《圓柱的體積》教案
作為一位無私奉獻的人民教師,時常需要用到教案,教案有利于教學水平的提高,有助于教研活動的開展。那要怎么寫好教案呢?以下是小編為大家收集的《圓柱的體積》教案,歡迎大家借鑒與參考,希望對大家有所幫助。
《圓柱的體積》教案1
一、教學目標:
1.結合具體情境,讓學生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2.讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究的方法。
3.通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰(zhàn)性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。
二、教學重難點:
掌握和運用圓柱體積計算公式, 圓柱體積公式的推導過程。
三、教學方法:
從生活情境入手,通過組織猜測、操作、交流等數學活動,使學生經歷“做數學”的過程,鼓勵學生獨立思考,引導學生自主探索、合作交流,讓學生根據已有的知識經驗創(chuàng)造性地建構圓柱體積計算公式,鼓勵解決問題策略的多樣化,讓學生的思維得到發(fā)展,創(chuàng)新精神、實踐能力得到提高。
四、教學步驟
(一)創(chuàng)設情景 提出問題情境引入:
某玩具廠廠長,他們廠新近開發(fā)了一種積木玩具,這三個積木的底面積和高都相等,他想比較一下這三個積木的體積的大小,同學們有什么方法?
(二)動手實驗, 探索公式
1.觀察、比較,建立猜想引導生觀察例4中的三個幾何體,提問:
。1)長方體、正方體的體積相等嗎?為什么?
。ò鍟洪L方體的體積=底面積×高)
(2)圓柱的體積與長方體、正方體的體積可能相等嗎?這三個幾何體的底面積和高都相等,它們的體積有什么關系?
2.實驗操作,驗證猜想讓學生自主探究(材料:圓柱體插拼教學具、師準備課件),想辦法驗證圓柱的體積與長方體、正方體的體積相等。
教師提示:你能想辦法把圓柱轉化成長方體嗎?圓是如何轉化成長方形的?可以模仿這樣的方法來轉化。
。1)小組合作研究怎樣將圓柱體轉化成一個長方體
(2)小組代表匯報,全班交流
。▽W生按照自己的方式來轉化,會有多種轉化方法,教師適時加以鼓勵)
演示操作
a請一名學生演示用切插拼的方法把圓柱體轉化成長方體。其他學生模仿操作。
b思考:這是一個標準的長方體嗎?為什么?如果分割得份數越多,你會有什么發(fā)現?
c電腦演示圓柱體轉化成長方體的過程(從16等份到32等份再到64等份)
3.觀察比較,推導公式
a圓柱體轉化成長方體后,什么變了,什么沒有變?
b 根據學生的觀察、分析、推想,老師完成板書:
長方體的體積=底面積×高
圓柱的體積 = 底面積×高
d小結:要想求出一個圓柱的體積,需要知道什么條件? e學生自學第8頁例4上面的一段話:用字母表示公式。
學生反饋自學情況,師板書公式:v=sh
(三)鞏固練習, 拓展應用
1.出示第26頁試一試,學生理解題意,獨立完成。集體訂正,說一說每一步列式的根據是什么?使學生明確應用體積公式求圓柱的體積一般需要兩個條件,即底面積和高。
2.完成第26頁的“練一練”的.第1題。
先看圖說說每個圓柱中的已知條件,再各自計算,計算后,說一說計算的過程,強調:計算圓柱體的體積要先算出底面積。
3.完成第26頁的“練一練”的第2題。
讀題后強調說說為什么電飯煲要從里面量底面直徑和高,然后列式解答。
4、把直尺繞著它的一條邊旋轉一圈得到了一個什么圖形?它的體積你會計算嗎?
(四)總結回顧 評價反思
這節(jié)課你學會了什么?你是怎樣學會的?
五、板書設計:
圓柱的體積
切拼成的長方體的體積等于圓柱的體積,長方體的底面積就相當于圓柱的底面積,長方體的高就相當于圓柱的高。
長方體的體積=底面積×高
圓柱的體積=底面積×高
字母表示:V=Sh=πrh2
《圓柱的體積》教案2
設計說明
1.創(chuàng)設問題情境,激發(fā)學習興趣。
興趣是最好的老師。新課伊始,為學生創(chuàng)設“圓柱形橡皮泥的體積你會求嗎?”的問題情境,引導學生經過思考、討論、交流,找到解決的方法。這樣的設計不僅自然滲透了圓柱(新問題)和長方體(已知)的知識聯系,還讓學生體會到可以有許多方法去解決生活中的實際問題,激發(fā)了學生的學習興趣和探究新知的欲望。
2.實踐操作,促進知識遷移。
知識和經驗的積累來源于大量的實踐活動。動手操作不但能使學生獲得感性的體驗,更能加深學生對知識的理解。本設計為學生創(chuàng)設動手操作的情境,使學生通過動手拼擺,充分感知圖形之間的關系,深刻理解圓柱的體積公式的合理性,充分認識到圖形轉化過程中形變而質不變的辯證關系,使學生在把舊知遷移、發(fā)展、轉化、構建為新知的同時,動手操作、觀察及歸納能力也得到極大的提高。
課前準備
教師準備 圓柱的體積公式演示教具 多媒體課件
學生準備 圓柱的體積公式演示學具
教學過程
第1課時 圓柱的體積(1)
⊙創(chuàng)設情境,導入新課
1.出示一塊圓柱形橡皮泥。
師:同學們,我們以前學過長方體和正方體體積的計算方法,現在我想知道這塊圓柱形橡皮泥的體積是多少,你有好的辦法嗎?
2.學生小組討論交流并匯報。
預設
生1:可以把這塊橡皮泥捏成長方體,利用長方體的體積公式來解決。
生2:可以把它放到量杯中,計算上升的水的體積。
3.引入新課。
解決生活中的問題有很多方法,需要我們去發(fā)現、去探究。這節(jié)課我們就共同去探究圓柱體積的計算方法。
設計意圖:通過創(chuàng)設問題情境,引發(fā)學生思考,進一步體會“轉化”思想。
⊙新知探究
1.利用知識的遷移,猜想圓柱體積的計算方法。
(1)提出猜想。
師:在剛才的問題中同學們提出可以將圓柱形橡皮泥捏成長方體,這時會有什么變化?
(形狀變了,體積沒變)
師:我們已經掌握了長方體、正方體的體積計算方法,大家猜一猜:圓柱體積可能等于底面積×高嗎?
(2)學生討論、交流。
2.探究算法。
(1)提出問題:能不能借鑒把圓轉化為長方形的方法,把手中的圓柱形學具轉化為長方體?
(2)動手操作:把圓柱轉化為長方體。
(3)匯報交流:介紹自己的轉化方法。
(結合學生回答,課件演示轉化過程:先沿圓柱底面的半徑把圓柱平均分成16份,然后拼成一個近似的長方體)
(4)引導學生明確:由于我們分得不夠細,所以看起來還不太像長方體;分得越多,拼成的立體圖形就越接近長方體。(課件演示將圓柱分成更多等份并拼成一個近似的長方體的過程)
(5)匯報發(fā)現。
、倨闯傻拈L方體的體積與圓柱的體積有什么關系?
②長方體的底面積、高分別與圓柱的底面積、高有什么關系?
、坶L方體的體積等于什么?圓柱呢?
3.總結公式。
(1)圓柱的體積怎樣計算?為什么?
(圓柱通過分割、拼組,可以轉化成近似的長方體。這個近似的`長方體的底面積與圓柱的底面積相等,高與圓柱的高相等。因為長方體的體積等于底面積乘高,所以圓柱的體積=底面積×高)
(2)說一說,怎樣用字母表示圓柱的體積公式?
(學生反饋:V=Sh)
(3)如果已知d、r、C和h,怎樣求圓柱的體積?
求圓柱體積的直接條件是S、h,間接條件是d、r和C,所以圓柱的體積公式也可以表示為V=πr2h、V=πh、V=πh。
(4)圓柱和長方體、正方體一樣,都是直柱體,你能總結出求它們的體積的統(tǒng)一計算方法嗎?
(直柱體的體積都等于底面積×高)
《圓柱的體積》教案3
教學目標:
1.知識與技能:運用遷移規(guī)律,引導學生借助圓面積計算公式的推導方法來推導圓柱的體積計算公式,會用圓柱的體積公式計算圓柱形物體的體積。
2.方法與過程:經歷猜測、驗證、合作、動手操作等過程,體驗和理解圓柱體體積公式的推導過程。
3情感、態(tài)度、價值觀:創(chuàng)設情境,激發(fā)學生學習的積極性。讓學生在主動學習的基礎上,逐步學會轉化的數學思想和數學法,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生抽象、概括的思維能力。
教學重點和難點:
圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。
教 具:
圓柱的體積公式演示教具,圓柱的體積公式演示課件
教學過程:
一、教學回顧
1、交代任務:這節(jié)課我們來學習《圓柱的體積》。
2、回憶導入
。1)、請大家想一想,我們在學習圓的面積時,是怎樣把圓變成已學過的圖形再計算面積的?
(2)、我們都學過那些立體圖形的體積公式。
二、積極參與 探究感受
1、猜測圓柱的`體積和那些條件有關。(電腦演示)
2、.探究推導圓柱的體積計算公式。
小組合作討論:
(1)將圓柱體切割拼成我們學過的什么立體圖形?
(2)切拼前后的兩個物體什么變了?什么沒變?
(3)切拼前后的兩個物體有什么聯系?
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份??),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。
、侔褕A柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)
、谄闯傻拈L方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內容。)
、蹐A柱的體積=底面積×高 字母公式是V=Sh(板書公式)
2、練一練:一根圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?
3、要用這個公式計算圓柱的體積必須知道什么條件?
三、練習
1、填空
(1)、圓柱體通過切拼轉化成近似的 ( ) 體。這個長方體的底面積等于圓柱體的( ),這個長方體的高等于圓柱體() 。因為長方體的體積等于( ),所以,圓柱體的體積等于( )用字母表示() 。
(2)、底面積是 10平方米,高是2米,體積是( )。
。3)、底面半徑是2分米,高是5分米,體積是( )。 2討論:
(1)已知圓柱底面的半徑和高,怎樣求圓柱的體積
V= 兀r2× h
(2)已知圓柱底面的直徑和高,怎樣求圓柱的體積
V=兀(d÷2)2×h
(3)已知圓柱底面的周長和高,怎樣求圓柱的體積
V=兀(C÷兀÷2) ×h
3、練習:已知半徑和高求體積,已知直徑和高求體積。
四、小結或質疑
五、作業(yè)
板書設計:
圓柱的體積
長方體的體積=底面積x高
圓柱的體積=底面積x高
V=Sh
《圓柱的體積》教案4
教學目標:
1、了解圓柱體體積(包括容積)的含義,進一步理解體積和容積的含義。
2、經歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、培養(yǎng)初步的空間觀念和思維能力;進一步認識“轉化”的思考方法。
教學重點:
理解和掌握圓柱的體積計算公式,會求圓柱的體積
教學難點:
理解圓柱體積計算公式的.推導過程。
教學用具:
圓柱體積演示教具。
教學過程:
一、復述回顧,導入新課
以2人小組回顧下列內容:(要求1題組員給組長說,組長補充。2題同桌互說。說完后坐好。)
1、說一說:(1)什么叫體積?常用的體積單位有哪些?
(2)長方體、正方體的體積怎樣計算?如何用字母表示?
長方體、正方體的體積=()×()用字母表示()
2、求下面各圓的面積(只說出解題思路,不計算。)
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
(二)揭示課題
你想知道課本第8頁左上方“柱子的體積”嗎?你想知道“一個圓柱形杯子能裝多少水”嗎?今天就來學習“圓柱的體積”。(板書課題)
二、設問導讀
請仔細閱讀課本第8-9頁的內容,完成下面問題
(一)以小組合作完成1、2題。
1、猜一猜,圓柱的體積可能等于()×()
2、我們在學習圓的面積計算公式時,指出:把一個圓分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。圓柱的底面也可以像上面說的那樣轉化成一個近似的長方形,通過切、拼的方法,把圓柱轉化為一個近似的長方體(如課本第8頁右下圖所示)。(用自己手中的學具進行切、拼)觀察拼成的長方體與原來的圓柱之間的關系
(1)圓柱的底面積變成了長方體的()。
(2)圓柱的高變成了長方體的()。
(3)圓柱轉化成長方體后,體積沒變。因為長方體的體積=()×(),所以圓柱的體積=()×()。如果用字母V代表圓柱的體積,S代表底面積,h代表高,那么圓柱的體積公式可用字母表示為()
[匯報交流,教師用教具演示講解2題]
(二)獨立完成3、4題。
3、如果已知課本第8頁左上方柱子的底面半徑為0.4米,高5米,怎樣計算柱子的體積?
先求底面積,列式計算()
再求體積,列式計算()
綜合算式()
4、要想知道“一個圓柱形杯子能裝多少水?”可以用杯子的“()×()”(杯子厚度忽略不計)
【要求:完成之后以小組互查,有爭議之處四人大組討論!
教師根據學生做題情況挑選一些小組進行匯報、交流,并對小組學習情況進行評價。
三、自我檢測
1、課本9頁試一試
2、課本9頁練一練1題(只列式,不計算)
【要求:完成后小組互查,教師評價】
四、鞏固練習
課本練一練的2、3、4題
【要求:組長先給組員講解題思路,然后小組內共同完成】
教師進行錯例分析。
五、拓展練習
1、課本練一練的5題
2、有一條圍糧的席子,長6.28米,寬2.5米,把它圍成一個筒狀的糧食囤,怎樣圍盛的糧食多?最多能盛多少立方米的糧食?
【要求:先組內討論確定解題思路,再完成】
六、課堂總結,布置作業(yè)
1、總結:這節(jié)我們利用轉化的方法,把圓柱轉化為長方體來推導其體積公式,切記用“底面積×高”來求圓柱的體積。
2、作業(yè):課本練一練6題
《圓柱的體積》教案5
最近,本人在《小學教學設計》看到一則“圓柱的體積”教學實錄精彩片段,它以一種全新的視角詮釋了新課標所倡導的理念,給我留下了較為深刻的印象,F把它擷取下來與各位同行共賞。
……
師:圓柱有大有小,你覺得圓柱體積應該怎樣計算呢?
生:(絕大部分學生舉起了手)底面積乘高。
師:那你們是怎樣理解這個計算方法的呢?
生1:我是從書上看到的。
(舉起的手放下了一大半。很明顯,大部分同學都看到或聽到這個結論,并不理解實質的涵義。但仍有幾位學生的手高高舉起,躍躍欲試,臉上的神情告訴老師:他們有更高明的答案。老師便順水推舟,讓他們來講。)
生2:我是這樣思考的:長方體、正方體和圓柱體它們都是立體圖形,體積都是指它們所占空間的大小。而長方體、正方體的體積都可以用底面積乘高來計算,所以我想計算圓柱體的體積時也應該可以用底面積乘高吧!
師:你能迅速地把圓柱體與以前學過的長方體、正方體聯系起來,進而聯想到圓柱體的體積計算方法。真行!當然這僅是你的猜測,要是再能證明就好了。
生3:我可以證明。推導長方體體積公式時,我們是采用擺體積單位的方法,用每層個數(底面積)×層數(高)現在求圓柱體積我們也可以沿襲這種思路,在圓柱體內部同樣擺上合適的體積單位,用每層個數×層數,每層的個數也就是它的底面積,擺的層數也就是高。那不就證明了圓柱體積的計算公式就是用底面積乘高嗎?
(教室里立刻響起了熱烈的掌聲,許多同學被他精彩的發(fā)言折服了,理性的思維散發(fā)出誘人的魅力。)
師:你真聰明,能用以前學過的知識解決今天的難題!(這時舉起的手更多了。)
生4:我有個想法不知是否可行、在推導圓面積計算方法時,我們是把圓轉化成了長方形,圓柱的底面就是一個圓,所以我就想是否可以把圓柱體轉化成長方體呢?
師:(翹起了大拇指)你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉化成近似的長方體。
生5:我還有一種想法:我們可以把圓柱體看成是無數個同樣大小的圓片疊加而成的。那么圓柱體的體積就應該用每個圓片的面積×圓的個數。圓的`個數也就相當于圓柱的高。所以我認為圓柱體的體積可以用每個圓的面積(底面積)×高。
師:了不起的一種想法!(師情不自禁的鼓起了掌。)
生6:我看過爸爸媽媽“扎筷子”。把十雙同樣的筷子扎在一起就變成了一個近似的圓柱體。我們可以把每根筷子看成一個長方體,那么扎成的近似圓柱體的體積應該是這二十個小長方體的體積之和。又因為它們具有同樣的高度,運用乘法分配律,就變成了這二十個小長方體的底面積之和×高。
師:你真會思考問題!
生7:我還有一種想法:學習圓的面積時我們知道,當圓的半徑和一個正方形的邊長相等時,圓的面積約是這個正方形的3.14倍。把疊成這個圓柱體的這無數個圓都這樣分割,那么圓柱體的體積不也大約是這個長方體的體積的3.14倍嗎?長方體的體積用它的底面積×高,圓柱體的體積就在這基礎上再乘3.14,也就是用圓柱體的底面積×高。
生8:把圓柱體形狀的橡皮泥捏成等高長方體形狀的橡皮泥,長方體體積用底面積乘高來計算,所以計算圓柱體的體積也是用底面積乘高吧!
師:沒想到一塊橡皮泥還有這樣的作用,你們可真是不簡單!
……
整節(jié)課不時響起孩子們、聽課老師們熱烈的掌聲。
過去的數學課堂教學,忠誠于學科,卻背棄了學生,體現著權利,卻忘記了民主,追求著效率,卻忘記了意義。而這個片斷折射出,新課標理念下的不再是教師一廂情愿的“獨白”,而是學生、數學材料、教師之間進行的一次次真情的“對話”。
現從“對話”的視角來賞析這則精彩的片段。
一、“對話”喚發(fā)出學習熱情。
《新課程標準》指出:有意義的數學學習必須建立在學生的主觀愿望和知識經驗的基礎上,在這樣的氛圍中,學生的思考才能積極。在當今數字化、信息化非常發(fā)達的社會中,學生接受信息獲取知識的途徑非常多,圓柱體的體積計算方法對學生來說并不陌生,如果教師再按傳統(tǒng)的教學程序(創(chuàng)設情境——研究探討——獲得結論)展開,學生易造成這樣的錯誤認識:認為自己已經掌握了這部分知識而失去對學習過程的熱情。而本課,教學伊始,教師提問“圓柱體的體積如何計算”,讓學生先行呈現已有的知識結論,在通過問題“你是怎樣理解這個公式的呢?”把學生的注意引向對公式意義的理解,學生積極主動的投入思維活動,喚發(fā)學習熱情。
二、“對話”迸發(fā)出智慧的火花
“水本無華,相蕩而生漣漪;石本無火,相擊始發(fā)靈光。”思維的激活、靈性的噴發(fā)源于對話的啟迪和碰撞。本課如果按照教材的設計:通過把圓柱體轉化為長方體,研究圓柱體和長方體間的關系,得出計算公式:底面積×高,經歷這樣的學習過程學生的思維是千篇一律的,獲得的發(fā)展也是有限的。而這位教師對教材進行相應的拓展,先呈現公式,后提問“你是怎樣理解這個公式的呢?”,使學生的思維沿著各自獨特的理解“決堤而出”。
三、“對話”贏得心靈的敞亮和溝通
“真行!當然這僅是你的猜測,要是再能證明就好了。”“你真聰明!能用以前學過的知識解決今天的難題!”“你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉化成近似的長方體。”……教師不斷地肯定著學生的每一種觀點,引燃學生的每一絲發(fā)現的火花;同時象一位節(jié)目主持人一樣,平和、真誠,傾聽、接納著學生的聲音,在課堂上,學生真是神了、奇了,說出一種又一種的方法,連聽課老師也情不自禁的鼓起掌來。此情此景,我們不難看出,老師能注意蹲下身來與學生交流,注意尋求學生的聲音,讓學生在一種“零距離”的、活躍的心理狀態(tài)下敞亮心扉,放飛思想,進行著師生“視界融合”的真情對話,贏得心靈的敞亮和溝通。
數學教學在對話中進行,展示著民主與平等,凸現著創(chuàng)造與生成。有效的對話中不僅有信息的傳輸,更有思維的升華;不僅能增進學生的理解,更能促進教師的反思;不僅有繼承的喜悅,更有創(chuàng)造的激情。這則教學片斷,有很多的精彩值得我們欣賞與贊嘆。我想說:我的內心很受鼓舞,我會向這位老師學習,讓自己的課堂也能成就精彩的時刻!
《圓柱的體積》教案6
一、教學內容:人教版教材六年級下冊19——20頁例5例6及相關的練習題。
二、教學目標:
1、結合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。
2、經歷“類比猜想——驗證說明”的探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積。并會解決一些簡單的實際問題。
3、注意滲透類比、轉化思想。
三、教學重點:理解、掌握圓柱體積計算的公式,能運用公式正確地計算圓柱的體積。
四、教學難點:推導圓柱的體積計算公式。
五、教法要素:
1、已有的知識和經驗:體積、體積單位,學習長方體正方體的體積公式的經驗。
2、原型:圓柱模型。
3、探究的問題:
。1)圓柱的體積和什么有關?圓柱能否轉化成已學過的立體圖形來計算體積?
。2)把圓柱拼成一個近似的長方體后,長方體的長、寬、高是圓柱的哪個
部分?
。3)怎樣計算圓柱的體積?
六、教學過程:
。ㄒ唬﹩酒鹋c生成。
1、什么叫物體的體積?我們學過哪些立體圖形的體積計算?
2、長方體和正方體的體積怎樣計算?它們可以用一個公式表示出來嗎?
切入教學:怎樣計算圓柱的體積?圓柱的體積計算會和什么有關?
。ǘ┨骄颗c解決。
探究:圓柱的體積
1、 提出問題,啟發(fā)思考:如何計算圓柱的體積?
2、 類比猜測,提出假設:結合長方體和正方體體積計算的知識,即長方
體和正方體的體積都等于底面積×高,據此分析并猜測圓柱的體積與誰有關,有什么關系;提出假設,圓柱的體積可能等于底面積×高。
3、 轉化物體,分析推理:
怎樣來驗證我們的猜想?我們在學圓的面積時是把圓平均分成若干份,然后拼成一個近似的長方形,推導出圓的面積計算公式。我們能不能也把圓柱轉化為我們學過的立體圖形呢?應該怎樣轉化?結合圓的面積計算小組討論。學生匯報交流。
。贸銎骄趾玫膱A柱模型,圓柱的底面用一種顏色,圓柱的`側面用另一種顏色,以便學生觀察。)現在利用這個圓柱模型小組合作把它轉化為我們學過的立體圖形。學生在小組合作后匯報交流。
4、全班交流,公式歸納:
交流時,要學生說明拼成的長方體與原來的圓柱有什么關系?圓柱的底面積和拼成的長方體的底面積有什么關系?拼成的長方體的高和圓柱的高有什么關系?引導學生推導出圓柱的體積計算方法。圓柱的體積=底面積×高。(在這一過程中,使學生認識到:把圓柱平均分成若干份切開,可以拼成近似的長方體,這樣“化曲為直”,圓柱的體積就轉化為長方體的體積,分的份數越多,拼起來就越接近長方體,滲透“極限”思想。)教師板書計算公式,并用字母表示。
回想一下,剛才我們是怎樣推導出圓柱的體積計算公式的?
5、舉一反三,應用規(guī)律:
。1)你能用這個公式解決實際問題嗎?20頁做一做,學生獨立完成,全班訂正。
如果我們只知道圓柱的半徑和高,你能不能求出圓柱的體積?引導學生推導出V=∏r2h
。2)教學例6
學生審題之后,引導學生思考:解決這個問題就是要計算什么?然后指出求杯子的容積就是求這個圓柱形杯子可容納東西的體積,計算方法跟圓柱體積的計算方法一樣,再讓學生獨立解決。反饋時,要引導學生交流自己的解題步驟,著重說明杯子內部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。
(三)訓練與強化。
1、基本練習。
練習三第1題,學生獨立完成,這兩個都可以直接用V=sh來計算。全班訂正,注意培養(yǎng)學生良好的計算習慣。
2、變式練習。
第2題,這題中給的條件不同,不管是知道半徑還是直徑,我們都要先求出底面積,再求體積。學生獨立完成,在交流時,注意計算方法的指導。
第3題。求裝多少水,實際是求這個水桶的容積。學生獨立完成,全班交流。水是液體,單位應用毫升或升。
3、綜合練習。
第5題。這題中知道了圓柱的體積和底面積求高,引導學生推出h=V÷s,如果有困難,也可列方程解答。學生獨立完成,有困難的小組交流。
4、提高性練習。22頁第10題,學生先小組討論,再全班交流。
。ㄋ模┛偨Y與提高。
這節(jié)課我們是怎樣推導出圓柱體積的計算方法的?圓柱和長方體、正方體在形體上有什么相同的地方?像這樣上下兩個底面一樣,粗細不變的立體圖形叫做直柱體,直柱體的體積都可以用底面積×高計算。出示幾個直柱體(例:三棱柱、鋼管等),讓學生計算出他們的體積。
《圓柱的體積》教案7
教學目標
1.使學生理解和掌握圓柱的體積計算公式,能運用公式計算圓柱的體積、容積,解決一些簡單的實際問題。
2.滲透極限思想,發(fā)展學生的空間觀念。
3、培養(yǎng)學生仔細計算的良好習慣。
重難點
1、圓柱體體積的計算
2、圓柱體體積公式的推導
教學過程
一、復習導入
1.解答下面各題
。1)圓的半徑是2厘米。圓的面積是多少平方厘米?
(2)一個長方體,底面積是20平方米,高是2米,體積是多少?
2.導入
我們以前學過了長方體、立方體的體積的計算方法,都可以用公式V=SH進行計算,圓柱體的`體積又該怎樣計算呢?這節(jié)課我們一起來研究圓柱體體積的計算方法。(揭示課題)
二、探索新知
1.公式推導
。1)自學課本,初步感知圓柱是怎樣轉化成長方體的,讓學生去發(fā)現兩柱體之間的聯系。
。2)操作研討:演示操作,討論:拼成的長方體跟圓柱體有什么異同點?
異:長方體變成圓柱體。同:體積、底面積、高都相同。
。3)比較歸納
在自學、操作、觀察、討論的基礎上得出:
圓柱體體積=圓柱底面積圓柱的高
V=SH
2.公式應用
。1)例1.讀題,學生獨立解答,板演、反饋,說說列式依據與應注意的問題。(單位)
類似題練習:
書本試一試和練一練
請同學板演計算的過程,并說明列式的依據.同學之間評.
(3).深入練習,書本第5題.
(4)實際應用:
測量生活中常見圓柱物體:茶葉罐、搪瓷杯,學生自由選擇。量底面直徑和高,并計算它的體積.
三、課堂總結
回顧學習全過程,知道求圓柱體積所需要的條件。質疑問難。
四、布置作業(yè)
作業(yè)本一面。
《圓柱的體積》教案8
教學內容:
人教版小學數學六年級下冊《圓柱的體積》P25-26。
教學目標:
1.經歷探究和推導圓柱的體積公式的過程。
2.知道并能記住圓柱的體積公式,并能運用公式進行計算。
3.在自主探究圓柱的體積公式的過程中,體驗、感悟數學規(guī)律的來龍去脈,知道長方體與圓柱體底面和高各部分間的對應關系。發(fā)展學生的觀察能力和分析、綜合、歸納推理能力。
4.激發(fā)學生的學習興趣,讓學生體驗成功的快樂。
5.培養(yǎng)學生的轉化思想,滲透辯證法和極限的思想。
教學重點:掌握和運用圓柱體積計算公式
教學難點:圓柱體積公式的推導過程
教具學具準備:教學課件、圓柱體。
教學過程:
一、復習導入
1.同學們想一想,我們已經學習了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
2.回憶一下圓面積的計算公式是如何推導出來的?
(結合課件演示)這是一個圓,我們把它平均分割,再拼合就變成了一個近似的平行四邊形。我們還可以往下繼續(xù)分割,無限分割就變成了一個長方形。長方形的長相當于圓周長的一半,可以用πR表示,長方形的寬就當于圓的半徑,用R表示。所以用周長的一半×半徑就可以求出圓的面積,所以推導出圓的面積公式是S=πR。
3.課件出示一個圓柱體
我們把圓轉化成了近似的長方形,同學們猜想一下圓柱可以轉化成什么圖形呢?
二、探索體驗
1.學生猜想可以把圓柱轉化成什么圖形?
2.課件演示:把圓柱體轉化成長方體
、偈窃鯓悠闯傻?
、谟^察是不是標準的長方體?
、垩菔32等份、64等份拼成的長方體,比較一下發(fā)現了什么?引出課題并板書。
3.借鑒圓的面積公式的推導過程試著推導圓柱的體積公式。
課件出示要求:
①拼成的長方體與原來的圓柱體比較什么變了?什么沒變?
、谕茖С鰣A柱體的體積公式。
學生結合老師提出的.問題自己試著推導。
4.交流展示
小組討論,交流匯報。
生匯報師結合講解板書。
圓柱體積=底面積×高
‖ ‖ ‖
長方體體積=底面積×高
用字母公式怎樣表示呢? v、s、h各表示什么?
5.知道哪些條件可以求出圓柱的體積?
6.計算下面圓柱的體積。
、俚酌娣e24平方厘米,高12厘米
、诘酌姘霃2厘米,高5厘米
、壑睆10厘米,高4厘米
④周長18.84厘米,高12厘米
三、課堂檢測
1.判斷
、賵A柱體、長方體和正方體的體積都可以用底面積乘高的方法來計算。( )
、趫A柱的底面積擴大3倍,體積也擴大3倍。( )
、垡粋長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。( )
、軋A柱體的底面直徑和高可以相等。( )
、輧蓚圓柱體的底面積相等,體積也一定相等。( )
、抟粋圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。( )
2.聯系生活實際解決實際問題。
下面的這個杯子能不能裝下這袋奶?
。ū拥臄祿䦶睦锩媪康玫街睆8cm,高10cm;牛奶498ml)
學生獨立思考回答后自己做在練習本上。
3.一個壓路機的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
4.生活中的數學
一個用塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓。
①覆蓋在這個大棚上的塑料薄膜約有多少平方米?
、诖笈飪鹊目臻g大約有多大?
獨立思考后小組討論,兩生板演。
四、全課總結
這節(jié)課你有什么收獲?
五、課后延伸
如果要測量圓柱形柱子的體積,測量哪些數據比較方便?試一試吧?
六、板書設計
圓柱體積= 底面積×高
長方體體積=底面積×高
《圓柱的體積》教案9
教學目標:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、進一步提高學生解決問題的能力。
教學重、難點:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、理解圓柱體積公式的推導過程。
教學準備:圓柱切割組合模具、小黑板。
教學過程:
一、創(chuàng)設情境,生成問題
1、什么是體積?( 物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計算?歸納到底面積乘高上來。
3、圓的面積怎樣計算?
二、探索交流,解決問題
1、計算圓的面積時,是把圓面積轉化成我們學過的長方形進行計算的,能不能把圓柱轉化成我們學過的立體 圖形來計算它的體積?
。▎l(fā)學生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導學生進行觀察。
3、思考:
(1)圓柱切開后可以拼成一個什么形體?(長方體)
。2)通過實驗你發(fā)現了什么?
小組討論:實驗前后,什么變了?什么沒變?
討論后,整理出來,再進行匯報。
(拼成的近似長方體體積大小沒變,形狀變了,拼成的近似長方
體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的`高,沒有變化。)
4、推導圓柱體積公式
小組討論:怎樣計算圓柱的體積?
學生匯報討論結果。
長方體的體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書: V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應用練習。
1、一個圓柱形水桶,從桶內量得底面直徑是3分米,高是4分米,
這個水桶的容積是多少升?
說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
先求底面半徑再求底面積,最后求體積。
已知底面周長對解決問題有什么幫助嗎?必須先求出什么? 四:課堂小結:
通過這節(jié)課你學會了哪些知識,有什么收獲?五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
《圓柱的體積》教案10
教學內容:
P19-20頁例5、例6及補充例題,完成“做一做”及練習三第1~4題。
教學目標:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉化的數學思想和方法,解決實際問題的能力
3、滲透轉化思想,培養(yǎng)學生的自主探索意識。
教學重點:
掌握圓柱體積的計算公式。
教學難點:
圓柱體積的計算公式的推導。
教學過程:
一、復習
1、復習圓面積計算公式的推導方法及過程。
2、什么叫物體的體積?長方體、正方體的體積公式是什么?(長方體的體積=長×寬×高,正方體的體積=棱長3,長方體和正方體體積的統(tǒng)一公式=底面積×高)
二、新課
1、圓柱體積計算公式的推導。
。1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
。2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
。3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學補充例題
(1)出示補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
。2)指名學生分別回答下面的問題:
① 這道題已知什么?求什么?
、 能不能根據公式直接計算?
、 計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)
。3)出示下面幾種解答方案,讓學生判斷哪個是正確的.
、賄=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
、2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
、50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.
(4)做第20頁的“做一做”。
學生獨立做在練習本上,做完后集體訂正.
3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?(V=πr2h)
4、教學例6
。1)出示例5,并讓學生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應先知道杯子的容積)
。2)學生嘗試完成例6。
① 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
、 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)
5、比較一下補充例題、例6有哪些相同的地方和不同的地方?(相同的是都要用圓柱的體積計算公式進行計算;不同的是補充例題已給出底面積,可直接應用公式計算;例6只知道底面直徑,要先求底面積,再求體積.)
三、鞏固練習
1、做第21頁練習三的第1題.
2、練習三的第2題.
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習題.要求學生審題后,知道要先求出底面積,再求圓柱的體積。
四、布置作業(yè)
練習三第3、4題。
通過批閱作業(yè),發(fā)現圓柱體的表面積正確率極低,主要有幾方面原因:
1、計算錯誤;
2審題不認真,單位不統(tǒng)一;
3、靈活解決問題時,沒能正確判斷所求面積到底包含哪幾部分。
為提升正確率,所以今天補充了一節(jié)是練習課,主要是指導學生完成教材中的習題。在此,想談談練習二的第11、19題。
第11題教材只要求學生根據切面形狀進行連線,其實這題應該充分利用挖掘,不僅培養(yǎng)學生的空間觀念,同時還可提升學生解決實際問題的能力。所以在教學中,我補充了如下練習:
。1將一根高5分米的圓柱形木料沿底面直徑垂直切成兩部分,(如11題第2幅圖),這時表面積比原來增加了40平方分米。這根圓柱形木料原來的表面積是多少平方分米?
。2一個圓柱的側面展開是一個正方形,正方形的邊長是12.56分米,求這個圓柱體的表積。
第19題解決決起來很繁瑣,雖然課堂上我給予了學生十分充足的獨立嘗試練習時間,但在未給予任何提示的情況下全班僅4人全對,另有4人結果計算正確,但卻未換算單位,正確率僅為7.4%。所以下次再教時,此題應加大指導力度。建議:先在小組內討論“求涂油漆的面積也就是求什么?”然后強調單位換算,并復習平方米與平方厘米之間的進率(10000),最后再讓學生分步列式解答。第2問要求“一共需要多少元”結合生活實際,學生應主動對計算結果取近似值。
第四課時教學反思
開放的設問結碩果
因為臨時換課,所以今天是本學期開學以來第一次在學生未預習的情況下教學新課。沒有預習,給學生的自主探索以更廣闊的空間。當學生提出可以將圓柱的底面分成許多相等的扇形,把圓柱切開,拼成一個近似的.長方體后,我請學生們觀察并思考“轉化后的長方體與圓柱體之間有什么聯系呢?”
他們除了發(fā)現教材中所提到的體積不變、底面積不變、高不變外,還有不少新發(fā)現。如“長方體的長是圓柱體底面周長的一半”,“長方體的寬是圓柱體底面半徑”, “圓柱體的側面積是長方體前后兩個面的面積總和”(魏勉)。當學生的發(fā)現由底面積涉及到側面積時,我根據本班學情適時進行了拓展性提問,“將圓柱體轉化為長方體,表面積有變化嗎?如果有,有怎樣的變化?”由此將圓柱體與長方體轉化的探究由體積的變化引向了新的層面——表面積。
我將根據學情在練習課中補充相關練習:把一個高15厘米的圓柱體分割成若干份,再拼成一個近似的長方體,表面積增加了90平方厘米。那么這個圓柱的體積是多少?
今天的作業(yè)正確率明顯提升,但全班有4名學生將圓柱體側面積與體積公式混淆,列式全錯,因此要加強辨析指導。自從讓學生“創(chuàng)造”圓柱體表面積的另類推導方法及公式以來,孩子們探索并“創(chuàng)造”新公式的熱情不斷高漲。雖然,今天由于種種原因沒能給學生上課,但他們仍舊將自己的新發(fā)現用紙條記錄了下來送到我的手中。
創(chuàng)新(一)圓柱體側面積:圓柱體的體積=(2πrh) :(πrrh)=2:r。(發(fā)現者:沈洪鑫)
創(chuàng)新(二)圓柱的體積=圓柱的側面積÷2×r(發(fā)現者:蘭晟)
根據這一發(fā)現,能夠有效提高已知半徑和側面積求體積或已知體積求側面積的習題。如:一根圓柱形木頭的側面積是37.68平方分米,底面半徑是3分米,它的體積是多少平方分米?如果按常規(guī)做法為:首先求圓柱體的高37.68÷(3.14×2×3)=2(分米);然后再求圓柱體的體積3.14×32×2=56.52平方分米),共需要6步。如果根據上述發(fā)現,解答此題就只需要將37.68÷2×3即可求了正確結果,大大提高速度。
《圓柱的體積》教案11
教材簡析:
本節(jié)內容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積,數學教案-圓柱的體積公開課。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。
教學目的:
1、運用遷移規(guī)律,引導學生借助因面積計算公式的推導方法來推導圓柱的體積計算公式,并理解這個過程。
2.會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。
3.引導學生逐步學會轉化的數學思想和數學法,培養(yǎng)學生解決實際問題的能力
4.借助實物演示,培養(yǎng)學生抽象、概括的思維能力。
教具:圓柱的體積公式演示教具,多媒體課件
教學過程:
一、情景引入
1、出示圓柱形水杯。
(1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學過的方法計算出這些水的體積嗎?
(3)討論后匯報:把水倒入長方體容器中,量出數據后再計算。(4)說一說長方體體積的計算公式。
2、創(chuàng)設問題情景。(課件顯示)
如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?
今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設計意圖:問題是思維的動力。通過創(chuàng)設問題情景,可以引導學生運用已有的生活經驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成"任務驅動"的探究氛圍。)
二、新課教學:
設疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
1.探究推導圓柱的體積計算公式。
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體、C依次解決上面三個問題。
、侔褕A柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)
、谄闯傻拈L方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內容。)
、蹐A柱的體積=底面積×高字母公式是V=Sh(板書公式)
討論并得出結果。你能根據這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉化成近似的體。這個長方體的底面積與圓柱體的底面積,這個長方體的高與圓柱體的高。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是?(板書:圓柱的體積=底面積×高)用字母表示?
(板書:V=Sh)(設計意圖:在新課教學中,先讓學生通過復習舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學生切實經歷圓柱體積公式充分體現了教師的主導作用和學生的主體作用。這樣的教學,不僅有利于學生理解算理,掌握算法,而且在公式的'推導過程中,領悟了學習方法,培養(yǎng)了學生的學習能力、抽象概括能力和邏輯思維能力)
要用這個公式計算圓柱的體積必須知道什么條件?
填表:請同學看屏幕回答下面問題,
底面積(㎡)高(m)圓柱體積(m3)63,0.5 8,52
(設計意圖:設計練習能使學生達到舉一反三的效果,從而訓練學生的技能。這是第一層基本練習,通過這道題可以使學生更好的掌握本課重點,夯實基礎知)
例:一個圓柱形油桶,底面內直徑是6分米,高是7分米.它的容積約是多少立方分米?(得數保留整立方分米)
解:d=6dm,h=7dm.r=3dm
S底=πr2=3.14×32 =3.14×9 =28.26(dm2)
V =S底h =28.26×7 =197.82198dm3
答:油桶的容積約是198立方分
(設計意圖:使學生注意解題格式,注意體積的單位為三次方)
三.鞏固反饋
1.求下面圓柱體的體積。(單位:厘米)
同學板演,其余同學在作業(yè)本上做。板演的同學講解自己的解題方法題,教師歸納學生所用的解題方法,強調在解題的過程中格式。(設計意圖:這是第二層變式練習。是讓學生在掌握公式的基礎上理解公式,學會靈活運用公式的訓練題。通過對公式的拓展性理解,可以進一步加深學生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學生的邏輯思維能力。)
練習:(回到想一想中)圓柱形水杯的底面直徑是10cm,高是15cm.已知水杯中水的體積是整個水杯體積的2/3計算水杯中水的體積?
(設計意圖:這是第三層發(fā)展性練習,安排了密切聯系生活實際的習題,讓學生運用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數學就存在于自己的身邊。)
四.拓展練習
1.一個長方形的紙片長是6分米,寬4分米.用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由.(結果保留π)
2.一個底面直徑是20cm的圓柱形容體里,放進一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、
(設計意圖:安排了密切聯系生活實際的習題,讓學生運用公式解決引入環(huán)節(jié)中的兩個問題,使學生認識到數學的價值體驗到數學對于了解周圍世界和解決實際問題是非常有作用的;能使學生的思維處于積極的狀態(tài)達到培養(yǎng)學生思維的靈活性和創(chuàng)造性解決問題能力的目的。)
五.課堂小結:
1.談談這節(jié)課你有哪些收獲。
2.解題時需要注意那些方面。
(設計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結,使學生暢談收獲、發(fā)現不足,既能訓練學生的語言表達能力,又能培養(yǎng)學生的歸納概括能力;同時通過對本節(jié)所學知識的總結與回顧,還能使學生學到的知識系統(tǒng)化、完整化。)
六.布置作業(yè)
1.A冊習題2.7
2.拓展練習2題
教學反思:本節(jié)課的教學體現了:一、利用遷移規(guī)律引入新課,為學生創(chuàng)設良好的學習情境;二、遵循學生的認知規(guī)律,引導學生觀察、思考、說理,調動多種感觀參與學習;三、正確處理"兩主"關系,充分發(fā)揮學生的主體作用,注意學生學習的參與過程及知識的獲取過程,學生積極性高,學習效果好。達到預期效果,不足處學生討論時間控制太少,課后作業(yè)個別學生還是對公式不會靈活應用。
《圓柱的體積》教案12
本節(jié)課的設計思考:
一、讓學生在現實情境中體驗和理解數學
《課程標準》指出:要創(chuàng)設與學生生活環(huán)境、知識背景密切相關的、又是學生感興趣的學習情境,讓學生在觀察、操作、猜測、交流、反思等活動中體會數學知識的產生、形成與發(fā)展的過程,獲得積極的情感體驗,感受數學的力量,同時掌握必要的基礎知識與基本技能。在本節(jié)課中,我給學生創(chuàng)設了生活情景(裝在杯子中的水的體積你會求嗎?)學生聽到教師提的問題訓在身邊的生活中,頗感興趣。學生經過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱體(新問題)和長方體(已知)的知識聯系。在此基礎上教師又進一步從實際需要提出問題:如果要求某些建筑物中圓柱形柱子的體積,能用剛才同學們想出來的辦法嗎?這一問題情境的創(chuàng)設,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體體積的欲望。
二、鼓勵學生獨立思考,引導學生自主探索、合作交流
數學學習過程充滿著觀察、實驗、模擬、推斷等探索性與挑戰(zhàn)性活動,因此,動手實踐、自主探究、合作交流是《課程標準》所倡導的數學學習的主要方式。在本節(jié)課提示課題后,我先引導學生獨立思考要解決圓柱的體積問題,可以怎么
辦?學生通過思考很快確定打算把圓柱轉化成長方體。那么怎樣來切割呢?此時采用小組討論交流的形式。同學們有了圓面積計算公式推導的經驗,經過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎上,小組拿出學具進行了動手操作,拼成了一個近似的長方體。同學們在操作、比較中,圍繞圓柱體和長方體之間的聯系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識——公式)。 不足之處:
在學生們動手操作時,我處理的有點急,沒有給學生充分的思考和探究的時間。在今后的教學中我要特別關注學生的學習過程,優(yōu)化課堂教學,對教材進行適當的加工處理。數學知識的教學,必須抓住各部分內容之間的內在聯系,遵循教材特點和學生的認知規(guī)律。圓柱體積的教學,要借助于學生已經學過的長方體體積的計算方法,通過分析、推導、演示,發(fā)現新知識。推導出圓柱體積的計算公式,實現教學目的。圓柱的體積這部分知識是學生在有了圓柱、圓和長方體的相關知識基礎上進行教學的。在知識和技能上,通過對圓柱體積的具體研究,理解圓柱體的體積公式的推導過程,會計算圓柱的體積;在方法的選擇上,抓信新舊知識的聯系,通過想象、實際操作,從經歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設情境,解決問題,體現數學知識“從生活中來到生活中去”的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探究。在新的課改形勢下,死記硬背這種膚淺的、教條的、機械的學習方式已經完全不適應教學改革的需要,不利于學生健康的成長發(fā)展的需要,教師要重視引導學生去探索,思考,發(fā)現規(guī)律,培養(yǎng)學生分析問題和解決問題的能力。反思本節(jié)課的`教學,覺得在練習設計上還可以下一番功夫。比如可以設計開放性習題:給一個圓柱形積木,讓學生先測量相關數據再計算體積等等。
二、教師的語言非常貧乏
在課堂教學中,評價語言是非常重要,它總是伴隨在教學的始終,貫穿于整個課堂,缺乏激勵的課堂就會像一潭死水,毫無生機。而精妙的評價語言就像是催化劑,能使課堂掀起層層波瀾,讓學生思維的火花時刻被點燃。教師準確,生動,親切的評價語言大大調動了學生學習的主動性和積極性,讓學生在激勵中學、自信中學、快樂中學,讓教師與學生零距離地接觸,我想學生的心理更能感覺到更大的鼓舞。
蘇霍姆林斯基指出:“教育的藝術首先包括談話的藝術!苯處煹慕虒W效果,很大程度上取決于他的語言表達能力。數學課堂教學過程就是數學知識的傳遞過程。在整個課堂教學過程中,數學知識的傳遞、學生接受知識情況的反饋,師生間的情感交流等,都必須依靠數學語言。教師的語言表達方式和質量直接影響著學生對知識的接受,教師語言的情感引發(fā)著學生的情感,所以說教師的語言藝術是課堂教學藝術的核心。我這節(jié)課最大的失誤是語言沒有發(fā)揮出調控課堂駕馭課堂的作用。
《圓柱的體積》教案13
教學內容:
教材第15~16頁的例4和第16頁的試一試、練一練,完成練習三第1~3題。
教學目標:
1.結合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。
2.經歷類比猜想驗證說明的探索圓柱體積的計算方法的進程,掌握圓柱體的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3.引導學生探索和解決問題,滲透、體驗知識間相互轉化的思想方法。
重點難點:
掌握圓柱體積公式的推導過程。
教學資源:
PPT課件 圓柱等分模型
教學過程:
一、聯系舊知,設疑激趣,導入新課。
1.呈現例4中長方體、正方體和圓柱的直觀圖。
2.提問:這幾種立體的體積你都會求嗎?你會求其中哪些立體的體積?
啟發(fā):大家想不想知道圓柱的體積怎樣計算?猜想一下:圓柱體積的大小與什么有關?怎么算?
3.引入:我們的猜想對不對呢?今天我們就一起來探索一下圓柱的體積計算公式。
二、動手操作,探索新知,教學例4
1.觀察比較
引導學生觀察例4的三個立體,提問
、胚@三個立體的底面積和高都相等,它們的體積有什么關系?
、崎L方體和正方體的體積一定相等嗎?為什么?
、菆A柱的體積與長方體和正方體的體積可能相等嗎?為什么?
2.實驗操作
⑴談話:大家都認為圓柱的體積與長方體、正方體的體積可能是相等的,而且都等于底面積乘高。那用什么辦法驗證呢?讓學生在小組中說說自己的想法。
提醒:圓的面積公式是怎么推導出來的?我們能不能將圓柱轉化成長方體呢?
、铺岢鲆螅耗隳芟朕k法把圓柱轉化成長方體嗎?各小組說出自己的想法,有條件的拿出課前準備好的圓柱,操作一下。
、怯懻摻涣鳎喝绻褕A柱的底面平均分成16份,切開后能否拼成一個近似的長方體?
操作教具,讓學生觀察。
引導想像:如果把底面平均分的份數越來越多,結果會怎么樣?
演示一組動畫(將圓柱底面等分成32份、64等份、128等份)課件演示使學生清楚地認識到:拼成的立體會越來越接近長方體。
3.推出公式
⑴提問:拼成的長方體與原來的圓柱有什么關系?
指出:長方體的'體積與圓柱的體積相等;長方體的底面積等于圓的底面積;長方體的高等于圓柱的高。
⑵想一想:怎樣求圓柱的體積?為什么?
根據學生的回答小結并板書圓柱的體積公式
圓柱的體積=底面積高
、且龑в米帜腹奖硎緢A柱的體積公式:V=sh
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
三、分層練習,發(fā)散思維,教學試一試
、抛寣W生列式解答后交流算法。
、朴懻摚褐朗裁礂l件就一定能算出圓柱的體積了?分別怎么算?
。╯和h,r和h,d和h,c和h)
四、鞏固拓展練習
1.做練一練第1題。
⑴說一說:這兩個圓柱中都是已知什么?能算出圓柱的體積嗎?
、聘髯跃毩暎⒅该逖。
⑶對照板演,說說計算過程。
2.做練一練第2題。
已知底面周長和高,該怎么求它的體積呢?引導學生根據底面周長求出底面積。
五、小結
這節(jié)課我們學習了什么?有哪些收獲?還有什么疑問?
六、作業(yè)
練習三第1~3題。
《圓柱的體積》教案14
新課程觀強調:
教材是一種重要的課程資源,對于學校和教師來說,課程實施更多地應該是如何更好地用教材,而不是簡單地教教材。在實際教學中,如何落實這一理念?本人結合圓柱的體積一課談談自己的實踐與思考。
■ [片段一]
■ 師生共同探究出圓柱的體積計算公式后對公式加以應用。師出示教材例4(蘇教版第12冊P8):一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,它的體積是多少?
■ 由于課前學生已進行了預習,多數學生是按照教材介紹的解法來解答:
■ 1.5米=150厘米 201150=3000(立方厘米)
■ 師:這道題還有其他結果嗎?(學生又沉入了深思)不一會兒,另外兩種結果紛紛展現:
■ ①20平方厘米=0.002平方米 0.00211.5=0.003(立方米)
■ ②20平方厘米=0.2平方分米 1.5米=15分米 0.2115=3(立方分米)
■ 師:為什么會出現三種結果?
■ 經討論,學生才明白:從不同的角度去考慮問題,將得到不同的結果。
■ [片斷二]
■ 鞏固與應用階段,我將教材練習二中的一個填表題(表1)進行了加工組合呈現給學生這樣一個表格(表2)。
■ 表 1
■
■ 表2
■
■ 學生填表后,師:觀察前兩組數據,你想說什么?
■ 學生獨立思考后再小組交流,最后匯報。
■ 生1:兩個圓柱的高相等,底面積是幾倍的關系,體積也是幾倍的關系。
■ 生2:兩個圓柱的高相等,底面積越大,體積就越大。
■ 師:觀察后兩組數據,你想說什么?
■ 有了前面的基礎,學生很容易說出了后兩組的關系。
■ 學生的表述盡管不是很準確完美,但已說出了其中的規(guī)律,而這個規(guī)律正是解答練習二第17、18題的基礎,又為下一單元比例的教學作了提前孕伏。
■ [片段三]
■ 教材的練習中有這樣一題:量一個圓柱形茶杯的高和底面直徑,算出它可裝水多少克?
■ 學生動手測量自備的圓柱形茶杯的有關數據并計算它的體積。
■ 師:水的生命之源。人每天都要飲用一定量的水,請大家課后查閱相關資料,計算自己每天需要飲用幾杯水(自己的杯子)才能保證健康,并把自己對水的想法寫下來,下節(jié)課我們再交流。
■ [教學反思]
■ 精心研究教材是用好教材的基礎
■ 教材作為教學的憑借與依據,只不過是編者對學科知識、國家要求與學生進行整和思考的結晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種枷鎖,而應作為跳板編者意圖與學生實際的跳板。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創(chuàng)造性地利用教材。
■ 1、挖掘訓練空白,及時補白教材。編者在編寫教材時,也考慮了地域、學科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓練空白,及時補白教材。[片段一] 中的例題教學,就挖掘出了教材中的訓練空白,并沒有把教學簡單地停留在一種解答方法上,而是在學生預習的基礎上引導學生深入思考,在解決問題的過程中體會從不同的角度去考慮問題,將得到不同的結果的道理,從而學會多角度考慮問題,提高解決問題的能力。
■ 2、找出知識聯系,大膽重組教材。數學知識具有一定的結構,知識間存在著密切的聯系,我們在教學時不能只著眼于本節(jié)課的教學,而應找出知識間的內在聯系,幫助學生建立一個較為完整知識系統(tǒng)。[片斷二]的`表1僅幫助學生熟練掌握體積公式,此外無更多的教學價值,而重組后的表2不僅實現了編者的意圖,而且為比例的教學作了提前孕伏。走出了數學教學的只見樹木,不見森林的點教學的誤區(qū)。
■ 落實課標理念是用好教材的關鍵
■ 能否用好教材,關鍵在于我們的課堂教學是否落實了新課標的理念。關注人是新課程的核心理念。我們的數學教學不能再以學科為中心,而應以學生為出發(fā)點和歸宿。教材在編寫時不可能面面俱到,教師要心里裝著學生,使用教材前反復琢磨,怎樣的教學才能符合新理念。前兩個片段就突破了學科中心和知識中心,走向了學生中心。[片斷三]在教材關注學生的基礎上向深層發(fā)展不僅讓學生動手測量,動腦計算,而且讓學生在課外展開調查研究;不僅關注知識技能,而且關注了態(tài)度、情感和價值觀(對生命之源水的自我看法)這一片斷的教學,其價值就在于滲透了人文關愛。
■ 學生獲得發(fā)展是用好教材的標準
■ 有的教師在教學中常常脫離教材,片面追求新課程的形式,而忽略了實質一切為了每一位學生的發(fā)展。每個學生在一節(jié)課的40分鐘里獲得最大發(fā)展應作為我們用好教材組織教學的追求。本節(jié)課緊扣教材,以本為本,著眼學生的發(fā)展,無論是知識技能、過程與方法、數學思考還是情感態(tài)度價值觀,學生都獲得了最大發(fā)展。
《圓柱的體積》教案15
教學目標:
1、使學生掌握圓柱體積公式,會用公式計算圓柱體積,能解決一些實際問題。
2、讓學生經歷觀察、操作、討論等數學活動過程,理解圓柱體積公式的推導過程,引導學生探討問題,體驗轉化和極限的思想。
3、在圖形的變換中,培養(yǎng)學生的遷移能力、邏輯思維能力,并進一步發(fā)展其空間觀念,領悟學習數學的方法,激發(fā)學生興趣,滲透事物是普遍聯系的唯物辨證思想。
教學重點:
圓柱體積計算公式的推導過程并能正確應用。
教學難點:
借助教具演示,弄清圓柱與長方體的關系。
教具準備:
多媒體課件、長方體、圓柱形容器若干個;學生準備推導圓柱體積計算公式用學具。
教學設想:
《 圓柱的體積 》是學生在有了圓柱、圓和長方體的相關的基礎上進行教學的。在知識與技能上,通過對圓柱的具體研究,理解圓柱的體積公式的推導過程,會計算圓柱的體積,在方法的選擇上,抓住新舊知識的聯系,通過想象、課件演示、實踐操作,從經歷和體驗中思考,培養(yǎng)學生科學的思維方法;貼近學生生活實際,創(chuàng)設情境,解決問題,體現數學知識從生活中來到生活去的理念,激發(fā)學生的學習興趣和對科學知識的求知欲,使學生樂于探索,善于探索。
教學過程:
一、創(chuàng)設情境,激疑引入
水是生命之源!節(jié)約用水是我們每個公民應盡的義務。前兩天,老師家的水龍頭出了問題,擰上閥門之后,還是不停的滴水,你們看,一刻鐘就滴了這么多的水。
1、出示裝了水的圓柱容器。
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積?
(2)討論后匯報
生1:用量筒或量杯直接量出它的體積;
生2:用秤稱出水的重量,然后進一步知道體積;
生3:把它倒入長方體容器中,從里面量出長、寬和水面的高后再計算。
師:現在老師只有這些工具(圓柱形容器,長方形容器,半圓形容器和其他不規(guī)則容器),你怎么辦?
生1:把水到入長方體容器中
生2:我們學過了長方體的體積計算,只要量出長、寬、高就行
[設計意圖:通過本環(huán)節(jié),給學生創(chuàng)設一個生活中的情境,提出問題,學習身邊的數學,激起學生的學習興趣;根據需要滲透圓柱體(新問題)和長方體(已知)的知識聯系為所學內容作了鋪墊的準備]
2、創(chuàng)設問題情境。
師:(課件顯示)如果要求某些建筑中圓柱形柱子的體積,或是求壓路機圓柱形大前輪的體積,能用同學們想出來的辦法嗎?
[設計意圖:進一步從實際需要提出問題,激發(fā)學生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的問題的欲望]
師:今天,就讓我們來研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經歷體驗,探究新知
1、回顧舊知,幫助遷移
。1)教師首先提出具體問題:圓柱體和我們以前學過的哪些幾何圖形有聯系?
生1:圓柱的上下兩個底面是圓形
生2:側面展開是長方形
生3:說明圓柱和我們學過的圓和長方形有聯系
師:請同學們想想圓柱的體積與什么有關?
生1:可能與它的大小有關
生2:不是吧,應該與它的高有關
[設計意圖:溫故而知新,既復習了舊知識又引出了新知識,學生在不知不覺中就學到了新知。]
。2)請大家回憶一下:在學習圓的面積時,我們是怎樣將圓轉化成已學過的圖形,來推導出圓面積公式的。
配合學生回答演示課件。
[設計意圖:通過想象,進一步發(fā)展學生的空間觀念,由形到體;同時使學生感悟圓柱的體積與它的底面積和高的聯系,通過圓面積推導過程的再現,為實現經驗和方法的遷移作鋪墊]
2、小組合作,探究新知
。1)啟發(fā)猜想:我們要解決圓柱的`體積的問題,可以怎么辦?(引導學生說出圓柱可能轉化成我們學過的長方體。并通過討論得出:反圓柱的底面積分成許多相等的扇形,然后反圓柱切開,再拼起來,就轉化近似的長方體了。)
。2)學生以小組為單位操作體驗。
把圓柱的底面積分成許多相等的扇形,然后把圓柱切開,再把它拼起來,就轉化成近似的長方體了。使學生進一步明確分的份數越多,形體中的 越接近 ,也就越接近長方體。同時演示一組動畫(將圓柱底面等分成32份、64等份、128等份)
[設計意圖:教師提出問題,學生帶著問題大膽猜測、動手體驗。這樣學生在自主探索、體驗、領悟的過程中成為了發(fā)現者和創(chuàng)造者。]
。3)學生小組匯報交流
近似的長方體的體積等于圓柱的體積, 近似的長方體的底面積等于圓柱的底面積,近似的長方體的高就是圓柱的高。根據長方體的體積等于底面積乘高,得出圓柱的體積也等于底面積乘高。
教師根據學生匯報,用教具進行演示。
(4)概括板書:根據圓柱與近似長方體的關系,推導公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
[設計意圖:首先通過學生的聯想建立圓柱體和長方體的聯系,初步建立轉化的雛形,然后再通過實踐操作,動畫演示,驗證了學生的發(fā)現,從學生的認識和發(fā)現中,圍繞著圓柱體和長方體之間的聯系,抽象出圓柱體的體積公式。這個過程,學生從形象具體的知識形成過程(想象、操作、演示)中,認識得以升華(較抽象的認識 公式)]
三、實踐應用,鞏固新知。
1、火眼金睛判對錯。
。1)長方體、正方體、圓柱的體積都等于底面積乘高。( )
(2)圓柱的高越大,圓柱的體積就越大。( )
。3)如果兩個圓柱的體積相等,則它們一定等底等高。( )
[設計意圖:加深對剛學知識的分析和理解。]
2、計算下面各圓柱的體積。
。1)底面積是30平方厘米,高4厘米。
。2)底面周長是12。56米,高是2米。
(3)底面半徑是2厘米,高10厘米。
[設計意圖:讓學生靈活運用公式進行計算。]
3、實踐練習。
提供在創(chuàng)設情景中圓柱形接水容器的內底面直徑和高。
這個圓柱形容器,內底面直徑是10厘米,高12厘米,水面高度10厘米。
[設計意圖:讓學生領悟數學與現實生活的聯系。]
4、課堂作業(yè)。
為了美化環(huán)境,陽光小區(qū)在樓前的空地上建了四個同樣大小的圓柱形花壇。花壇的底面內直徑為4米,高為0、6米,如果里面填土的高度是0、4米,這四個花壇共需要填土多少立方米?
[設計意圖:使學生進一步感受到生活中處處有數學,同時培養(yǎng)學生的環(huán)保意識。]
四、反思回顧
師:通過本節(jié)課的學習,你有什么收獲嗎?
[設計意圖:讓不同層次的學生談學習收獲,可使每個學生都體驗到成功的喜悅。這樣,學生的收獲不僅只有知識,還包括能力、方法、情感等,學生體驗到學習的樂趣,增強了學好數學的信心。]
板書設計:
圓柱的體積
根據圓柱與近似長方體的關系,推導公式
長方體的體積 = 底面積 高
圓柱的體積 = 底面積 高
用字母表示計算公式V= sh
教學反思:
本節(jié)的教學從生活的實際創(chuàng)設情境,提出問題,讓學生學習有用的數學,提高了學生運用數學知識解決身邊問題的能力,從學數學的角度,注意了數學知識的特點。運用已有的知識(長方體體積的計算)經驗(圓面積公式的推導)解決新的問題,在新舊知識的聯系上,巧妙的利用想象、課件演示將圓和圓柱有機的聯系到一起,使學生想象合理、聯系有方。在探究新知中,通過想象和操作,讓學生充分經歷了知識的形成過程,為較抽象的理論概括提供了必要而有效的感性材料,加強了實踐與知識的聯系,并創(chuàng)造性的補充了一些與學生身邊實際生活相聯系的練習題,提高了學生的學習興趣。
【《圓柱的體積》教案】相關文章:
圓柱的體積教案11-18
圓柱的體積教案及反思03-09
【精選】《圓柱的體積》教案四篇02-20
《圓柱的體積》教案4篇02-09
《圓柱的體積》教案3篇02-11
精選《圓柱的體積》教案四篇02-17
《圓柱的體積》教案5篇01-29
《圓柱的體積》教案7篇01-27
《圓柱的體積》教案9篇01-31