當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 高中數(shù)學(xué)教案

高中數(shù)學(xué)教案

時(shí)間:2024-10-14 10:27:39 教案 我要投稿

高中數(shù)學(xué)教案【熱門】

  作為一名為他人授業(yè)解惑的教育工作者,就有可能用到教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開展。來參考自己需要的教案吧!以下是小編幫大家整理的高中數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)教案【熱門】

高中數(shù)學(xué)教案1

  教學(xué)目標(biāo):

  1.理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu).

  2.能識(shí)別和理解簡單的框圖的功能.

  3.能運(yùn)用三種基本邏輯結(jié)構(gòu)設(shè)計(jì)流程圖以解決簡單的問題.

  教學(xué)方法:

  1.通過模仿、操作、探索,經(jīng)歷設(shè)計(jì)流程圖表達(dá)求解問題的過程,加深對流程圖的感知.

  2.在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu).

  教學(xué)過程:

  一、問題情境

  1.情境:

  某鐵路客運(yùn)部門規(guī)定甲、乙兩地之間旅客托運(yùn)行李的費(fèi)用為

  其中(單位:)為行李的重量.

  試給出計(jì)算費(fèi)用(單位:元)的一個(gè)算法,并畫出流程圖.

  二、學(xué)生活動(dòng)

  學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá).

  解算法為:

  輸入行李的重量;

  如果,那么,

  否則;

  輸出行李的重量和運(yùn)費(fèi).

  上述算法可以用流程圖表示為:

  教師邊講解邊畫出第10頁圖1-2-6.

  在上述計(jì)費(fèi)過程中,第二步進(jìn)行了判斷.

  三、建構(gòu)數(shù)學(xué)

  1.選擇結(jié)構(gòu)的概念:

  (1)先根據(jù)條件作出判斷,再?zèng)Q定執(zhí)行哪一種

  (2)操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu).

  如圖:虛線框內(nèi)是一個(gè)選擇結(jié)構(gòu),它包含一個(gè)判斷框,當(dāng)條件成立(或稱條件為“真”)時(shí)執(zhí)行,否則執(zhí)行.

  2.說明:

  (1)有些問題需要按給定的'條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類問題的實(shí)現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計(jì);

  (2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;

  (3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個(gè)框中可以有一個(gè)是空的,即不執(zhí)行任何操作;

  (4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個(gè)進(jìn)入點(diǎn)和兩個(gè)退出點(diǎn).

  3.思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?

高中數(shù)學(xué)教案2

  (一)教學(xué)具準(zhǔn)備

  直尺,投影儀.

  (二)教學(xué)目標(biāo)

  1.掌握,的定義域、值域、最值、單調(diào)區(qū)間.

  2.會(huì)求含有、的三角式的定義域.

 。ㄈ┙虒W(xué)過程

  1.設(shè)置情境

  研究函數(shù)就是要討論一些性質(zhì),,是函數(shù),我們當(dāng)然也要探討它的一些屬性.本節(jié)課,我們就來研究正弦函數(shù)、余弦函數(shù)的最基本的兩條性質(zhì).

  2.探索研究

  師:同學(xué)們回想一下,研究一個(gè)函數(shù)常要研究它的哪些性質(zhì)?

  生:定義域、值域,單調(diào)性、奇偶性、等等.

  師:很好,今天我們就來探索,兩條最基本的性質(zhì)定義域、值域.(板書課題正、余弦函數(shù)的定義域、值域.)

  師:請同學(xué)看投影,大家仔細(xì)觀察一下正弦、余弦曲線的圖像.

  師:請同學(xué)思考以下幾個(gè)問題:

 。1)正弦、余弦函數(shù)的定義域是什么?

  (2)正弦、余弦函數(shù)的值域是什么?

 。3)他們最值情況如何?

 。4)他們的正負(fù)值區(qū)間如何分?

 。5)的解集如何?

  師生一起歸納得出:

 。1)正弦函數(shù)、余弦函數(shù)的定義域都是.

 。2)正弦函數(shù)、余弦函數(shù)的值域都是即,,稱為正弦函數(shù)、余弦函數(shù)的有界性.

  (3)取最大值、最小值情況:

  正弦函數(shù),當(dāng)時(shí),()函數(shù)值取最大值1,當(dāng)時(shí),()函數(shù)值取最小值-1.

  余弦函數(shù),當(dāng),()時(shí),函數(shù)值取最大值1,當(dāng),()時(shí),函數(shù)值取最小值-1.

 。4)正負(fù)值區(qū)間:

  ()

 。5)零點(diǎn):()

  ()

  3.例題分析

  【例1】求下列函數(shù)的定義域、值域:

 。1);(2);(3).

  解:(1),

 。2)由()

  又∵,∴

  ∴定義域?yàn)椋ǎ,值域(yàn)椋?/p>

 。3)由(),又由

  ∴

  ∴定義域?yàn)椋ǎ涤驗(yàn)椋?/p>

  指出:求值域應(yīng)注意用到或有界性的條件.

  【例2】求下列函數(shù)的最大值,并求出最大值時(shí)的集合:

 。1),;(2),;

 。3)(4).

  解:(1)當(dāng),即()時(shí),取得最大值

  ∴函數(shù)的最大值為2,取最大值時(shí)的集合為.

  (2)當(dāng)時(shí),即()時(shí),取得最大值.

  ∴函數(shù)的最大值為1,取最大值時(shí)的集合為.

 。3)若,,此時(shí)函數(shù)為常數(shù)函數(shù).

  若時(shí),∴時(shí),即()時(shí),函數(shù)取最大值,

  ∴時(shí)函數(shù)的最大值為,取最大值時(shí)的集合為.

 。4)若,則當(dāng)時(shí),函數(shù)取得最大值.

  若,則,此時(shí)函數(shù)為常數(shù)函數(shù).

  若,當(dāng)時(shí),函數(shù)取得最大值.

  ∴當(dāng)時(shí),函數(shù)取得最大值,取得最大值時(shí)的'集合為;當(dāng)時(shí),函數(shù)取得最大值,取得最大值時(shí)的集合為,當(dāng)時(shí),函數(shù)無最大值.

  指出:對于含參數(shù)的最大值或最小值問題,要對或的系數(shù)進(jìn)行討論.

  思考:此例若改為求最小值,結(jié)果如何?

  【例3】要使下列各式有意義應(yīng)滿足什么條件?

 。1);(2).

  解:(1)由,

  ∴當(dāng)時(shí),式子有意義.

 。2)由,即

  ∴當(dāng)時(shí),式子有意義.

  4.演練反饋(投影)

  (1)函數(shù),的簡圖是()

 。2)函數(shù)的最大值和最小值分別為()

  A.2,-2 B.4,0 C.2,0 D.4,-4

 。3)函數(shù)的最小值是()

  A.B.-2 C.D.

 。4)如果與同時(shí)有意義,則的取值范圍應(yīng)為()

  A.B.C.D.或

 。5)與都是增函數(shù)的區(qū)間是()

  A.,B.,

  C.,D.,

  (6)函數(shù)的定義域________,值域________,時(shí)的集合為_________.

  參考答案:1.B 2.B 3.A 4.C 5.D

  6.;;

  5.總結(jié)提煉

 。1),的定義域均為.

 。2)、的值域都是

 。3)有界性:

 。4)最大值或最小值都存在,且取得極值的集合為無限集.

 。5)正負(fù)敬意及零點(diǎn),從圖上一目了然.

  (6)單調(diào)區(qū)間也可以從圖上看出.

 。ㄋ模┌鍟O(shè)計(jì)

  1.定義域

  2.值域

  3.最值

  4.正負(fù)區(qū)間

  5.零點(diǎn)

  例1

  例2

  例3

  課堂練習(xí)

  課后思考題:求函數(shù)的最大值和最小值及取最值時(shí)的集合

  提示:

高中數(shù)學(xué)教案3

  內(nèi)容分析:

  1、 集合是中學(xué)數(shù)學(xué)的一個(gè)重要的基本概念

  在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題。例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集。至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識(shí)的掌握和運(yùn)用,基本的邏輯知識(shí)在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識(shí)問題、研究問題不可缺少的工具。這些可以幫助學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)。

  把集合的初步知識(shí)與簡易邏輯知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)

  例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。

  本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明

  然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。

  這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念

  學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識(shí)學(xué)習(xí)本章的意義

  本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念。

  集合是集合論中的原始的、不定義的概念

  在開始接觸集合的概念時(shí),主要還是通過實(shí)例,對概念有一個(gè)初步認(rèn)識(shí)

  教科書給出的“一般地,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集

  ”這句話,只是對集合概念的描述性說明。

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1.簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

  2.教材中的章頭引言;

  3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);

  4.“物以類聚”,“人以群分”;

  5.教材中例子(P4)。

  二、講解新課:

  閱讀教材第一部分,問題如下:

 。1)有那些概念?是如何定義的?

 。2)有那些符號?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有關(guān)概念:由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個(gè)集合,或者說,某些指定的對象集在一起就成為一個(gè)集合,也簡稱集.集合中的每個(gè)對象叫做這個(gè)集合的元素.

  定義:一般地,某些指定的對象集在一起就成為一個(gè)集合.

  1、集合的概念

  (1)集合:某些指定的對象集在一起就形成一個(gè)集合(簡稱集)

 。2)元素:集合中每個(gè)對象叫做這個(gè)集合的元素

  2、常用數(shù)集及記法

 。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合,記作N,N={0,1,2,…}

 。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集,記作N*或N+,N*={1,2,3,…}

 。3)整數(shù)集:全體整數(shù)的集合,記作Z ,Z={0,±1,±2,…}

 。4)有理數(shù)集:全體有理數(shù)的集合,記作Q,Q={整數(shù)與分?jǐn)?shù)}

  (5)實(shí)數(shù)集:全體實(shí)數(shù)的集合,記作R,R={數(shù)軸上所有點(diǎn)所對應(yīng)的.數(shù)}

  注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0

  (2)非負(fù)整數(shù)集內(nèi)排除0的集,記作N*或N+

  Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

  3、元素對于集合的隸屬關(guān)系

 。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

 。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA

  4、集合中元素的特性

  (1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

  (2)互異性:集合中的元素沒有重復(fù)

  (3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

  5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

  元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

 、啤啊省钡拈_口方向,不能把a(bǔ)∈A顛倒過來寫。

高中數(shù)學(xué)教案4

  一、教材分析

  1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形。“二面角”是人教版《數(shù)學(xué)》第二冊(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

  2、教學(xué)目標(biāo):

  知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。

  (2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

  能力目標(biāo):(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。

  德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

  情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價(jià),拉近學(xué)生之間、師生之間的情感距離。

  3、重點(diǎn)、難點(diǎn):

  重點(diǎn):“二面角”和“二面角的平面角”的概念

  難點(diǎn):“二面角的平面角”概念的形成過程

  二、教法分析

  1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

 。病⒔虒W(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

  3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

  三、學(xué)法指導(dǎo)

  1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的`創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

  2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

  3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

  四、教學(xué)過程

  心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營造了創(chuàng)新思維的氛圍。

  (一)、二面角

  1、揭示概念產(chǎn)生背景。

  問題情境1、在平面幾何中“角”是怎樣定義的?

  問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

  問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。

  通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。

  問題情境4、那么,應(yīng)該如何定義二面角呢?

  創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評價(jià)。

  問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

  與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。

  問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

  2、展現(xiàn)概念形成過程

 。1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。

  問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。

  問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的。

  問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

 。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

  問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。

 。3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

 。4)、繼續(xù)探索,得到定義。

  問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

 。5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

 。ㄈ、二面角及其平面角的畫法

  主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

  (四)、范例分析

  為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

  例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。

  分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角。可讓學(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

  變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

  題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

 。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

 。ㄎ澹、練習(xí)、小結(jié)與作業(yè)

  練習(xí):習(xí)題9.7的第3題

  小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。

  作業(yè):習(xí)題9.7的第4題

  思考題:見例題

  五、板書設(shè)計(jì)(見課件)

  以上是我對《二面角》授課的初步設(shè)想,不足之處,懇請大家批評指正,謝謝!

高中數(shù)學(xué)教案5

  課題:

  等比數(shù)列的概念

  教學(xué)目標(biāo)

  1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式、

  2、使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、

  3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、

  教學(xué)重點(diǎn),難點(diǎn)

  重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo)、

  教學(xué)用具

  投影儀,多媒體軟件,電腦、

  教學(xué)方法

  討論、談話法、

  教學(xué)過程

  一、提出問題

  給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)

  ①—2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

 、1,1,1,1,1,1,1,…

 、243,81,27,9,3,1,,,…

 、31,29,27,25,23,21,19,…

 、1,—1,1,—1,1,—1,1,—1,…

 、1,—10,100,—1000,10000,—100000,…

  ⑧0,0,0,0,0,0,0,…

  由學(xué)生發(fā)表意見(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、

  二、講解新課

  請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個(gè)單位時(shí)間每個(gè)變形蟲都分裂為兩個(gè)變形蟲,再假設(shè)開始有一個(gè)變形蟲,經(jīng)過一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲,經(jīng)過兩個(gè)單位時(shí)間就有了四個(gè)變形蟲,…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲個(gè)數(shù)得到了一列數(shù)

  這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)

  等比數(shù)列(板書)

  1、等比數(shù)列的定義(板書)

  根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語、

  請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時(shí),數(shù)列既是等差又是等比數(shù)列,當(dāng)時(shí),它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認(rèn)識(shí):

  2、對定義的認(rèn)識(shí)(板書)

 。1)等比數(shù)列的首項(xiàng)不為0;

 。2)等比數(shù)列的`每一項(xiàng)都不為0,即

  問題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

 。3)公比不為0、

  用數(shù)學(xué)式子表示等比數(shù)列的定義、

  是等比數(shù)列

  ①、在這個(gè)式子的寫法上可能會(huì)有一些爭議,如寫成

  ,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為

  是等比數(shù)列?為什么不能?式子給出了數(shù)列第項(xiàng)與第

  項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式、

  3、等比數(shù)列的通項(xiàng)公式(板書)

  問題:用和表示第項(xiàng)

 、俨煌耆珰w納法

 、诏B乘法,…,,這個(gè)式子相乘得,所以(板書)

 。1)等比數(shù)列的通項(xiàng)公式得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式、(板書)

  (2)對公式的認(rèn)識(shí)

  由學(xué)生來說,最后歸結(jié):

 、俸瘮(shù)觀點(diǎn);

 、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識(shí),此處再復(fù)習(xí)鞏固而已)、

  這里強(qiáng)調(diào)方程思想解決問題、方程中有四個(gè)量,知三求一,這是公式最簡單的應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

  如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。

  三、小結(jié)

  1、本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

  2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;

  3、用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用。

  探究活動(dòng)

  將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。

  參考答案:

  30次后,厚度為,這個(gè)厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙?jiān)俦∫恍热缂埡?、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個(gè)格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個(gè)格子中的米應(yīng)是粒,用計(jì)算器算一下吧(對數(shù)算也行)。

高中數(shù)學(xué)教案6

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

  【過程與方法】

  通過對方程x+y+Dx+Ey+F=0表示圓的的`條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。

  【情感態(tài)度與價(jià)值觀】

  滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。

  二、教學(xué)重難點(diǎn)

  【重點(diǎn)】

  掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

  【難點(diǎn)】

  二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

  三、教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)舊知,引出課題

  1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

  2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學(xué)教案7

  教學(xué)目標(biāo)

  知識(shí)與技能目標(biāo):

  本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個(gè)層次:

  (1)通過復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個(gè)步驟”以及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問題的途徑。

  (2)從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

  (3)依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認(rèn)識(shí)到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線的斜率。即:

  導(dǎo)數(shù)的幾何意義教案=曲線在導(dǎo)數(shù)的幾何意義教案處切線的斜率k

  在此基礎(chǔ)上,通過例題和練習(xí)使學(xué)生學(xué)會(huì)利用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問題,加深對導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。

  過程與方法目標(biāo):

  (1)學(xué)生通過觀察感知、動(dòng)手探究,培養(yǎng)學(xué)生的動(dòng)手和感知發(fā)現(xiàn)的能力。

  (2)學(xué)生通過對圓的切線和割線聯(lián)系的認(rèn)識(shí),再類比探索一般曲線的情況,完善對切線的認(rèn)知,感受逼近的思想,體會(huì)相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。

  (3)結(jié)合分層的探究問題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨(dú)立解決問題和發(fā)現(xiàn)新知、應(yīng)用新知。

  情感、態(tài)度、價(jià)值觀:

  (1)通過在探究過程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過有限來認(rèn)識(shí)無限,體驗(yàn)數(shù)學(xué)中轉(zhuǎn)化思想的意義和價(jià)值;

  (2)在教學(xué)中向他們提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),如:探究活動(dòng),讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進(jìn)他們真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高綜合能力,學(xué)會(huì)學(xué)習(xí),進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。

  教學(xué)重點(diǎn)與難點(diǎn)

  重點(diǎn):理解和掌握切線的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實(shí)際問題,體會(huì)數(shù)形結(jié)合、以直代曲的思想方法。

  難點(diǎn):發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。

  教學(xué)過程

  一、復(fù)習(xí)提問

  1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個(gè)步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).

  定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)在該點(diǎn)處的瞬時(shí)變化率。

  求導(dǎo)數(shù)的步驟:

  第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;

  第二步:求瞬時(shí)變化率導(dǎo)數(shù)的幾何意義教案.

  (即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點(diǎn)導(dǎo)數(shù))

  2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案在圖形中表示什么?

  生:平均變化率表示的是割線PQ的斜率.導(dǎo)數(shù)的幾何意義教案

  師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,

  3.瞬時(shí)變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?

  如圖2-1,設(shè)曲線C是函數(shù)y=f(x)的圖象,點(diǎn)P(x0,y0)是曲線C上一點(diǎn).點(diǎn)Q(x0+Δx,y0+Δy)是曲線C上與點(diǎn)P鄰近的任一點(diǎn),作割線PQ,當(dāng)點(diǎn)Q沿著曲線C無限地趨近于點(diǎn)P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點(diǎn)P處的切線.

  導(dǎo)數(shù)的幾何意義教案

  追問:怎樣確定曲線C在點(diǎn)P的切線呢?因?yàn)镻是給定的,根據(jù)平面解析幾何中直線的點(diǎn)斜式方程的知識(shí),只要求出切線的斜率就夠了.設(shè)割線PQ的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線PQ的斜率為導(dǎo)數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。

  由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的`幾何意義教案導(dǎo)數(shù)的幾何意義教案。

  導(dǎo)數(shù)的幾何意義教案

  由上式可知:曲線f(x)在點(diǎn)(x0,f(x0))處的切線的斜率就是y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).今天我們就來探究導(dǎo)數(shù)的幾何意義。

  C類學(xué)生回答第1題,A,B類學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點(diǎn)講評第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.

  二、新課

  1、導(dǎo)數(shù)的幾何意義:

  函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率.

  即:導(dǎo)數(shù)的幾何意義教案

  口答練習(xí):

  (1)如果函數(shù)y=f(x)在已知點(diǎn)x0處的導(dǎo)數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對應(yīng)點(diǎn)的切線的傾斜角,并說明切線各有什么特征。

  (C層學(xué)生做)

  (2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點(diǎn)的導(dǎo)數(shù).(A、B層學(xué)生做)

  導(dǎo)數(shù)的幾何意義教案

  2、如何用導(dǎo)數(shù)研究函數(shù)的增減?

  小結(jié):附近:瞬時(shí),增減:變化率,即研究函數(shù)在該點(diǎn)處的瞬時(shí)變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負(fù)即對應(yīng)函數(shù)的增減。作出該點(diǎn)處的切線,可由切線的升降趨勢,得切線斜率的正負(fù)即導(dǎo)數(shù)的正負(fù),就可以判斷函數(shù)的增減性,體會(huì)導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

  同時(shí),結(jié)合以直代曲的思想,在某點(diǎn)附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

  例1函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求該點(diǎn)處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。

  導(dǎo)數(shù)的幾何意義教案

  函數(shù)在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時(shí)任意點(diǎn)處的切線就是直線本身,斜率就是變化率)

  3、利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.

  例2求曲線y=x2在點(diǎn)M(2,4)處的切線方程.

  解:導(dǎo)數(shù)的幾何意義教案

  ∴y'|x=2=2×2=4.

  ∴點(diǎn)M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

  由上例可歸納出求切線方程的兩個(gè)步驟:

  (1)先求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).

  (2)根據(jù)直線方程的點(diǎn)斜式,得切線方程為y-y0=f'(x0)(x-x0).

  提問:若在點(diǎn)(x0,f(x0))處切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線方程。(因?yàn)檫@時(shí)切線平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導(dǎo)數(shù)的幾何意義教案)

  (先由C類學(xué)生來回答,再由A,B補(bǔ)充.)

  例3已知曲線導(dǎo)數(shù)的幾何意義教案上一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求:(1)過P點(diǎn)的切線的斜率;

  (2)過P點(diǎn)的切線的方程。

  解:(1)導(dǎo)數(shù)的幾何意義教案,

  導(dǎo)數(shù)的幾何意義教案

  y'|x=2=22=4. ∴在點(diǎn)P處的切線的斜率等于4.

  (2)在點(diǎn)P處的切線方程為導(dǎo)數(shù)的幾何意義教案即12x-3y-16=0.

  練習(xí):求拋物線y=x2+2在點(diǎn)M(2,6)處的切線方程.

  (答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

  B類學(xué)生做題,A類學(xué)生糾錯(cuò)。

  三、小結(jié)

  1.導(dǎo)數(shù)的幾何意義.(C組學(xué)生回答)

  2.利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程的步驟.

  (B組學(xué)生回答)

  四、布置作業(yè)

  1.求拋物線導(dǎo)數(shù)的幾何意義教案在點(diǎn)(1,1)處的切線方程。

  2.求拋物線y=4x-x2在點(diǎn)A(4,0)和點(diǎn)B(2,4)處的切線的斜率,切線的方程.

  3.求曲線y=2x-x3在點(diǎn)(-1,-1)處的切線的傾斜角

  4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點(diǎn)的坐標(biāo); (2)拋物線在交點(diǎn)處的切線方程;

  (C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)

  教學(xué)反思:

  本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問題、導(dǎo)數(shù)的概念”等知識(shí)的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計(jì)極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過動(dòng)手作圖,自我感受整個(gè)逼近的過程,讓學(xué)生更加深刻地體會(huì)導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。

  本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù)的幾何意義解釋實(shí)際問題”兩個(gè)教學(xué)重心展開。先回憶導(dǎo)數(shù)的實(shí)際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類比“平均變化率——瞬時(shí)變化率”的研究思路,運(yùn)用逼近的思想定義了曲線上某點(diǎn)的切線,再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義——“導(dǎo)數(shù)是曲線上某點(diǎn)處切線的斜率”。

  完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點(diǎn)明,利用導(dǎo)數(shù)的幾何意義,在研究實(shí)際問題時(shí),某點(diǎn)附近的曲線可以用過此點(diǎn)的切線近似代替,即“以直代曲”,從而達(dá)到“以簡單的對象刻畫復(fù)雜對象”的目的,并通過兩個(gè)例題的研究,讓學(xué)生從不同的角度完整地體驗(yàn)導(dǎo)數(shù)與切線斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。本節(jié)課注重以學(xué)生為主體,每一個(gè)知識(shí)、每一個(gè)發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時(shí)間和空間,讓學(xué)生在動(dòng)手操作、動(dòng)筆演算等活動(dòng)后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來,效果較好。

高中數(shù)學(xué)教案8

  教學(xué)目標(biāo)

  (1)了解線性規(guī)劃的意義以及線性約束條件、線性目標(biāo)函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;

 。2)了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實(shí)際問題;

 。3)培養(yǎng)學(xué)生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生“建!焙徒鉀Q實(shí)際問題的能力;

 。4)結(jié)合教學(xué)內(nèi)容,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和“用數(shù)學(xué)”的意識(shí),激勵(lì)學(xué)生勇于創(chuàng)新.

  重點(diǎn)難點(diǎn)

  理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn)。

  如何擾實(shí)際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學(xué)難點(diǎn)。

  教學(xué)步驟

 。ㄒ唬┮胄抡n

  我們已研究過以二元一次不等式組為約束條件的'二元線性目標(biāo)函數(shù)的線性規(guī)劃問題。那么是否有多個(gè)兩個(gè)變量的線性規(guī)劃問題呢?又什么樣的問題不用線性規(guī)劃知識(shí)來解決呢?

高中數(shù)學(xué)教案9

  教學(xué)目標(biāo)

  1使學(xué)生理解本章的知識(shí)結(jié)構(gòu),并通過本章的知識(shí)結(jié)構(gòu)掌握本章的全部知識(shí);

  2對線段、射線、直線、角的概念及它們之間的關(guān)系有進(jìn)一步的認(rèn)識(shí);

  3掌握本章的全部定理和公理;

  4理解本章的數(shù)學(xué)思想方法;

  5了解本章的題目類型。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn)是理解本章的知識(shí)結(jié)構(gòu),掌握本章的全部定和公理;難點(diǎn)是理解本章的數(shù)學(xué)思想方法。

  教學(xué)設(shè)計(jì)過程

  一、本章的知識(shí)結(jié)構(gòu)

  二、本章中的概念

  1直線、射線、線段的概念。

  2線段的中點(diǎn)定義。

  3角的兩個(gè)定義。

  4直角、平角、周角、銳角、鈍角的概念。

  5互余與互補(bǔ)的角。

  三、本章中的公理和定理

  1直線的公理;線段的公理。

  2補(bǔ)角和余角的性質(zhì)定理。

  四、本章中的主要習(xí)題類型

  1對直線、射線、線段的概念的理解。

  例1下列說法中正確的是( )。

  A延長射線OP B延長直線CD

  C延長線段CD D反向延長直線CD

  解:C因?yàn)樯渚和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯(cuò)誤的。而線段有兩個(gè)端點(diǎn),可以向兩方延長。

  例2如圖1-57中的線段共有多少條?

  解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。

  2線段的和、差、倍、分。

  例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD= BC,那么線段AD是線段AC的( )。

  A.B. C. D.

  解:B如圖1-58,因?yàn)锳D是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

  例4如圖1-59,B為線段AC上的一點(diǎn),AB=4cm,BC=3cm,M,N分別為AB,BC的中點(diǎn),求MN的長。

  解:因?yàn)锳B=4,M是AB的中點(diǎn),所以MB=2,又因?yàn)镹是BC的中點(diǎn),所以BN=1.5。則MN=2+1.5=3.5

  3角的概念性質(zhì)及角平分線。

  例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的度數(shù)。

  解:因?yàn)镺D是∠AOB的平分線,所以∠BOD= ∠AOB;又因?yàn)镺E是∠BOC的平分線,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

  所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

  則∠EOD=90°。

  例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?

  解:因?yàn)椤螦OB=90°,又∠AOD=150°,所以∠BOD=60°。

  又∠COD=90°,所以∠COB=30°。

  則∠AOC=60°,(同角的余角相等)

  ∠AOC與∠COB的度數(shù)的比是2∶1。

  4互余與互補(bǔ)角的性質(zhì)。

  例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。

  解:因?yàn)镃OD為直線,∠BOE=90°,∠BOD=45°,

  所以∠COE=180°-90°-45°=45°

  又AOB為直線,∠BOE=90°,∠COE=45°

  故∠COA=180°-90°-45°=45°,

  而AOB為直線,∠BOD=45°,

  因此∠AOD=180°-45°=135°。

  例8一個(gè)角是另一個(gè)角的3倍,且小有的余角與大角的余角之差為20°,求這兩個(gè)角的度數(shù)。

  解:設(shè)第一個(gè)角為x°,則另一個(gè)角為3x°,

  依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

  答:一個(gè)角為10°,另一個(gè)角為30°。

  5度分秒的換算及和、差、倍、分的計(jì)算。

  例9 (1)將4589°化成度、分、秒的形式。

  (2)將80°34′45″化成度。

  (3)計(jì)算:(36°55′40″-23°56′45″)。

  解:(1)45°53′24″。

  (2)約為8058°。

  (3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進(jìn)位,做除法后得9°44′11″)

  五、本章中所學(xué)到的數(shù)學(xué)思想

  1運(yùn)動(dòng)變化的觀點(diǎn):幾何圖形不是孤立和靜止的,也應(yīng)看作不斷發(fā)展和變化的,如線段向一個(gè)方向延長,就發(fā)展成為射線;射線向另一方向延長就發(fā)展成直線。又如射線饒它的端點(diǎn)旋轉(zhuǎn)就形成角;角的終邊不斷旋轉(zhuǎn)就變化成直角、平角和周角。從圖形的`運(yùn)動(dòng)中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。

  2數(shù)形結(jié)合的思想:在幾何的知識(shí)中經(jīng)常遇到計(jì)算問題,對形的研究離不開數(shù)。正如數(shù)學(xué)家華羅庚所說:“數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難如微”。本章的知識(shí)中,將線段的長度用數(shù)量表示,利用方程的方法解決余角與補(bǔ)角的問題。因此我們對幾何的學(xué)習(xí)不能與代數(shù)的學(xué)習(xí)截然分開,在形的問題難以解決時(shí),發(fā)揮數(shù)的功能,在數(shù)的問題遇到困難時(shí),畫出與它相關(guān)的圖形,都會(huì)給問題的解決帶來新的思路。從幾何的起始課,就注意數(shù)形結(jié)合,就會(huì)養(yǎng)成良好的思維習(xí)慣。

  3聯(lián)系實(shí)際,從實(shí)際事物中抽象出數(shù)學(xué)模型。數(shù)學(xué)的產(chǎn)生來源于生產(chǎn)和生活實(shí)踐,因此學(xué)習(xí)數(shù)學(xué)不能脫離實(shí)際生活,尤其是幾乎何的學(xué)習(xí)更離不開實(shí)際生活。一方面要讓學(xué)生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導(dǎo)學(xué)生將所學(xué)的知識(shí)去解決某些簡單的實(shí)際問題,這才是理論聯(lián)系實(shí)際的觀點(diǎn)。

  六、本章的疑點(diǎn)和誤點(diǎn)分析

  概念在應(yīng)用中的混淆。

  例10判斷正誤:

  (1)在∠AOB的邊OA的延長線上取一點(diǎn)D。

  (2)大于90°的角是鈍角。

  (3)任何一個(gè)角都可以有余角。

  (4)∠A是銳角,則∠A的所有余角都相等。

  (5)兩個(gè)銳角的和一定小于平角。

  (6)直線MN是平角。

  (7)互補(bǔ)的兩個(gè)角的和一定等于平角。

  (8)如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角就沒有余角。

  (9)鈍角一定大于它的補(bǔ)角。

  (10)經(jīng)過三點(diǎn)一定可以畫一條直線。

  解:(1)錯(cuò)。因?yàn)榻堑膬蛇吺巧渚,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。

  (2)錯(cuò)。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。

  (3)錯(cuò)。余角的定義是:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角互為余角。因此大于直角的角沒有余角。

  (4)對.∠A的所有余角都是90°-∠A。

  (5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.

  (6)錯(cuò)。平角是一個(gè)角就要有頂點(diǎn),而直線上沒有表示平角頂點(diǎn)的點(diǎn)。如果在直線上標(biāo)出表示角的頂點(diǎn)的點(diǎn),就可以了。

  (7)對。符合互補(bǔ)的角的定義。

  (8)對。如果一個(gè)角的補(bǔ)角是銳角,那么這個(gè)角一定是鈍角,而鈍角是沒有余角的。

  (9)對。因?yàn)殁g角的補(bǔ)角是銳角,鈍角一定大于銳角。

  (10)錯(cuò)。這個(gè)題應(yīng)該分情況討論:如果這三點(diǎn)在同一條直線上,這個(gè)結(jié)論是正確的。如果這三個(gè)點(diǎn)不在同一條直線上,那么過這三個(gè)點(diǎn)就不能畫一條直線。

  板書設(shè)計(jì)

  回顧與反思

  (一)知識(shí)結(jié)構(gòu)(四)主要習(xí)題類型(五)本章的數(shù)學(xué)思想

  略例1 1

  · 2

  (二)本章概念· 3

  略· (六)疑誤點(diǎn)分析

  (三)本章的公理和定理·

  例9

高中數(shù)學(xué)教案10

  一.教材分析:

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

  二.目標(biāo)分析:

  教學(xué)重點(diǎn).難點(diǎn)

  重點(diǎn):集合的含義與表示方法.

  難點(diǎn):表示法的恰當(dāng)選擇.

  教學(xué)目標(biāo)

  l.知識(shí)與技能

  (1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的屬于關(guān)系;

  (2)知道常用數(shù)集及其專用記號; (3)了解集合中元素的確定性.互異性.無序性;

  (4)會(huì)用集合語言表示有關(guān)數(shù)學(xué)對象;

  2.過程與方法

  (1)讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過程,感知集合的含義.

  (2)讓學(xué)生歸納整理本節(jié)所學(xué)知識(shí).

  3.情感.態(tài)度與價(jià)值觀

  使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.

  三.教法分析

  1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).

  四.過程分析

  (一)創(chuàng)設(shè)情景,揭示課題

  1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的.班級。

  (2)問題:像“家庭”、“學(xué)!、“班級”等,有什么共同特征?

  引導(dǎo)學(xué)生互相交流.與此同時(shí),教師對學(xué)生的活動(dòng)給予評價(jià).

  2.活動(dòng):(1)列舉生活中的集合的例子;(2)分析、概括各實(shí)例的共同特征

  由此引出這節(jié)要學(xué)的內(nèi)容。

  設(shè)計(jì)意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

  (二)研探新知,建構(gòu)概念

  1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個(gè)實(shí)例:

  (1)1—20以內(nèi)的所有質(zhì)數(shù);(2)我國古代的四大發(fā)明;

  (3)所有的安理會(huì)常任理事國; (4)所有的正方形;

  (5)海南省在20xx年9月之前建成的所有立交橋;

  (6)到一個(gè)角的兩邊距離相等的所有的點(diǎn);

  (7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體.

  2.教師組織學(xué)生分組討論:這7個(gè)實(shí)例的共同特征是什么?

  3.每個(gè)小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個(gè)實(shí)例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個(gè)對象叫作這個(gè)集合的元素.

  4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.

  設(shè)計(jì)意圖:通過實(shí)例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

  (三)質(zhì)疑答辯,發(fā)展思維

  1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點(diǎn)?并注意個(gè)別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個(gè)集合的元素是一樣的,我們就稱這兩個(gè)集合相等.

  2.教師組織引導(dǎo)學(xué)生思考以下問題:

  判斷以下元素的全體是否組成集合,并說明理由:

  (1)大于3小于11的偶數(shù);(2)我國的小河流.讓學(xué)生充分發(fā)表自己的建解.

  3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動(dòng)給予及時(shí)的評價(jià).

  4.教師提出問題,讓學(xué)生思考

  b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),

  高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.

  如果a是集合A的元素,就說a屬于集合A,記作a?A.

  如果a不是集合A的元素,就說a不屬于集合A,記作a?A.

  (2)如果用A表示“所有的安理會(huì)常任理事國”組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示.

  (3)讓學(xué)生完成教材第6頁練習(xí)第1題.

  5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學(xué)生完成習(xí)題1.1A組第1題.

  6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:

  (1)要表示一個(gè)集合共有幾種方式?

  (2)試比較自然語言.列舉法和描述法在表示集合時(shí),各自的特點(diǎn)?適用的對象是什么?

  (3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?

  使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn)和體會(huì)它們存在的必要性和適用對象。

  設(shè)計(jì)意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點(diǎn),從而突破難點(diǎn)。

  (四)鞏固深化,反饋矯正

  教師投影學(xué)習(xí):

  (1)用自然語言描述集合{1,3,5,7,9}; (2)用例舉法表示集合A?{x?N|1?x?8}

  (3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題.

  設(shè)計(jì)意圖:使學(xué)生及時(shí)鞏固所學(xué)新知,體會(huì)三種表示方式存在的必要性和適用對象

  (五)歸納小結(jié),布置作業(yè)

  小結(jié):在師生互動(dòng)中,讓學(xué)生了解或體會(huì)下例問題:

  1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容? 2.你認(rèn)為學(xué)習(xí)集合有什么意義?

  3.選擇集合的表示法時(shí)應(yīng)注意些什么?

  設(shè)計(jì)意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識(shí),回顧集合元素的三大特性及集合的三種表示方式。

  作業(yè):1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題.

  2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種

呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.

  五.板書分析

高中數(shù)學(xué)教案11

  教學(xué)目標(biāo)

  (1)了解算法的含義,體會(huì)算法思想。

  (2)會(huì)用自然語言和數(shù)學(xué)語言描述簡單具體問題的算法;

  (3)學(xué)習(xí)有條理地、清晰地表達(dá)解決問題的步驟,培養(yǎng)邏輯思維能力與表達(dá)能力。

  教學(xué)重難點(diǎn)

  重點(diǎn):算法的含義、解二元一次方程組的算法設(shè)計(jì)。

  難點(diǎn):把自然語言轉(zhuǎn)化為算法語言。

  情境導(dǎo)入

  電影《神槍手》中描述的凌靖是一個(gè)天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊(duì)伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

  第一步:觀察、等待目標(biāo)出現(xiàn)(用望遠(yuǎn)鏡或瞄準(zhǔn)鏡);

  第二步:瞄準(zhǔn)目標(biāo);

  第三步:計(jì)算(或估測)風(fēng)速、距離、空氣濕度、空氣密度;

  第四步:根據(jù)第三步的結(jié)果修正彈著點(diǎn);

  第五步:開槍;

  第六步:迅速轉(zhuǎn)移(或隱蔽)

  以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學(xué)上我們叫算法。

  課堂探究

  預(yù)習(xí)提升

  1、定義:算法可以理解為由基本運(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計(jì)好的有限的確切的計(jì)算序列,并且這樣的步驟或序列能夠解決一類問題。

  2、描述方式

  自然語言、數(shù)學(xué)語言、形式語言(算法語言)、框圖。

  3、算法的要求

  (1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;

  (2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。

  4、算法的特征

  (1)有限性:一個(gè)算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。

  (2)確定性:算法的計(jì)算規(guī)則及相應(yīng)的計(jì)算步驟必須是唯一確定的。

  (3)可行性:算法中的每一個(gè)步驟都是可以在有限的時(shí)間內(nèi)完成的基本操作,并能得到確定的結(jié)果。

  (4)順序性:算法從初始步驟開始,分為若干個(gè)明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個(gè)步驟只有一個(gè)確定的后續(xù)。

  (5)不唯一性:解決同一問題的算法可以是不唯一的

  課堂典例講練

  命題方向1對算法意義的理解

  例1、下列敘述中,

 、僦矘湫枰\(yùn)苗、挖坑、栽苗、澆水這些步驟;

 、诎错樞蜻M(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…99+1=100;

 、蹚那鄭u乘動(dòng)車到濟(jì)南,再從濟(jì)南乘飛機(jī)到倫敦觀看奧運(yùn)會(huì)開幕式;

 、3x>x+1;

 、萸笏心鼙3整除的正數(shù),即3,6,9,12。

  能稱為算法的個(gè)數(shù)為(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個(gè)明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

  【答案】B

  [規(guī)律總結(jié)]

  1、正確理解算法的概念及其特點(diǎn)是解決問題的關(guān)鍵、

  2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、

  【變式訓(xùn)練】下列對算法的理解不正確的是________

 、僖粋(gè)算法應(yīng)包含有限的步驟,而不能是無限的

 、谒惴ǹ梢岳斫鉃橛苫具\(yùn)算及規(guī)定的運(yùn)算順序構(gòu)成的完整的解題步驟

 、鬯惴ㄖ械拿恳徊蕉紤(yīng)當(dāng)有效地執(zhí)行,并得到確定的結(jié)果

 、芤粋(gè)問題只能設(shè)計(jì)出一個(gè)算法

  【解析】由算法的有限性指包含的步驟是有限的故①正確;

  由算法的明確性是指每一步都是確定的'故②正確;

  由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;

  由對于同一個(gè)問題可以有不同的算法故④不正確。

  【答案】④

  命題方向2解方程(組)的算法

  例2、給出求解方程組的一個(gè)算法。

  [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計(jì)算機(jī)上實(shí)現(xiàn),我們用高斯消元法(即先將方程組化為一個(gè)三角形方程組,再通過回代方程求出方程組的解)解線性方程組、

  [規(guī)范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程組可化為

  第二步,解方程③,可得y=-1,④

  第三步,將④代入①,可得2x-1=7,x=4

  第四步,輸出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y(tǒng)=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,輸出4,-1

  [規(guī)律總結(jié)]1、本題用了2種方法求解,對于問題的求解過程,我們既要強(qiáng)調(diào)對“通法、通解”的理解,又要強(qiáng)調(diào)對所學(xué)知識(shí)的靈活運(yùn)用。

  2、設(shè)計(jì)算法時(shí),經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學(xué)上解方程(組)的方法進(jìn)行設(shè)計(jì),但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時(shí)有幾個(gè)解,然后根據(jù)求解步驟設(shè)計(jì)算法步驟。

  【變式訓(xùn)練】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命題方向3篩選問題的算法設(shè)計(jì)

  例3、設(shè)計(jì)一個(gè)算法,對任意3個(gè)整數(shù)a、b、c,求出其中的最小值、

  [思路分析]比較a,b比較m與c―→最小數(shù)

  [規(guī)范解答]算法步驟如下:

  1、比較a與b的大小,若a

  2、比較m與c的大小,若m

  [規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個(gè),篩選過程中的每一步都是比較兩個(gè)數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個(gè)不同數(shù)中篩選出滿足要求的一個(gè)。

  【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一個(gè)數(shù)m,m=21;

  2、將m與89比較,是否相等,如果相等,則搜索到89;

  3、如果m與89不相等,則往下執(zhí)行;

  4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。

  命題方向4非數(shù)值性問題的算法

  例4、一個(gè)人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個(gè)人和兩只動(dòng)物,沒有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會(huì)吃掉羚羊。

  (1)設(shè)計(jì)安全渡河的算法;

  (2)思考每一步算法所遵循的共同原則是什么?

高中數(shù)學(xué)教案12

  教學(xué)目標(biāo)

 。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

 。2)理解直線與二元一次方程的關(guān)系及其證明

  (3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).

  教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時(shí)為0)的對應(yīng)關(guān)系及其證明.

  教學(xué)用具:計(jì)算機(jī)

  教學(xué)方法:啟發(fā)引導(dǎo)法,討論法

  教學(xué)過程

  下面給出教學(xué)實(shí)施過程設(shè)計(jì)的簡要思路:

  教學(xué)設(shè)計(jì)思路

  (一)引入的設(shè)計(jì)

  前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:

  問:說出過點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

  肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問題:

  問:求出過點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?

  答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

  肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”.

  啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)?各小組可以討論討論.

  學(xué)生紛紛談出自己的想法,教師邊評價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問題:

  【問題1】“任意直線的方程都是二元一次方程嗎?”

 。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

  這是本節(jié)課要解決的第一個(gè)問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

  學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

  經(jīng)過一定時(shí)間的.研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

  思路一:…

  思路二:…

  ……

  教師組織評價(jià),確定最優(yōu)方案(其它待課下研究)如下:

  按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.

  當(dāng) 存在時(shí),直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.

  當(dāng) 不存在時(shí),直線 的方程可表示為 形式的方程,它是二元一次方程嗎?

  學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

  平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  綜合兩種情況,我們得出如下結(jié)論:

  在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.

  至此,我們的問題1就解決了.簡單點(diǎn)說就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成 或 的形式,準(zhǔn)確地說應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”.

  同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

  學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

  這樣上邊的結(jié)論可以表述如下:

  在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時(shí)為0)的二元一次方程.

  啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?

  【問題2】任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線嗎?

  不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?

  師生共同討論,評價(jià)不同思路,達(dá)成共識(shí):

  回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時(shí)為0)系數(shù) 是否為0恰好對應(yīng)斜率 是否存在,即

 。1)當(dāng) 時(shí),方程可化為

  這是表示斜率為 、在 軸上的截距為 的直線.

 。2)當(dāng) 時(shí),由于 、 不同時(shí)為0,必有 ,方程可化為

  這表示一條與 軸垂直的直線.

  因此,得到結(jié)論:

  在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時(shí)為0)的二元一次方程都表示一條直線.

  為方便,我們把 (其中 、 不同時(shí)為0)稱作直線方程的一般式是合理的.

  【動(dòng)畫演示】

  演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.

  至此,我們的第二個(gè)問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問題其實(shí)是一個(gè)大問題的兩個(gè)方面,這個(gè)大問題揭示了直線與二元一次方程的對應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.

 。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

  略

高中數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1。理解并掌握瞬時(shí)速度的定義;

  2。會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度;

  3。理解瞬時(shí)速度的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力。

  教學(xué)重點(diǎn):

  會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度和瞬時(shí)加速度。

  教學(xué)難點(diǎn):

  理解瞬時(shí)速度和瞬時(shí)加速度的定義。

  教學(xué)過程:

  一、問題情境

  1。問題情境。

  平均速度:物體的運(yùn)動(dòng)位移與所用時(shí)間的比稱為平均速度。

  問題一平均速度反映物體在某一段時(shí)間段內(nèi)運(yùn)動(dòng)的快慢程度。那么如何刻畫物體在某一時(shí)刻運(yùn)動(dòng)的快慢程度?

  問題二跳水運(yùn)動(dòng)員從10m高跳臺(tái)騰空到入水的過程中,不同時(shí)刻的速度是不同的。假設(shè)t秒后運(yùn)動(dòng)員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時(shí)運(yùn)動(dòng)員的速度.

  2。探究活動(dòng):

  (1)計(jì)算運(yùn)動(dòng)員在2s到2.1s(t∈)內(nèi)的平均速度。

  (2)計(jì)算運(yùn)動(dòng)員在2s到(2+?t)s(t∈)內(nèi)的平均速度。

  (3)如何計(jì)算運(yùn)動(dòng)員在更短時(shí)間內(nèi)的平均速度。

  探究結(jié)論:

  時(shí)間區(qū)間

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  當(dāng)?t?0時(shí),?-13.1,

  該常數(shù)可作為運(yùn)動(dòng)員在2s時(shí)的瞬時(shí)速度。

  即t=2s時(shí),高度對于時(shí)間的瞬時(shí)變化率。

  二、建構(gòu)數(shù)學(xué)

  1。平均速度。

  設(shè)物體作直線運(yùn)動(dòng)所經(jīng)過的路程為,以為起始時(shí)刻,物體在?t時(shí)間內(nèi)的平均速度為。

  可作為物體在時(shí)刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時(shí),極限就是物體在時(shí)刻的瞬時(shí)速度。

  三、數(shù)學(xué)運(yùn)用

  例1物體作自由落體運(yùn)動(dòng),運(yùn)動(dòng)方程為,其中位移單位是m,時(shí)

  間單位是s,,求:

 。1)物體在時(shí)間區(qū)間s上的平均速度;

  (2)物體在時(shí)間區(qū)間上的平均速度;

 。3)物體在t=2s時(shí)的.瞬時(shí)速度。

  分析

  解

 。1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

 。2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

 。3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:

  例2設(shè)一輛轎車在公路上作直線運(yùn)動(dòng),假設(shè)時(shí)的速度為,

  求當(dāng)時(shí)轎車的瞬時(shí)加速度。

  解

  ∴當(dāng)?t無限趨于0時(shí),無限趨于,即=。

  練習(xí)

  課本P12—1,2。

  四、回顧小結(jié)

  問題1本節(jié)課你學(xué)到了什么?

  1理解瞬時(shí)速度和瞬時(shí)加速度的定義;

  2實(shí)際應(yīng)用問題中瞬時(shí)速度和瞬時(shí)加速度的求解;

  問題2解決瞬時(shí)速度和瞬時(shí)加速度問題需要注意什么?

  注意當(dāng)?t?0時(shí),瞬時(shí)速度和瞬時(shí)加速度的極限值。

  問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?

  2極限的思想方法。

  3特殊到一般、從具體到抽象的推理方法。

  五、課外作業(yè)

高中數(shù)學(xué)教案14

  1.教學(xué)目標(biāo)

  (1)知識(shí)目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;

  2.會(huì)由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

  (2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;

  2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;

  3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

  (3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  2.教學(xué)重點(diǎn).難點(diǎn)

  (1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

  當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的`實(shí)際問題.

  3.教學(xué)過程

  (一)創(chuàng)設(shè)情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  [引導(dǎo)] 畫圖建系

  [學(xué)生活動(dòng)]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

  解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時(shí)又如何呢?

  [學(xué)生活動(dòng)] 探究圓的方程。

  [教師預(yù)設(shè)] 方法一:坐標(biāo)法

  如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應(yīng)用舉例(鞏固提高)

  i.直接應(yīng)用(內(nèi)化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)

  (1)圓心在原點(diǎn),半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過點(diǎn) ,圓心在點(diǎn) .

  2.根據(jù)圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應(yīng)用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點(diǎn) 的切線方程.

  [學(xué)生活動(dòng)]探究方法

  [教師預(yù)設(shè)]

  方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是 ,經(jīng)過圓上一點(diǎn) 的切線的方程是: .

  iii.實(shí)際應(yīng)用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創(chuàng)設(shè)實(shí)際問題情境]

  (四)反饋訓(xùn)練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(diǎn)(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點(diǎn) 的切線方程.

高中數(shù)學(xué)教案15

  一、教學(xué)目標(biāo):

  掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

  二、教學(xué)重點(diǎn):

  向量的.性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。

  三、教學(xué)過程:

  (一)主要知識(shí):

  1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

 。ǘ├}分析:略

  四、小結(jié):

  1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問題,

  2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。

  五、作業(yè):

  略

【高中數(shù)學(xué)教案】相關(guān)文章:

高中數(shù)學(xué)教案11-25

【熱門】高中數(shù)學(xué)教案03-03

(薦)高中數(shù)學(xué)教案04-03

[通用]高中數(shù)學(xué)教案06-11

高中數(shù)學(xué)教案精選15篇01-10

高中數(shù)學(xué)教案(精選20篇)06-20

高中數(shù)學(xué)教案匯編15篇01-26

高中數(shù)學(xué)教案合集15篇02-18

高中數(shù)學(xué)教案通用[15篇]11-12