業(yè)
選用課本習題.
四、教學注意問題
1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認識函數(shù)的本質(zhì)特征.
2.注意充分調(diào)動學生自己動手畫圖的積極性.
3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養(yǎng)學生看圖、識圖的能力.
函數(shù)數(shù)學教案7
教學目標
1.使學生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過函數(shù)單調(diào)性概念的教學,培養(yǎng)學生分析問題、認識問題的能力.通過例題培養(yǎng)學生利用定義進行推理的邏輯思維能力.
3.通過本節(jié)課的教學,滲透數(shù)形結(jié)合的數(shù)學思想,對學生進行辯證唯物主義的教育.
教學重點與難點
教學重點:函數(shù)單調(diào)性的概念.
教學難點:函數(shù)單調(diào)性的判定.
教學過程設(shè)計
一、引入新課
師:請同學們觀察下面兩組在相應區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
(用投影幻燈給出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減。
師:(手執(zhí)投影棒使之沿曲線移動)對.他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當x變大時,第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變。m然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們在學習一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時,就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對函數(shù)這種性質(zhì)作更進一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
。c明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認識的,又是新的知識,引起學生的注意.)
二、對概念的分析
。ò鍟n題:)
師:請同學們打開課本第51頁,請××同學把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
。▽W生朗讀.)
師:好,請坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請同學們思考一個問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認為是一致的.定義中的“當x1<x2時,都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當x1<x2時,都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個簡單的不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學的魅力!
。ㄍㄟ^教師的情緒感染學生,激發(fā)學生學習數(shù)學的興趣.)
師:現(xiàn)在請同學們和我一起來看剛才的兩組圖中的第一個函數(shù)y=f1(x)和y=f2(x)的圖象,體會這種魅力.
。ㄖ笀D說明.)
師:圖中y=f1(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對于區(qū)間[a,b]上的任意x1,x2,當x1<x2時,都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
。ń處熤笀D說明分析定義,使學生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識融為一體,加深對概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學思想方法.)
師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應區(qū)間上較大的自變量對應……
(不把話說完,指一名學生接著說完,讓學生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應區(qū)間上較大的自變量對應較小的函數(shù)值的函數(shù).
(學生可能回答得不完整,教師應指導他說完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認為在定義中我們應該抓住哪些關(guān)鍵詞語,才能更透徹地認識定義?
(學生思索.)
學生在高中階段以至在以后的學習中經(jīng)常會遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學好數(shù)學及其他各學科的重要一環(huán).因此教師應該教會學生如何深入理解一個概念,以培養(yǎng)學生分析問題,認識問題的能力.
(教師在學生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當加重語氣.在學生感到無從下手時,給以適當?shù)奶崾荆?/p>
生:我認為在定義中,有一個詞“給定區(qū)間”是定義中的關(guān)鍵詞語.
師:很好,我們在學習任何一個概念的時候,都要善于抓住定義中的關(guān)鍵詞語,在學習幾個相近的概念時還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對相應的區(qū)間而言的,離開了相應的區(qū)間就根本談不上函數(shù)的增減性.請大家思考一個問題,我們能否說一個函數(shù)在x=5時是遞增或遞減的?為什么?
生:不能.因為此時函數(shù)值是一個數(shù).
師:對.函數(shù)在某一點,由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談論某一個函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個我們學過的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).
(在學生回答問題時,教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們在談論函數(shù)的增減性時必須指明相應的區(qū)間.
師:還有沒有其他的關(guān)鍵詞語?
生:還有定義中的“屬于這個區(qū)間的任意兩個”和“都有”也是關(guān)鍵詞語.
師:你答的很對.能解釋一下為什么嗎?
(學生不一定能答全,教師應給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上。
師:如果是閉區(qū)間的話,能否取自區(qū)間端點?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個反例來說明“任意”呢?
。ㄗ寣W生思考片刻.)
生:可以構(gòu)造一個反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當x1=-2,x2=-1時,有f(x1)>f(x2);當x1=1,x2=2時,有f(x1)<f(x2),這時就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個點的情況來判斷,而必須嚴格依照定義在給定區(qū)間內(nèi)任取兩個自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.
(教師通過一系列的設(shè)問,使學生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學生加深對定義的理解.在概念教學中,反例常常幫助學生更深刻地理解概念,鍛煉學生的發(fā)散思維能力.)
師:反過來,如果我們已知f(x)在某個區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大小.即一般成立則特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
。ㄓ棉q證法的原理來解釋數(shù)學知識,同時用數(shù)學知識去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學生學習的能力.)
三、概念的應用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
。ㄓ猛队盎脽艚o出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:問得好.這說明你想的很仔細,思考問題很嚴謹.容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴格,尤其是有些函數(shù)不易畫出圖象,因此必須學會根據(jù)解析式和定義從數(shù)量上分析辨認,這才是我們研究函數(shù)單調(diào)性的基本途徑.
。ㄖ赋鲇枚x證明的必要性.)
師:怎樣用定義證明呢?請同學們思考后在筆記本上寫出證明過程.
。ń處熝惨,并指定一名中等水平的學生在黑板上板演.學生可能會對如何比較f(x1)和f(x2)的.大小關(guān)系感到無從入手,教師應給以啟發(fā).)
師:對于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對兩個實數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號來決定兩個數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個自變量,當x1<x2時,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應的語句下劃線,并標注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對式子進行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對變形后的式子說明其符號.應寫明“因為x1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號”(在黑板上板演,并注明“③→定符號”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應位置標注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個步驟,請同學們記。枰赋龅氖堑诙,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以。
。▽W生的做法進行分析,把證明過程步驟化,可以形成思維的定勢.在學生剛剛接觸一個新的知識時,思維定勢對理解知識本身是有益的,同時對學生養(yǎng)成一定的思維習慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認為這個函數(shù)不是整個定義域內(nèi)的減函數(shù),因為它不符合減函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認為,因為由圖象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個單調(diào)增(減)區(qū)間之間不要用符號“∪”連接.另外,x=0不是定義域中的元素,此時不要寫成閉區(qū)間.
上是減函數(shù).
。ń處熝惨暎畬W生證明中出現(xiàn)的問題給予點拔.可依據(jù)學生的問題,給出下面的提示:
。1)分式問題化簡方法一般是通分.
。2)要說明三個代數(shù)式的符號:k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個負數(shù)的時候,不等號方向要改變.
對學生的解答進行簡單的分析小結(jié),點出學生在證明過程中所出現(xiàn)的問題,引起全體學生的重視.)
四、課堂小結(jié)
師:請同學小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應該特別注意的?
。ㄕ堃粋思路清晰,善于表達的學生口述,教師可從中給予提示.)
生:這節(jié)課我們學習了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個關(guān)鍵詞語;在寫單調(diào)區(qū)間時不要輕易用并集的符號連接;最后在用定義證明時,應該注意證明的四個步驟.
五、作業(yè)
1.課本P53練習第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學設(shè)計說明
是函數(shù)的一個重要性質(zhì),是研究函數(shù)時經(jīng)常要注意的一個性質(zhì).并且在比較幾個數(shù)的大小、對函數(shù)作定性分析、以及與其他知識的綜合應用上都有廣泛的應用.對學生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學生對此有一定的感性認識,對概念的理解有一定好處,但另一方面學生也會覺得是已經(jīng)學過的知識,感覺乏味.因此,在設(shè)計教案時,加強了對概念的分析,希望能夠使學生認識到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對概念的分析是在引進一個新概念時必須要做的,對概念的深入的正確的理解往往是學生認知過程中的難點.因此在本教案的設(shè)計過程中突出對概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學生對如何學會、弄懂一個概念有初步的認識,并且在以后的學習中學有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個難點,學生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學生理解概念,也可以對學生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學習的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對今后的教學作一定的鋪墊.
函數(shù)數(shù)學教案8
一、目的要求
1、使學生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
二、內(nèi)容分析
1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學習函數(shù)的,前面三小節(jié),先學習函數(shù)的概念與表示法,這是為學習后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學習一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學習,學生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結(jié)合這些內(nèi)容,學生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學思想方法在解決實際問題中的應用。
2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當照顧了學生在小學數(shù)學中學了正反比例關(guān)系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學習反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學習反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學習效益,又便于學生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。
3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進行學習,因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的.講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學習,學生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數(shù)、反比例函數(shù)的學習方法。
三、教學過程
復習提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個函數(shù)的例子。
新課講解:
可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:
(1)這些式子表示的是什么關(guān)系?(在學生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對這個定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時,首先,要注意適當復習小學學過的正比例關(guān)系,小學數(shù)學是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是(一定)
需指出,小學因為沒有學過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。
其次,要注意引導學生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。
課堂練習:
教科書13、4節(jié)練習第1題.
函數(shù)數(shù)學教案9
二次函數(shù)的教學設(shè)計
教學內(nèi)容:人教版九年義務教育初中第三冊第108頁
教學目標:
1。 1。 理解二次函數(shù)的意義;會用描點法畫出函數(shù)y=ax2的圖象,知道拋物線的有關(guān)概念;
2。 2。 通過變式教學,培養(yǎng)學生思維的敏捷性、廣闊性、深刻性;
3。 3。 通過二次函數(shù)的教學讓學生進一步體會研究函數(shù)的一般方法;加深對于數(shù)形結(jié)合思想認識。
教學重點:二次函數(shù)的意義;會畫二次函數(shù)圖象。
教學難點:描點法畫二次函數(shù)y=ax2的圖象,數(shù)與形相互聯(lián)系。
教學過程設(shè)計:
一 創(chuàng)設(shè)情景、建模引入
我們已學習了正比例函數(shù)及一次函數(shù),現(xiàn)在來看看下面幾個例子:
1。寫出圓的半徑是R(CM),它的面積S(CM2)與R的關(guān)系式
答:S=πR2。 ①
2。寫出用總長為60M的籬笆圍成矩形場地,矩形面積S(M2)與矩形一邊長L(M)之間的關(guān)系
答:S=L(30-L)=30L-L2 ②
分析:①②兩個關(guān)系式中S與R、L之間是否存在函數(shù)關(guān)系?
S是否是R、L的一次函數(shù)?
由于①②兩個關(guān)系式中S不是R、L的一次函數(shù),那么S是R、L的什么函數(shù)呢?這樣的函數(shù)大家能不能猜想一下它叫什么函數(shù)呢?
答:二次函數(shù)。
這一節(jié)課我們將研究二次函數(shù)的有關(guān)知識。(板書課題)
二 歸納抽象、形成概念
一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0) ,
那么,y叫做x的二次函數(shù)。
注意:(1)必須a≠0,否則就不是二次函數(shù)了。而b,c兩數(shù)可以是零。(2) 由于二次函數(shù)的解析式是整式的形式,所以x的取值范圍是任意實數(shù)。
練習:1。舉例子:請同學舉一些二次函數(shù)的例子,全班同學判斷是否正確。
2。出難題:請同學給大家出示一個函數(shù),請同學判斷是否是二次函數(shù)。
。ㄈ魧W生考慮不全,教師給予補充。如:;;; 的形式。)
(通過學生觀察、歸納定義加深對概念的`理解,既培養(yǎng)了學生的實踐能力,有培養(yǎng)了學生的探究精神。并通過開放性的練習培養(yǎng)學生思維的發(fā)散性、開放性。題目用了一些人性化的詞語,也增添了課堂的趣味性。)
由前面一次函數(shù)的學習,我們已經(jīng)知道研究函數(shù)一般應按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。二次函數(shù)我們也會按照定義、圖象、性質(zhì)、求解析式幾個方面進行研究。
。ㄔ谶@里指出學習函數(shù)的一般方法,旨在及時進行學法指導;并將此方法形成技能,以指導今后的學習;進一步培養(yǎng)終身學習的能力。)
三 嘗試模仿、鞏固提高
讓我們先從最簡單的二次函數(shù)y=ax2入手展開研究
1。 1。 嘗試:大家知道一次函數(shù)的圖象是一條直線,那么二次函數(shù)的圖象是什么呢?
請同學們畫出函數(shù)y=x2的圖象。
。▽W生分別畫圖,教師巡視了解情況。)
2。 2。 模仿鞏固:教師將了解到的各種不同圖象用實物投影向大家展示,到底哪一個對呢?下面師生共同畫出函數(shù)y=x2的圖象。
解:一、列表:
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=x2 | 9 | 4 | 1 | 0 | 1 | 4 | 9 |
二、描點、連線: 按照表格,描出各點。然后用光滑的曲線,按照x(點的橫坐標)由小到大的順序把各點連結(jié)起來。
對照教師畫的圖象一一分析學生所畫圖象的正誤及原因,從而得到畫二次函數(shù)圖象的幾點注意。
練習:畫出函數(shù);的圖象(請兩個同學板演)
X | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
Y=0。5X2 | 4。5 | 2 | 0。5 | 0 | 0。5 | 02 | 4。5 |
Y=-X2 | -9 | -4 | -1 | 0 | -1 | -4 | -9 |
畫好之后教師根據(jù)情況講評,并引導學生觀察圖象形狀得出:二次函數(shù) y=ax2的圖象是一條拋物線。
。ㄟ@里,教師在學生自己探索嘗試的基礎(chǔ)上,示范畫圖象的方法和過程,希望學生學會畫圖象的方法;并及時安排練習鞏固剛剛學到的新知識,通過觀察,感悟拋物線名稱的由來。)
三 運用新知、變式探究
畫出函數(shù) y=5x2圖象
學生在畫圖象的過程當中遇到函數(shù)值較大的困難,不知如何是好。
x | -0。5 | -0。4 | -0。3 | -0。2 | -0。1 | 0 | 0。1 | 0。2 | 0。3 | 0。4 | 0。5 |
Y=5x2 | 1。25 | 0。8 | 0。45 | 0。2 | 0。05 | 0 | 0。05 | 0。2 | 0。45 | 0。8 | 1。25 |
教師出示已畫好的圖象讓學生觀察
注意:1。 畫圖象應描7個左右的點,描的點越多圖象越準確。
2。 自變量X的取值應注意關(guān)于Y軸對稱。
3。 對于不同的二次函數(shù)自變量X的取值應更加靈活,例如可以取分數(shù)。
四。 四。 歸納小結(jié)、延續(xù)探究
教師引導學生觀察表格及圖象,歸納y=ax2的性質(zhì),學生們暢所欲言,各抒己見;互相改進,互相完善。最終得到如下性質(zhì):
一般的,二次函數(shù)y=ax2的圖象是一條拋物線,對稱軸是Y軸,頂點是坐標原點;當a>0時,圖象的開口向上,最低點為(0,0);當a<0時,圖象的開口向下,最高點為(0,0)。
五 回顧反思、總結(jié)收獲
在這一環(huán)節(jié)中,教師請同學們回顧一節(jié)課的學習暢談自己的收獲或多、或少、或幾點、或全面,總之是人人有所得,個個有提高。這也正是新課標中所倡導的新的理念——不同的人在數(shù)學上得到不同的發(fā)展。
。ㄔ谡麄一節(jié)課上,基本上是學生講為主,教師講為輔。一些較為困難的問題,我也鼓勵學生大膽思考,積極嘗試,不怕困難,一個人完不成,講不透,第二個人、第三個人補充,直到完成整個例題。這樣上課氣氛非;钴S,學生之間常會因為某個觀點的不同而爭論,這就給教師提出了更高的要求,一方面要控制好整節(jié)課的節(jié)奏,另一方面又要察言觀色,適時地對某些觀點作出判斷,或與學生一同討論。)
函數(shù)數(shù)學教案10
一、課標要求:
教材把指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)當作三種重要的函數(shù)模型來學習,強調(diào)通過實例和圖象的直觀,揭示這三種函數(shù)模型增長的差異及其關(guān)系,體會建立和研究一個函數(shù)模型的基本過程和方法,學會運用具體函數(shù)模型解決一些實際問題.
1. 了解指數(shù)函數(shù)模型的實際背景.
2. 理解有理數(shù)指數(shù)冪的意義,通過具體實例了解實數(shù)指數(shù)冪的意義,掌握冪的運算.
3. 理解指數(shù)函數(shù)的概念和意義,掌握f(x)=ax的符號、意義,能借助計算器或計算機畫出具體指數(shù)函數(shù)的圖象,探索并理解指數(shù)函數(shù)的有關(guān)性質(zhì)(單調(diào)性、值域、特別點).
4. 通過應用實例的教學,體會指數(shù)函數(shù)是一種重要的函數(shù)模型.
5. 理解對數(shù)的概念及其運算性質(zhì),了解對數(shù)換底公式及其簡單應用,能將一般對數(shù)轉(zhuǎn)化為常用對數(shù)或自然對數(shù),通過閱讀材料,了解對數(shù)的`發(fā)現(xiàn)歷史及其對簡化運算的作用.
6. 通過具體函數(shù),直觀了解對數(shù)函數(shù)模型所刻畫的數(shù)量關(guān)系,初步理解對數(shù)函數(shù)的概念,掌握f(x)=lgax符號及意義,體會對數(shù)函數(shù)是一類重要的函數(shù)模型,能借助計算器或計算機畫出具體對數(shù)函數(shù)的圖象,探索并了解對數(shù)函數(shù)的有關(guān)性質(zhì)(單調(diào)性、值域、特殊點).
7. 知道指數(shù)函數(shù)=ax與對數(shù)函數(shù)=lgax互為反函數(shù)(a>0, a≠1),初步了解反函數(shù)的概念和f- -1(x)的意義.
8. 通過實例,了解冪函數(shù)的概念,結(jié)合五種具體函數(shù) 的圖象,了解它們的變化情況 .
二、編寫意圖與教學建議:
1. 教材注重從現(xiàn)實生活的事例中引出指數(shù)函數(shù)概念,所舉例子比較全面,有利于培養(yǎng)學生的思想素質(zhì)和激發(fā)學生學習數(shù)學的興趣和欲望. 教學中要充分發(fā)揮課本的這些材料的作用,并盡可能聯(lián)系一些熟悉的事例,以豐富教學的情景創(chuàng)設(shè).
2. 在學習對數(shù)函數(shù)的圖象和性質(zhì)時,教材將它與指數(shù)函數(shù)的有關(guān)內(nèi)容做了比較,讓學生體會兩種函數(shù)模型的增長區(qū)別與關(guān)聯(lián),滲透了類比思想. 建議教學中重視知識間的遷移與互逆作用.
3、教材對反函數(shù)的學習要求僅限于初步知道概念,目的在于強化指數(shù)函數(shù)與對數(shù)函數(shù)這兩種函數(shù)模型的學習,教學中不宜對其定義做更多的拓展 .
4. 教材對冪函數(shù)的內(nèi)容做了削減,僅限于學習五種學生易于掌握的冪函數(shù),并且安排的順序向后調(diào)整,教學中應防止增加這部分內(nèi)容,以免增加學生學習的負擔.
5. 通過運用計算機繪制指數(shù)函數(shù)的動態(tài)圖象,使學生進一步體會到信息技術(shù)在數(shù)學學習中的作用,教師要盡量發(fā)揮電腦繪圖的教學功能 ..
6. 教材安排了“閱讀與思考”的內(nèi)容,有利于加強數(shù)學文化的教育,應指導學生認真研讀.
函數(shù)數(shù)學教案11
一、方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù)y=f(x),使f(x)=0 的實數(shù)x叫做函數(shù)的零點。(實質(zhì)上是函數(shù)y=f(x)與x軸交點的橫坐標)
2、函數(shù)零點的意義:方程f(x)=0 有實數(shù)根函數(shù)y=f(x)的圖象與x軸有交點函數(shù)y=f(x)有零點
3、零點定理:函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的',并且有f(a)f(b)0,那么函數(shù)y=f(x)在區(qū)間(a,b)至少有一個零點c,使得f( c)=0,此時c也是方程 f(x)=0 的根。
4、函數(shù)零點的求法:求函數(shù)y=f(x)的零點:
(1) (代數(shù)法)求方程f(x)=0 的實數(shù)根;
(2) (幾何法)對于不能用求根公式的方程,可以將它與函數(shù)y=f(x)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.
5、二次函數(shù)的零點:二次函數(shù)f(x)=ax2+bx+c(a≠0).
1)△0,方程f(x)=0有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.
2)△=0,方程f(x)=0有兩相等實根(二重根),二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
3)△0,方程f(x)=0無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點.
二、二分法
1、概念:對于在區(qū)間[a,b]上連續(xù)不斷且f(a)f(b)0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。
2、用二分法求方程近似解的步驟:
、糯_定區(qū)間[a,b],驗證f(a)f(b)0,給定精確度ε;
、魄髤^(qū)間(a,b)的中點c;
⑶計算f(c),
、偃鬴(c)=0,則c就是函數(shù)的零點;
、谌鬴(a)f(c)0,則令b=c(此時零點x0∈(a,c))
③若f(c)f(b)0,則令a=c(此時零點x0∈(c,b))
(4)判斷是否達到精確度ε:即若|a-b|ε,則得到零點近似值為a(或b);否則重復⑵~⑷
三、函數(shù)的應用:
(1)評價模型: 給定模型利用學過的知識解模型驗證是否符合實際情況。
(2)幾個增長函數(shù)模型:一次函數(shù):y=ax+b(a0)
指數(shù)函數(shù):y=ax(a1) 指數(shù)型函數(shù): y=kax(k1)
冪函數(shù): y=xn( nN*) 對數(shù)函數(shù):y=logax(a1)
二次函數(shù):y=ax2+bx+c(a0)
增長快慢:V(ax)V(xn)V(logax)
解不等式 (1) log2x x2 (2) log2x 2x
(3)分段函數(shù)的應用:注意端點不能重復取,求函數(shù)值先判斷自變量所在的區(qū)間。
(4)二次函數(shù)模型: y=ax2+bx+c(a≠0) 先求函數(shù)的定義域,在求函數(shù)的對稱軸,看它在不在定義域內(nèi),在的話代進求出最值,不在的話,將定義域內(nèi)離對稱軸最近的點代進求最值。
(5)數(shù)學建模:
函數(shù)數(shù)學教案12
教學目標
會運用圖象判斷單調(diào)性;理解函數(shù)的單調(diào)性,能判斷或證明一些簡單函數(shù)單調(diào)性;注意必須在定義域內(nèi)或其子集內(nèi)討論函數(shù)的單調(diào)性。
重 點
函數(shù)單調(diào)性的證明及判斷。
難 點
函數(shù)單調(diào)性證明及其應用。
一、復習引入
1、函數(shù)的定義域、值域、圖象、表示方法
2、函數(shù)單調(diào)性
(1)單調(diào)增函數(shù)
(2)單調(diào)減函數(shù)
(3)單調(diào)區(qū)間
二、例題分析
例1、畫出下列函數(shù)圖象,并寫出單調(diào)區(qū)間:
(1) (2) (2)
例2、求證:函數(shù) 在區(qū)間 上是單調(diào)增函數(shù)。
例3、討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。
變(1)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論
變(2)討論函數(shù) 的單調(diào)性,并證明你的結(jié)論。
例4、試判斷函數(shù) 在 上的單調(diào)性。
三、隨堂練習
1、判斷下列說法正確的是 。
(1)若定義在 上的.函數(shù) 滿足 ,則函數(shù) 是 上的單調(diào)增函數(shù);
(2)若定義在 上的函數(shù) 滿足 ,則函數(shù) 在 上不是單調(diào)減函數(shù);
(3)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù);
(4)若定義在 上的函數(shù) 在區(qū)間 上是單調(diào)增函數(shù),在區(qū)間 上也是單調(diào)增函數(shù),則函數(shù) 是 上的單調(diào)增函數(shù)。
2、若一次函數(shù) 在 上是單調(diào)減函數(shù),則點 在直角坐標平面的( )
A.上半平面 B.下半平面 C.左半平面 D.右半平面
3、函數(shù) 在 上是___ ___;函數(shù) 在 上是__ _____。
3.下圖分別為函數(shù) 和 的圖象,求函數(shù) 和 的單調(diào)增區(qū)間。
4、求證:函數(shù) 是定義域上的單調(diào)減函數(shù)。
四、回顧小結(jié)
1、函數(shù)單調(diào)性的判斷及證明。
課后作業(yè)
一、基礎(chǔ)題
1、求下列函數(shù)的單調(diào)區(qū)間
(1) (2)
2、畫函數(shù) 的圖象,并寫出單調(diào)區(qū)間。
二、提高題
3、求證:函數(shù) 在 上是單調(diào)增函數(shù)。
4、若函數(shù) ,求函數(shù) 的單調(diào)區(qū)間。
5、若函數(shù) 在 上是增函數(shù),在 上是減函數(shù),試比較 與 的大小。
三、能力題
6、已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。
變(1)已知函數(shù) ,試討論函數(shù)f(x)在區(qū)間 上的單調(diào)性。
函數(shù)數(shù)學教案13
教學目標:
1.使學生理解冪函數(shù)的概念,能夠通過圖象研究冪函數(shù)的性質(zhì);
2.在作冪函數(shù)的圖象及研究冪函數(shù)的性質(zhì)過程中,培養(yǎng)學生的觀察能力,概括總結(jié)的能力;
3.通過對冪函數(shù)的研究,培養(yǎng)學生分析問題的能力.
教學重點:
常見冪函數(shù)的概念、圖象和性質(zhì);
教學難點:
冪函數(shù)的單調(diào)性及其應用.
教學方法:
采用師生互動的`方式,由學生自我探索、自我分析,合作學習,充分發(fā)揮學生的積極性與主動性,教師利用實物投影儀及計算機輔助教學.
教學過程:
一、問題情境
情境:我們以前學過這樣的函數(shù):=x,=x2,=x1,試作出它們的圖象,并觀察其性質(zhì).
問題:這些函數(shù)有什么共同特征?它們是指數(shù)函數(shù)嗎?
二、數(shù)學建構(gòu)
1.冪函數(shù)的定義:一般的我們把形如=x(R)的函數(shù)稱為冪函數(shù),其中底數(shù)x是變量,指數(shù)是常數(shù).
2.冪函數(shù)=x 圖象的分布與 的關(guān)系:
對任意的 R,=x在第I象限中必有圖象;
若=x為偶函數(shù),則=x在第II象限中必有圖象;
若=x為奇函數(shù),則=x在第III象限中必有圖象;
對任意的 R,=x的圖象都不會出現(xiàn)在第VI象限中.
3.冪函數(shù)的性質(zhì)(僅限于在第一象限內(nèi)的圖象):
。1)定點:>0時,圖象過(0,0)和(1,1)兩個定點;
≤0時,圖象過只過定點(1,1).
(2)單調(diào)性:>0時,在區(qū)間[0,+)上是單調(diào)遞增;
。0時,在區(qū)間(0,+)上是單調(diào)遞減.
三、數(shù)學運用
例1 寫出下列函數(shù)的定義域,并判斷它們的奇偶性
。1)= ; (2)= ;(3)= ;(4)= .
例2 比較下列各題中兩個值的大。
。1)1.50.5與1.70.5 (2)3.141與π1
(3)(-1.25)3與(-1.26)3(4)3 與2
例3 冪函數(shù)=x;=xn;=x1與=x在第一象限內(nèi)圖象的排列順序如圖所示,試判斷實數(shù),n與常數(shù)-1,0,1的大小關(guān)系.
練習:(1)下列函數(shù):①=0.2x;②=x0.2;
、郏絰3;④=3x2.其中是冪函數(shù)的有 (寫出所有冪函數(shù)的序號).
(2)函數(shù) 的定義域是 .
。3)已知函數(shù) ,當a= 時,f(x)為正比例函數(shù);
當a= 時,f(x)為反比例函數(shù);當a= 時,f(x)為二次函數(shù);
當a= 時,f(x)為冪函數(shù).
。4)若a= ,b= ,c= ,則a,b,c三個數(shù)按從小到大的順序排列為 .
四、要點歸納與方法小結(jié)
1.冪函數(shù)的概念、圖象和性質(zhì);
2.冪值的大小比較方法.
五、作業(yè)
課本P90-2,4,6.
函數(shù)數(shù)學教案14
在整個中學數(shù)學知識體系中,二次函數(shù)占據(jù)極其關(guān)鍵且重要的地位,二次函數(shù)不僅是中高考數(shù)學的重要考點,也是線性數(shù)學知識的基礎(chǔ)。那老師應該怎么教呢?今天,小編給大家?guī)沓跞龜?shù)學二次函數(shù)教案教學方法。
一、 重視每一堂復習課 數(shù)學復習課不比新課,講的都是已經(jīng)學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。
二、 重視每一個學生 學生是課堂的主體,離開學生談課堂效率肯定是行不通的。而我校的學生數(shù)學基礎(chǔ)大多不太好,上課的積極性普遍不高,對學習的熱情也不是很高,這些都是十分現(xiàn)實的事情,既然現(xiàn)狀無法更改,那么我們只能去適應它,這就對我們老師提出了更高的要求
三、做好課外與學生的溝通,學生對你教學理念認同和教學常規(guī)配合與否,功夫往往在課外,只有在課外與學生多進行交流和溝通,和學生建立起比較深厚的師生情誼,那么最頑皮的學生也能在他喜歡的老師的課堂上聽進一點
四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。
2二次函數(shù)教學方法一
一、 立足教材,夯實雙基:進行中考數(shù)學復習的時候,要立足于教材,重新梳理教材中的典例和習題,就顯得尤為重要.并且要讓學生在掌握的基礎(chǔ)上,能夠做到知識的延伸和遷移,讓解題方法、技巧在學生遇到相似問題時,能在頭腦中再現(xiàn)
二、 立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據(jù)本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。
三、教師在設(shè)計教學目標時,要做到胸中有書,目中有人,讓每一節(jié)課都給學生留有時間,讓他們有獨立思考、合作探究交流的`過程,最大限度的調(diào)動學生的參與度,激發(fā)他們的學習興趣,達到最佳的復習效果.
四、激發(fā)興趣,提高質(zhì)量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關(guān)注知識復習的同時,也要關(guān)注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.
3二次函數(shù)教學方法二
1.質(zhì)疑問難是學生自主學習的重要表現(xiàn),優(yōu)化課堂結(jié)構(gòu),激活學生的主體意識,必須鼓勵學生質(zhì)疑問難。教師要創(chuàng)造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。
2.二次函數(shù)是初中階段繼一次函數(shù)、反比例函數(shù)之后,學生要學習的最后一類重要的代數(shù)函數(shù),它也是描述現(xiàn)實世界變量之間關(guān)系的重要的數(shù)學模型。
3.學生有疑而問、質(zhì)疑問難,是用心思考、自主學習、主動探究的可貴表現(xiàn),理應得到老師的熱情鼓勵和贊揚,F(xiàn)在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態(tài)度給與肯定,并做出正確的解釋。
4.初中階段主要研究二次函數(shù)的概念、圖像和性質(zhì),用二次函數(shù)的觀點審視一元二次方程,用二次函數(shù)的相關(guān)知識分析和解決簡單的實際問題。
4二次函數(shù)教學方法三
1.教學案例、教學設(shè)計、教學實錄、教學敘事的區(qū)別:教學案例與教案:教案(教學設(shè)計)是事先設(shè)想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發(fā)生的教育教學過程的描述,反映的是教學結(jié)果。
2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷)。
3.教學案例與敘事研究的聯(lián)系與區(qū)別:從“情景故事”的意義上講,教育敘事研究報告也是一種“教育案例”,但“教學案例”特指有典型意義的、包含疑難問題的、多角度描述的經(jīng)過研究并加上作者反思(或自我點評)的教學敘事;
4.教學案例必須從教學任務分析的目標出發(fā),有意識地選擇有關(guān)信息,必須事先進行實地作業(yè),因此日常教育敘事日志可以作為寫作教學案例的素材積累。
函數(shù)數(shù)學教案15
【知識與技能】
1.會用描點法畫函數(shù)y=ax2(a>0)的圖象,并根據(jù)圖象認識、理解和掌握其性質(zhì).
2.體會數(shù)形結(jié)合的轉(zhuǎn)化,能用y=ax2(a>0)的圖象和性質(zhì)解決簡單的實際問題.
【過程與方法】
經(jīng)歷探索二次函數(shù)y=ax2(a>0)圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)的經(jīng)驗,培養(yǎng)觀察、思考、歸納的良好思維習慣.
【情感態(tài)度】
通過動手畫圖,同學之間交流討論,達到對二次函數(shù)y=ax2(a>0)圖象和性質(zhì)的真正理解,從而產(chǎn)生對數(shù)學的興趣,調(diào)動學生的積極性.
【教學重點】
1.會畫y=ax2(a>0)的圖象.
2.理解,掌握圖象的`性質(zhì).
【教學難點】
二次函數(shù)圖象及性質(zhì)探究過程和方法的體會教學過程.
一、情境導入,初步認識
問題1 請同學們回憶一下一次函數(shù)的圖象、反比例函數(shù)的圖象的特征是什么?二次函數(shù)圖象是什么形狀呢?
問題2 如何用描點法畫一個函數(shù)圖象呢?
【教學說明】
①略;
②列表、描點、連線.
二、思考探究,獲取新知
探究1 畫二次函數(shù)y=ax2(a>0)的圖象.
畫二次函數(shù)y=ax2的圖象.
【教學說明】
①要求同學們?nèi)巳藙邮?按“列表、描點、連線”的步驟畫圖y=x2的圖象,同學們畫好后相互交流、展示,表揚畫得比較規(guī)范的同學.
②從列表和描點中,體會圖象關(guān)于y軸對稱的特征.
、蹚娬{(diào)畫拋物線的三個誤區(qū).
誤區(qū)一:用直線連結(jié),而非光滑的曲線連結(jié),不符合函數(shù)的變化規(guī)律和發(fā)展趨勢.
誤區(qū)二:并非對稱點,存在漏點現(xiàn)象,導致拋物線變形.
誤區(qū)三:忽視自變量的取值范圍,拋物線要求用平滑曲線連點的同時,還需要向兩旁無限延伸,而并非到某些點停止.