【必備】數(shù)列教學反思15篇
身為一名剛到崗的教師,我們要有一流的教學能力,我們可以把教學過程中的感悟記錄在教學反思中,那么什么樣的教學反思才是好的呢?以下是小編精心整理的數(shù)列教學反思,歡迎大家分享。
數(shù)列教學反思1
針對數(shù)列問題的考試重點及學生的薄弱環(huán)節(jié),《數(shù)列求和》的系列專題復習課《數(shù)列求和1》的教學重點放在了數(shù)列求和的前兩種重要方法:
1、公式法求和(即直接利用等差數(shù)列和等比數(shù)列的求和公式進行求和);
2、利用疊加法、疊乘法將已知數(shù)列轉化為等差數(shù)列或等比數(shù)列再行求和。
從實際教學效果看教學內容安排得符合學生實際,由淺入深,比較合理,基本達到了這節(jié)課預期的教學目標及要求。結合自我感覺、工作室評課、學生反饋,這節(jié)課比較突出的有以下幾個優(yōu)點。
1、 注重“三基”的訓練與落實
數(shù)列部分中兩種最基本最重要的數(shù)列就是等差數(shù)列和等比數(shù)列,很多數(shù)列問題包括數(shù)列求和都是圍繞這兩種特殊數(shù)列展開的,即使不能直接利用等差數(shù)列和等比數(shù)列公式求和,也可根據(jù)所給數(shù)列的不同特點,合理恰當?shù)剡x擇不同方法轉化為等差數(shù)列或等比數(shù)列再行求和。因此上課伊始做為本節(jié)課的知識必備,就要求學生強化等差數(shù)列和等比數(shù)列求和公式的記憶。其次本節(jié)課充分滲透了轉化的數(shù)學思想方法,并且通過典型例題使學生體會并掌握根據(jù)所給求和數(shù)列的.不同特點,分別采用疊加法或疊乘法將所給數(shù)列轉化為等差數(shù)列或等比數(shù)列再行求和的基本技能。
2、 例、習題的選配典型,有層次
一方面精選近年典型的高考試題、模擬題做為例、習題,使學生通過體會和掌握,達到舉一反三的目的;另一方面結合學生實際,自行編纂或改編了一些題目,或在原題基礎上降低了難度,設計出了層次,或在學生易錯的地方設置了陷阱,提醒學生留意。同時所配的課堂練習也充分注意了題目的難易梯度,把握了層次性,由具體數(shù)字運算到字母運算,由直接給出數(shù)列各項到用分段函數(shù)形式抽象表述數(shù)列,由單一方法適用到能夠一題多解等等。
3、 對學生可能出現(xiàn)的問題有預見性,并能有針對性地對癥下藥進行設計
對于直接利用公式求和的等差數(shù)列或等比數(shù)列求和問題,預見到學生的關鍵問題應該出在搞不清求和的項數(shù)上,因而在求和的項數(shù)上做了文章,有意設計了求和而非求,并且通過這兩道題特別強調了算清項數(shù)、如何算清項數(shù)等問題,抓住了學生解決這類問題的軟肋。
4、 教學過程中充分關注到了學生的反應和狀態(tài)
在解題教學中比較注意啟發(fā)引導學生,通過自然習得,從而順理成章達到水到渠成。從題目的設計到解題思路的分析都考慮到了學生的接受能力,從具體到抽象,通常是把問題擺出來、提一句、點一下,盡量不包辦代替,努力引發(fā)學生的體驗和思考,比較注重知識形成過程的教學。同時注意通過多種途徑,多種角度,一題多解解決問題,杜絕直接把結果強加給學生,使學生不知所云。
當然這節(jié)課的教學也存在著這樣那樣的不足,比較典型的有以下兩點。
1、對于基本公式的掌握仍需加強落實
部分同學公式的記憶仍成問題,本以為課上可以一帶而過,不成想主動舉手、信心滿滿、自以為可以完美表現(xiàn)的同學站起來仍然把等比數(shù)列的公式說錯了,可想而知其他同學的情況了,恐怕也不容樂觀,可見連基本公式的強化記憶都是需要老師不厭其煩加以督促的。
2、由于課堂時間容量的限制,學生們的思維活動展現(xiàn)得還不夠充分,問題也沒有完全暴露出來。
數(shù)列教學反思2
1、愛因斯坦說過:“興趣是最好的老師。”新課程的教材比以前有了更多的背景足以說明。本節(jié)也以國際象棋的故事為引例來激發(fā)學生的學習興趣,然而卻在求和公式的證明中以“我們發(fā)現(xiàn),如果用公比乘…”一筆帶過,這個“發(fā)現(xiàn)”卻不是普通學生能做到的,他們只能驚嘆于解法的神奇,而求知欲卻會因其“技巧性太大”而逐步消退。因此如何在有趣的數(shù)學文化背景下進一步拓展學生的視野,使數(shù)學知識的發(fā)生及形成更為自然,更能貼近學生的認知特征,是每一位教師研討新教材的重要切入點。
2、“課程內容的呈現(xiàn),應注意反映數(shù)學發(fā)展的規(guī)律,以及人們的認識規(guī)律,體現(xiàn)從具體到抽象、特殊到一般的原則。”“教材應注意創(chuàng)設情境,從具體實例出發(fā),展現(xiàn)數(shù)學知識的發(fā)生、發(fā)展過程,使學生能夠從中發(fā)現(xiàn)問題、提出問題,經歷數(shù)學的發(fā)現(xiàn)和創(chuàng)造過程,了解知識的來龍去脈!边@些都是《數(shù)學課程標準》對教材編寫的建議,更是對課堂教學實踐的要求。然而,在新課程的教學中,“穿新鞋走老路”仍是常見的現(xiàn)狀,“重結果的應用,輕過程的探究”或者是應試教育遺留的禍根,卻更與教材的編寫,教師對《課程標準》、教材研究的深淺有關,更與課堂教學實踐密切相關。我們也曾留足時間讓學生思考,卻沒有人能“發(fā)現(xiàn)”用“公比乘以①的兩邊”,設計“從特殊到一般”即由2,3,4,…到q,再到 ,也是對教學的'不斷實踐與探索的成果。因此,新課程教材留給教師更多發(fā)展的空間,每位教師有責任也應當深刻理會《標準》的理念,認真鉆研教材,促進《標準》及教材更加符合學生的實際。
3、先看文[1]由學生自主探究而獲得的兩種方法:
且不說初中教材已經把等比定理刪去,學生能獲得以上兩種方法并不比發(fā)現(xiàn)乘以來得容易,無奈之下,有的教師便用“欣賞”來走馬觀花地讓學生感受一下,這當然更不可取。
回到乘比錯位相減法,其實要獲得方法1并不難:可以用q乘以 ,那么是否可以在 的右邊提出一個q呢?請看:
與 比較,右邊括號中比少了一項: ,則有
以上方法僅須教師稍作暗示,學生都可完成。
對于方法2,若去掉分母有 ,與方法1是一致的。
4、在導出公式及證明中值得花這么多時間嗎?或者直接給出公式,介紹證明,可留有更多的時間供學生練習,以上過程,教師講的是不是偏多了?
如果僅僅是為了讓學生學會如何應試,誠然以上的過程將不為人所喜歡,因為按此過程,一節(jié)課也就差不多把公式給證明完,又哪來例題與練習的時間呢?
但是我們要追問:課堂應教給學生什么呢?課堂教學應從龐雜的知識中引導學生去尋找關系,挖掘書本背后的數(shù)學思想,挖掘出基于學生發(fā)展的知識體系,教學生學會思考,讓教學真正成為發(fā)展學生能力的課堂活動。因此,本課例在公式的推導及證明中舍得花大量時間,便是為了培養(yǎng)學生學會探究與學習,其價值遠遠超過了公式的應用。
數(shù)列教學反思3
在等比數(shù)列的教學中,特別是探索等比數(shù)列通項公式的環(huán)節(jié)中,教師不應簡單地給出公式讓學生機械記憶,這樣很容易讓學生思維僵化而且并沒有起到讓學生歸納類比的思想。所以在教學中通過建模活動啟發(fā)學生,引導學生從實際情境中發(fā)現(xiàn)規(guī)律,類比等差數(shù)列通項公式的獲得過程,尋求等比數(shù)列中首先,公比,項數(shù),第n項這四個量之間的關系,引導學生用迭代法及疊乘法得到等比數(shù)列的通項公式 。在教學活動中滲透了數(shù)學建模的思想。在這個活動中不斷將等差與等比的概念及方法做對比,讓學生更加清楚地了解等比數(shù)列的特征。在等比數(shù)列概念的建立及通項公式的探索過程都充滿了類比的歸納的數(shù)學思想,目的是使學生體會等差數(shù)列與等比數(shù)列的.知識的有關聯(lián)系,感受數(shù)學的整體性。
在這一節(jié)課后,一個很大的感受就是在課堂上我們要說的每一句話,要提的每一個問題,包括內容先后順序的設置都必須反復推敲,細細琢磨。語言要簡練,提出的問題要有針對性,要能啟發(fā)學生,內容的設置必須切實符合學生的認知規(guī)律。我們不僅要考慮到學生的實際水平,而且需要預先想到課堂中學生會提到的問題以及出現(xiàn)的錯誤,并及時對學生的表現(xiàn)給與充分的表揚、鼓勵以及正確的引導,F(xiàn)在的教學需要使用鼓勵教育,充分調動學生的積極性和能動性,打開學生思維。
本節(jié)課是等比數(shù)列的第一課時,注重概念的講解以及通項公式的推導和分析應用。在前面的教學中,學生已經有了等差數(shù)列的有關內容,這節(jié)課的重要思想采用類比的思想,在教師的引導下,以學生為主體完成整個課堂教學。就課堂反饋情況來看,我的引導比較到位,講解也比較透徹,重點突出,前后呼應,學生完成的比較理想,實現(xiàn)了預期的教學目標(特別是學生對等比中項和下標和的關系應用)。學生的課堂活動很積極,課堂氣氛融洽,實現(xiàn)了良好的師生互動,完成了預先的教學設計過程。板書有待改進,課件展示得當,但時間把握有點倉促。
就學生的課后反饋來看,基礎較好的學生反映課堂容量較小,也有部分同學反映練習題比較簡單,隨堂練習在層次上沒有太大差異,不能很好的滿足各個層次學生的需要,今后在習題的選擇上應多下功夫,多查閱些資料,精選細練,力求讓每個學生各有所得,都能找到適應個人實際的練習,幫助他們更好的理解當堂的基礎知識,也便于課后學生個人的復習總結。更好的實現(xiàn)課堂教學的時效性。
經過這次公開課,另外一個重要的收獲是我們備課的時候一定要認真?zhèn)浜萌S目標,特別是情感價值態(tài)度。只有帶著情感態(tài)度價值帶來備課才能從宏觀上來把握整堂課,頭腦里清楚我們將帶非學生什么東西,這樣我們的教學才會具有目標性。這堂課下來,我更多的只是注意了基礎知識和基礎技能,而忽略了帶給學生的思想上的總結。
經過四年的教學讓我認識到教學不僅是一門學問,也是一門藝術。教學需要我們在日常教學中不斷總結和探索,不斷學習,不斷研究反思,這樣才能在教學中進步和創(chuàng)新。
數(shù)列教學反思4
這節(jié)課是高二數(shù)學第七章數(shù)列的重要的內容之一,是在學習了等差、等比數(shù)列的前n項和的基礎上,對一些非等差、等比數(shù)列的求和進行探討。
。ㄒ唬⿲φn前備課的反思
首先,是備學生。學生的基礎知識薄弱,基本的分析問題、解決問題的能力欠缺、對于數(shù)學的悟性和理解能力都有待提高,因此在選擇教學內容上就考慮到了學生現(xiàn)有的認知水平。
其次,課程內容的選擇。內容是數(shù)列求和,是現(xiàn)階段學習數(shù)列部分一項很重要的內容,在高考題中經常出現(xiàn)。關于數(shù)列求和的方法有很多,常見的如倒序相加法、分組求和法、裂項相消法、錯位相減法等。在本節(jié)課主要介紹了裂項相消法和錯位相減法,其目的是讓學生先有一個經驗,就是能夠認識到一些非等差、等比數(shù)列都能轉化為等差、等比數(shù)列后再分別求和。
第三,教學呈現(xiàn)方式的定位。這是很關鍵的環(huán)節(jié),直接影響到本節(jié)課的成敗。本節(jié)課設計上一個難點就是如何設計例題。不能求全而脫離學生實際,也不能一味搞成題海戰(zhàn)術,因此結合本班學生的特點,選擇設計的題目在難度和容量上較為側重基礎,以適應學生的認知水平,使學生在教學過程中能靈活應用,思維得到提高。
(二)對課中教學的反思
這節(jié)課總體上感覺備課比較充分,各個環(huán)節(jié)相銜接,能夠形成一節(jié)完整并且系統(tǒng)的課。本節(jié)課教學過程分為導入新課、知識回顧、例題講解、變式訓練、課堂小結、布置作業(yè)。本節(jié)課總體上講對于內容的把握基本到位,對學生的定位準確,教學過程中留給學生思考的時間,以學生為主體。
。1)學生的創(chuàng)新解答
在例1求1002-992+982-972+962-952L+42-32+22-12的值問題的解決上學生觀察式子相鄰兩項之間都是平方差的形式,利用平方差公式,最后轉化成一個等差數(shù)列。但是學生出現(xiàn)了兩種做法。一種是轉化成
199+195+191+L+7+3,這樣轉化是學生最容易想到的。另一種是轉化成了
100+99+98+L+2+1,這兩種方法都是值得肯定的,特別是第二種轉化方法讓整個課堂變得活躍起來。
。2)課堂中的`偶發(fā)事件
在例2教學設計中我就曾預設到學生會從兩個角度來考慮,一種是得到50個1,另一種就是將奇數(shù)和偶數(shù)分別合并。若是第二種就可以很自然就引出另一種求和方法——分組求和法。但是一位同學的回答出乎我的意料,這種做法在我預想之外,當時我對他的陳述及時做出肯定和鼓勵,同時我的腦子在快速地反應怎樣總結他的解法,等他講完了,我首先是對他的做法給予了肯定,并且引導學生發(fā)現(xiàn)n個正偶數(shù)的和n個正奇數(shù)的和之差恰好就等于項數(shù)n。盡管能從容不慌地面對了偶發(fā)事件,但是還是略為顯得處理的粗糙了一點,對他的表述沒有概括到位。
(三)課后反思,再設計
一節(jié)課下來,我摸索出了一節(jié)課的設計要貼近學生的實際,符合他們的認知水平,按照學生的認知規(guī)律來組織教學。在課堂教學過程中,要始終把學生放在第一位,學生是學習的主體,教師充當?shù)氖且龑д。學生總會有“創(chuàng)新的火花”在閃爍,教師應當充分肯定學生在課堂上提出的一些獨特的見解,這樣不僅使學生的好方法、好思路得以推廣,而且對學生也是一種贊賞和激勵。同時,這些難能可貴的見解也是對課堂教學的補充與完善,可以拓寬教師的教學思路,提高教學水平。
數(shù)列教學反思5
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內容,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng).
在引入時我用了一個數(shù)學故事:在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結果出來后,國王大吃一驚。為什么呢?
該引入能激發(fā)學生的興趣,調動學習的積極性,懷里故事內容緊扣本節(jié)課的主題與重點。
此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥?倲(shù)。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定。
實際上,在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙.同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆。
在肯定他們的思路后,我接著問:是什么數(shù)列?有何特征?應歸結為什么數(shù)學問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學生會發(fā)現(xiàn),后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維能力的`良好契機.
經過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到。并指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
經過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心.
這時我再順勢引導學生將結論一般化,
這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)
再次追問:結合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式),這樣通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4.討論交流,延伸拓展
在此基礎上,我提出:探究等比數(shù)列前n項和公式,還有其它方法嗎?我們知道,
那么我們能否利用這個關系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?以疑導思,激發(fā)學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍。以上兩種方法都可以化歸到,這其實就是關于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發(fā)展有促進作用。
本節(jié)課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數(shù)列前n項和公式.錯位相減:變加為減,等價轉化;遞推思想:縱橫聯(lián)系,揭示本質;等比定理:回歸定義,自然樸實.學生從中深刻地領會到推導過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性.同時通過精講一題,發(fā)散一串的變式教學,使學生既鞏固了知識,又形成了技能.在此基礎上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質。
數(shù)列教學反思6
長期以來,我們的教學太過于重視結論,輕視過程。為了應付考試,為了使對公式定理應用達到所謂的“熟能生巧”,教學中不惜花大量的時間采用題海戰(zhàn)術來進行強化。在數(shù)學概念公式的教學中往往把學生強化成只會套用公式的`解題機器,這樣的學生面對新問題就束手無策。 基于以上認識,在設計這兩節(jié)課時,我所考慮的不是簡單地復習等差數(shù)列求和公式,而是讓學生自己去推導公式。學生在課堂上的主體地位得到了充分的發(fā)揮。事實上,定義推導過程就是建構知識模型、形成數(shù)學思想和方法的過程。
等差數(shù)列是高中數(shù)學研究的兩個基本數(shù)列之一。等差數(shù)列的前n項和公式則是等差數(shù)列中的一個重要公式。它前承等差數(shù)列的定義,通項公式,后啟等比數(shù)列的前 項和公式。高三最后復習階段,可千萬要重視課本知識,要注意對課本知識和例題的挖掘,如果我們能指導學生不滿足課本所給的知識,學會對課本例題的再研究和再探索,那勢必會達到事半功倍的效果。
數(shù)列教學反思7
本節(jié)課是高三一輪復習課,主要是對特殊數(shù)列求和。對于數(shù)列的復習,我覺得主要是復習好兩個方面,一個是如何求數(shù)列的通項公式,另一個是如何求解數(shù)列的前n項和。
這里的求和,對學生來說是一個難度很大的內容,因為此前學生一直是使用等差和等比數(shù)列的求和公式進行計算的,讓他們忽然去理解和掌握錯位相減和裂項相消等方法去求和,難度可想而知,所以這堂課不僅僅是復習課,而且也是一堂新課,課題是求和,學生一看就明白,但求和的對象變了,求和的方法變了。我在教學時,尊重學生的理解和掌握能力,循序漸進,不趕進度,學生要是不能掌握,那就再來一遍,特別是錯位相減法,學生知道什么樣的數(shù)列可以用錯位相減法,但算不出正確的`結果,所以課堂上在學生板演的基礎上我再歸納一下做錯位相減法的題目時要注意的地方,什么地方容易錯,什么地方要注意等,爭取在做作業(yè)時不要再犯同樣的錯誤。而且在經后的教學過程中要多培養(yǎng)學生的運算能力以及解題能力,提高他們的動手能力,思維邏輯能力和分析問題的能力,數(shù)列求和在整個數(shù)列知識中試比較綜合的內容,知識點多,方法也多,在做題時首先要思考一下該用什么方法,然后再著手,加上細心才能把題目做對,而現(xiàn)在的學生就是缺乏這點耐心和細心,總想著花最少的時間做較多的事,有時還不檢驗最后的結果,這是我們教師在教學過程中要滲透的地方,教會學生耐心、細心地做題,確保題目的正確率,在今后的教學中我會在這方面加強培養(yǎng)學生,同時在備課的時候加強培養(yǎng)學生的動手、動腦能力。
數(shù)列教學反思8
高三一輪復習,重在夯基釋疑,培養(yǎng)和提高學生運用知識、解決問題的能力。本節(jié)課以學生為主體,教師為主導,充分調動了學生的積極性。教師教態(tài)自然,親和力好,課堂氣氛融洽。教學環(huán)節(jié)的設置松弛有度,從例題入手,探索實驗,概括提煉,綜合應用,步驟層次感強,學生參與度高,老師指導有方,引導得法,學生能充分體會成功的喜悅,從而促進學生學習的興趣。
1.選題針對性強,點評到位
選材取自學生練習,針對性強,內容相對集中;從學生問題的點評答疑中,提煉結論,符合從具體到抽象的認知規(guī)律
2. 充分發(fā)揮學生學習的自主性
學生在課堂上體現(xiàn)了高度的參與和熱情。學生對于本節(jié)課的內容由于事先做好了導學案,所以有充分的思考和訓練時間,通過合作學習,進一步應用定義解決問題,學生積極主動參與復習的全過程,特別是讓學生參與歸納、整理的過程,為學生提供了充分的鍛煉機會。
3.系統(tǒng)有效的.完成教學任務
系統(tǒng)規(guī)劃復習和訓練的內容,幫助學生將所學的分散知識系統(tǒng)化。注意從學生的認識出發(fā),通過學生解題的體驗,挖掘提升數(shù)學方法和知識;注意細節(jié)和糾錯,及時反饋作業(yè)中的問題。學生錯誤得到點評糾正,學生的思維和創(chuàng)造性得到提高。
數(shù)列教學反思9
子曰:“知之者不如好之者,好之者不如樂之者。”意思是說:學習知識或本領,知道它的人不如愛好它的接受得快,愛好它的不如對其有興趣的接受得快。為了激發(fā)學生的學習熱情,實施趣味教學,我首先利用一個初中自然學科中的“細胞分裂”的問題以及銀行的一種支付利息的方式——復利(把前一期的利息和本金,再計算下一期的利息,也就是通常說的“利滾利”,其計算公式是:本金和=本金 (1+利率)存期。引入新課。然后,再由淺入深,由低到高地設置了三個層次的問題,逐步加深學生對等比數(shù)列定義及其通項公式的記憶和理解。在教學過程中,我采用了發(fā)現(xiàn)式教學法、分組討論法、類比分析法。在學生練習過程中,我以游戲搶答方式、分組競爭方式,使課堂氣氛較為活躍。針對職高學生的實際情況,我對教材的引入、例題、練習作了適當?shù)难a充和修改,增強了學生的學習興趣,也提高了課堂教學效果。在課堂上還是有少數(shù)學生參與不夠積極,回答問題比較被動,還需要加大力度調動學生的學習積極性和主動性。
教學建議:
1、從學生的提問和老師詢問中我們發(fā)現(xiàn),有的學生對“通項公式”理解還不到位,首先他們不知道通項究竟是哪一項,因此,建議老師在講解數(shù)列的概念時就可以換一種說法來解釋“通項”:例如說通項就是一個數(shù)列中“普通的項”,“一般的項”,也就是“任意的一項”。
2、公式的推導過程還是按等比數(shù)列的定義,用代入的方式一步一步推出比較好,即能緊扣“后項比前項等于常數(shù)”,結果又能令人信服。
3、學生似乎有一種定向思維:數(shù)列只能從小變到大,為改變這種思維模式,還可以增加一個公比為 的例題。
4、學生的積極性還不夠,本節(jié)課前老師準備的提問、問題思考及習題讓學生參與到課堂教學中來,充分的'體現(xiàn)了“以學生為中心”這一主題,不過在教學內容的選擇上還是有點偏少,最后一道思考題:已知一個等比數(shù)列的前4項是4,16,64,x,則x的值是多少?對大部分學生來說難度較大,學生應該難以完成,在今后的教學中還需進行適當?shù)恼{整。
6、本節(jié)課的課件較為簡單,板書比較清楚,步驟比較詳細,對于職高學生來說較為適合。
5、本堂課內容只適合基礎較差的職高學生。職業(yè)學校學生的基礎比較薄弱,每一節(jié)的教學內容要適合學生的實際情況,最好是能將解題的步驟詳細寫出來,讓學生嚴格按照步驟要求來解決問題。
數(shù)列教學反思10
本節(jié)課是學習等差數(shù)列的第一課,注重了學生基本知識和基本能力的培養(yǎng)。理解等差數(shù)列的概念,了解等差數(shù)列的通項公式推導過程,培養(yǎng)學生觀察、分析、歸納、推理的能力;通過練習,提高學生的分析問題和解決問題的能力。
本節(jié)課,學生對定義和通項公式掌握不錯,對一些基本問題能按照要求轉化為首項和公差來處理。能使用簡單的性質;對基本量之間的轉化比較靈活;課堂展示、質疑氣氛活躍。重要的一個原因是數(shù)列主要解決是數(shù)的問題,求數(shù)列的通項實質是尋找一列數(shù)所具有的'規(guī)律,這一部分與學生以前學過的找規(guī)律問題類似,因而學習起來輕松有興趣,他們也有對其進行探究的熱情,如學生用定義推導出通項公式an a1?(n 1)d nN*,培養(yǎng)了學生的推理論證能力和思維的嚴謹性。學生的解題具有一定的規(guī)范性。
本節(jié)課,我始終注重“以生為本”,打破教師獎,學生聽的傳統(tǒng)教學模式,一開始讓學生帶著問題自主學習,自己去發(fā)現(xiàn)問題;再通過合作探究,以集體的智慧去解決問題;最后教師加以引導、點評、小結,效果良好。
本節(jié)課,學生的學習積極性很高漲,但是設計教學的成面與學生的知識面還有一定的的差距不然可以使學生的學習興趣進一步高漲,在以后的教學中,除了備好教材外,還要備好學生。因為,一堂好課不是看老師講的有多好,而是看學生學得有多好。
本節(jié)課,教師有飽滿的情緒去激勵學生,感染學生,創(chuàng)設良好的課堂心理氣氛。因為輕松、愉悅的學習環(huán)境可以誘發(fā)學生的學生的學習興趣,開發(fā)學生的學習潛能,從而更好地幫助他們接受新知識,并在獲得新知識的基礎上,形成創(chuàng)造性學習能力。教師起到一個引導作用,教學有法,教無定法,相信只要我們大膽探索,勇于嘗試,課堂教學一定會更精彩!
數(shù)列教學反思11
探究式教學走進課堂為學生的學習提供了多樣化的活動方式,這里我充分利用多媒體手段,并采用了學生朗讀,小組討論合作交流并匯報成果,個別做答,集體做答,學生演板,學生說教師寫等方法,感覺學生對定義和通項公式掌握不錯,對一些基本問題,能按照要求利用等差數(shù)列的通項公式知三求一,體會方程的思想。在推導等差數(shù)列的通項公式時選用了不完全歸納法與疊加法,培養(yǎng)了學生的推理論證能力,強調了思維的嚴謹性。 不過在教學中還是存在一些不足:
1、在回答等差數(shù)列的特點時,有的同學會說“前一項與后一項的差為常數(shù)”,那么我們講數(shù)列從函數(shù)的觀點來看是當自變量從小到大的依次取值時,所對應的一列函數(shù)值,所以我們以從前往后發(fā)展的'眼光來看用“后一項與前一項的差為常數(shù)”更為妥當。
2、“如果a,A,b三個數(shù)成等差數(shù)列,這時我們稱A為a與b的等差中項”。其實A也是b與a的等差中項,即b,A, a三個數(shù)成等差數(shù)列。
靜下心來思考,在今后的教學中其實還應該注意:
1、在證明等差數(shù)列時,學生往往用有限的幾個連續(xù)兩項的差為常數(shù)就得到此數(shù)列為等差數(shù)列的結論,其實這是一種不完全的歸納,是由特殊到一般,這種方法是不嚴密的。應該用等差數(shù)列的
數(shù)學表達式來證明。怎樣用等差數(shù)列的數(shù)學表達式來證明等差數(shù)列還需要利用課堂時間進行專門訓練,因為在高考有關數(shù)列的考題中往往第一問就是用定義證明等差數(shù)列。
2、用數(shù)學建模解決實際問題時絕不是單純的幾個計算而已,一定要強調格式,解應用題,數(shù)學模型一定要交代,而且要交代清楚,平時的訓練中不能忽略這個問題,在對答案時要把文字部分反復幾遍要學生用筆記在解答過程中,這樣他們才能引起重視,以后學習解概率題時不會丟掉必要的文字敘述。
數(shù)列教學反思12
高二復習課以其龐大的容量讓奮戰(zhàn)在一線的老師們吃盡苦頭,每位老師都有課時拮據(jù)的感嘆!而資料中涉及的知識和原有內容沖突時,學生無所適從,參與探究獲得知識的機會偏少,老師傳授總顯得相當匆忙,課堂更多成了教師的表演與獨白,每當我反省學生究竟學會了那些東西時,總會汗顏;課程是按時完成了,但其有效性有多少?
該讓學生更主動積極地參與課堂教學,在探究中體驗知識的聯(lián)系,那怕一節(jié)課只學會一兩種題型的解決策略,也比滿堂灌,最終什么都沒學到強多了。而資料中涉及的知識和原有內容沖突時,學生更是無所適從,如何把資料和課本更好結合,則是我們每一位教師必須重視的。
在《數(shù)列求和》的內容中我最初設計了兩課時,講分組求和法、倒序相加法、裂項相消法,并引申出求通項公式的迭加(乘)法,乘比錯位相減法,并補充求通項公式的'待定系數(shù)法。
當我重新審視教學設計和資料時,發(fā)現(xiàn)資料中的裂項法和拆項法與我前面所講的有沖突,如何能減小沖突,且多留時間給學生思考,取得更好的效果,于是決定改變資料教學內容,裂項法是重要的求和方法,不僅滲透了化歸的重要思想,而且也是高考的熱點問題,從最簡單的題目入手,循序漸進,或者會有不可估計的收獲吧。
數(shù)列教學反思13
一、教學內容以貼近學生生活實際的具體情境為載體,學習生活中的數(shù)學。
如在棋盤中用數(shù)對表示棋子的位置、從學生非常熟悉的五子棋對弈情境引入;利用座位這一真實的情境學習排和列;應用知識解決實際問題時,拓展延伸,要求學生利用數(shù)對的相關知識解決,體現(xiàn)了數(shù)學來源于生活,又用于生活的教學理念,從而使學生體會到我們生活的周圍存在著大量的數(shù)學知識與問題,激發(fā)學生的學習興趣、促進教學活動的生成。
二、有效設計教學進程,引導學生經歷數(shù)學化的過程。
本節(jié)課中,注重了向學生充分展現(xiàn)知識形成的過程,無論是通過將“小紅坐在從左數(shù)第4列從前數(shù)第3行”簡化成用數(shù)對來表示,還是把人物圖簡化成點子圖再到方格圖,都力圖讓學生經歷數(shù)學知識、數(shù)學思想的`形成過程,從而加深學生對所學數(shù)學知識的理解;而且在這個充滿探索和自主體驗的過程中,使學生逐步學會數(shù)學的思想方法和如何用數(shù)學方法去解決問題,獲得自我成功的體驗,增強學好數(shù)學的信心。
三、創(chuàng)設了良好的課堂學習氛圍,活動形式多樣有趣。
課標中指出,數(shù)學學習的內容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,游戲的設置,向學生提供了充分的從事數(shù)學活動的機會,讓學生感受學習的興趣,樹立學好數(shù)學的信心,大大調動了學生學習的積極性,達到了從玩中學的教學設想。
數(shù)列教學反思14
在高一(5)班上好“等差數(shù)列求和公式”這一堂課后,通過和學生的互動,我對求和公式上課時遇到的幾點問題提出了一點思考.
一、對內容的理解及相應的教學設計
1.“數(shù)列前n項的和”是針對一般數(shù)列而提出的一個概念,教材在這里提出這個概念只是因為本節(jié)內容首次研究數(shù)列前n項和的問題.因此,教學設計時應注意“從等差數(shù)列中跳出來”學習這個概念,以免學生誤認為這只是等差數(shù)列的一個概念.
2.等差數(shù)列求和公式的教學重點是公式的推導過程,從“掌握公式”來解釋,應該使學生會推導公式、理解公式和運用公式解決問題.其實還不止這些,讓學生體驗推導過程中所包含的數(shù)學思想方法才是更高境界的教學追求,這一點后面再作展開.本節(jié)課在這方面有設計、有突破,但教師組織學生討論與交流的環(huán)節(jié)似乎還不夠充分,因為這個層面上的學習更側重于讓學生“悟”.
3.用公式解決問題的內容很豐富.本節(jié)課只考慮“已知等差數(shù)列,求前n項”的問題,使課堂不被大量的變式問題所困擾,而能專心將教學的重點放在公式的推導過程.這樣的.處理比較恰當.
二、求和公式中的數(shù)學思想方法
在推導等差數(shù)列求和公式的過程中,有兩種極其重要的數(shù)學思想方法.一種是從特殊到一般的探究思想方法,另一種是從一般到特殊的化歸思想方法.
從特殊到一般的探究思想方法大家都很熟悉,本節(jié)課基本按教材的設計,依次解決幾個問題。
從一般到特殊的化歸思想方法的揭示是本節(jié)課的最大成功之處.以往人們常常只注意到“倒序相加”是推導等差數(shù)列求和公式的關鍵,而忽視了對為什么要這樣做的思考.同樣是求和,與的本質區(qū)別是什么?事實上,前者是100個不相同的數(shù)求和,后者是50個相同數(shù)的求和,求和的本質區(qū)別并不在于是100個還是50個,而在于“相同的數(shù)”與“不相同的數(shù)”.相同的數(shù)求和是一個極其簡單并且在乘法中早已解決了的問題,將不“相同的數(shù)求和”(一般)化歸為“相同數(shù)的求和”(特殊),這就是推導等差數(shù)列求和公式的思想精髓.不僅如此,將一般的求和問題化歸為我們會求(特殊)的求和問題這種思想還將在以后的求和問題中反復體現(xiàn).
在等差數(shù)列求和公式的推導過程中,其實有這樣一個問題鏈:
為什么要對和式分組配對?(因為想轉化為相同數(shù)求和)
為什么要“倒序相加”?(因為可以避免項數(shù)奇偶性討論)
為什么“倒序相加”能轉化為相同數(shù)求和?(因為等差數(shù)列性質)
由此可見,“倒序相加”只是一種手段和技巧,轉化為相同數(shù)求和是解決問題的思想,等差數(shù)列自身的性質是所采取的手段能達到目的的根本原因.
三、幾點看法
1.注意挖掘基礎知識的教學內涵
對待概念、公式等內容,如果只停留在知識自身層面,那么教學常常會落入死記硬背境地.其實越是基礎的東西其所包含的思想方法往往越深刻,值得大家?guī)ьI學生去認真體驗,當然這樣的課不好上.
2.用好教材
現(xiàn)在的教材有不少好的教學設計,需要教師認真對待,反復領會教材的意圖.當然,由于教材的客觀局限性,還需要教師去處理教材.譬如本節(jié)課,課堂所呈現(xiàn)的基本上是教材的內容順序和教學設計,但面對教材所給的全部內容時,課堂能否在某個環(huán)節(jié)上停下來,能否合理地選取教材的一部分內容作為這一節(jié)課的內容,而將其他的內容留到后面的課,這就體現(xiàn)教師的認識和處理教材的水平.
3.無止境
一堂課所要追求的教學價值當然是盡量能多一些更好,但應分清主次.譬如本節(jié)課還用了幾個“實際生活問題”,意圖是明顯的,教師的提問和處理也比較恰當.課沒有最好只有更好!
數(shù)列教學反思15
一、本節(jié)課的教學設計意圖:
1、進一步促進學生數(shù)學學習方式的改善
這是等比數(shù)列的前n項和公式的第一課時,是實踐二期課改中研究型學習問題的很好材料,可以落實新課程標準倡導的“提倡積極主動,勇于探索的學習方式;強調本質,注意適度形式化”的理念,教與學的重心不只是獲取知識,而是轉到學會思考、學會學習上,教師注意培養(yǎng)學生以研究的態(tài)度和方式去認真觀察、分析數(shù)學現(xiàn)象,提出新的問題,發(fā)現(xiàn)事物的內在規(guī)律,引導學生自覺探索,進一步培養(yǎng)學生的自主學習能力。
2、落實二期課改中的三維目標,強調探究的過程和方法
“知識與技能、過程與方法、情感,態(tài)度與價值”這三維目標是“以學生的發(fā)展為本”的教育理念在二期課改中的具體體現(xiàn),本節(jié)課是數(shù)學公式教學課,所以強調學生對認知過程的經歷和體驗,重視對實際問題的理解和應用推廣,強調學生對探究過程和方法的掌握,探究過程包括發(fā)現(xiàn)和提出問題,通過觀察、抽象、概括、類比、歸納等探究方法進行實踐。
在此基礎上,根據(jù)本班學生是區(qū)重點學校學生,學習勤懇,平時好提問,敢于交流與表達自己想法,故本節(jié)課制定了如下教學目標:
。1)通過歷史典故引出等比數(shù)列求和問題,并在問題解決的過程中自主探索等比數(shù)列的前n項和公式的求法。
。2)經歷等比數(shù)列的前n項和公式的.推導過程,了解推導公式所用的方法,掌握等比數(shù)列的前n項和公式,并能進行簡單應用。
二、教材的分析和反思:
本節(jié)課是《等比數(shù)列的前n項和公式》的第一課時,之前學生已經掌握了數(shù)列的基本概念、等差與等比數(shù)列的通項公式及等差數(shù)列的前n項和公式,對于本節(jié)課所需的知識點和探究方法都有了一定的儲備,新教材內容是給出了情景問題:印度國王獎賞國際象棋發(fā)明者的故事,通過求棋盤上的麥?倲(shù)這個問題的解決,體會由多到少的錯位相減法的數(shù)學思想,并將其類比推廣到一般的等比數(shù)列的前n項和的求法,最后通過一些例題幫助學生鞏固與掌
【數(shù)列教學反思】相關文章:
數(shù)列教學反思05-18
數(shù)列教學反思03-02
數(shù)列的求和教學反思02-13
數(shù)列求和教學反思02-14
數(shù)列教學反思15篇03-02
數(shù)列的求和教學反思10篇03-15
等差數(shù)列教學反思04-09
等差數(shù)列教學反思8篇04-14
等差數(shù)列教案03-10