倍數(shù)和因數(shù)教學(xué)反思
身為一位優(yōu)秀的老師,課堂教學(xué)是重要的任務(wù)之一,我們可以把教學(xué)過(guò)程中的感悟記錄在教學(xué)反思中,優(yōu)秀的教學(xué)反思都具備一些什么特點(diǎn)呢?以下是小編收集整理的倍數(shù)和因數(shù)教學(xué)反思,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
倍數(shù)和因數(shù)教學(xué)反思1
XXXX小學(xué) XXXXX
教學(xué)內(nèi)容:教材例1、例2
教學(xué)目標(biāo)
1.知識(shí)與技能:讓學(xué)生初步理解因數(shù)和倍數(shù)的概念,掌握找因數(shù)和倍數(shù)的方法。學(xué)會(huì)用列舉法找一個(gè)數(shù)的因數(shù)和倍數(shù)。
2.過(guò)程與方法:借助直觀圖,先引導(dǎo)學(xué)生觀察后列出乘法算式,最后結(jié)合乘法算式來(lái)理解因數(shù)與倍數(shù)的概念。
3.情感、態(tài)度與價(jià)值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關(guān)系。
教學(xué)重點(diǎn):理解因數(shù)和倍數(shù)的概念。
教學(xué)難點(diǎn):掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。
教學(xué)方法:?jiǎn)l(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。
教學(xué)準(zhǔn)備:多媒體。
教學(xué)過(guò)程:
一、新課導(dǎo)入:
1.出示教材第5頁(yè)例1。
12÷2=6 9÷5=1.830÷6=5 2÷3=0.6
26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7
(1)觀察: 引導(dǎo)觀察例1中的算式,你發(fā)現(xiàn)了什么?(都是除法算式)
(2)分類(lèi):你能把上面的除法算式分類(lèi)嗎?
學(xué)生分類(lèi)后,教師組織學(xué)生交流,引導(dǎo)學(xué)生根據(jù)是否整除分為以下兩類(lèi)
第一類(lèi) 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類(lèi) 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25
2.引入課題。這節(jié)課我們就來(lái)學(xué)習(xí)有關(guān)數(shù)的整除的相關(guān)知識(shí)。(板書(shū)課題:因數(shù)和倍數(shù))
二、探索新知:
。ㄒ唬、明確因數(shù)與倍數(shù)的意義。(教學(xué)例1)
1. 教師引導(dǎo)。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒(méi)有余數(shù),我們
就說(shuō)被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。例如:12÷2=6,我們說(shuō)12是2和6的倍數(shù),2和6是12的因數(shù)。
2. 學(xué)生嘗試。
教師讓學(xué)生說(shuō)一說(shuō)第一類(lèi)的每個(gè)算式中,誰(shuí)是誰(shuí)的因數(shù)?誰(shuí)是誰(shuí)的倍數(shù)?先同桌互相說(shuō)一說(shuō),再組織全班交流。
3. 深化認(rèn)識(shí)。師:通過(guò)剛才的說(shuō)一說(shuō)活動(dòng),你發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生體會(huì):因數(shù)和倍數(shù)雖是兩個(gè)不同的概念,但又是相互依存的,二者不能單獨(dú)存在。我們不能說(shuō)誰(shuí)是因數(shù),誰(shuí)是倍數(shù),而應(yīng)該說(shuō)誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù)。例如,30÷6=5,30是6和5的倍數(shù),6和5是30的因數(shù)。教師強(qiáng)調(diào),并讓學(xué)生注意:為了方便,在研究因數(shù)和倍數(shù)的時(shí)候,我們所說(shuō)的數(shù)指的是自然數(shù)(一般不包括O)。
4. 即時(shí)練習(xí)。指導(dǎo)學(xué)生完成教材第5頁(yè)“做一做”。
小結(jié):如果a÷b =c(a,b,c均是不為0的自然數(shù)),那么a就是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的。
(二)、探索找一個(gè)數(shù)因數(shù)的方法。(教學(xué)例2)
1. 出示例2:18的因數(shù)有哪幾個(gè)?
(1) 學(xué)生獨(dú)立思考。
師:根據(jù)因數(shù)和倍數(shù)的意義,想一想18除以哪些整數(shù)的結(jié)果是整數(shù)。
18÷1=18,l和18是18的因數(shù);18÷2=9, 2和9是18的因數(shù);18÷3=6, 3和6是18的因數(shù)。引導(dǎo)學(xué)生把18的因數(shù)按從小到大的順序排列,每?jī)蓚(gè)因數(shù)之間用逗號(hào)隔開(kāi),全部寫(xiě)完后用句號(hào)結(jié)束,即18的因數(shù)有:1,2,3,6,9 ,18。
(2)小組合作交流。交流時(shí)教師要讓學(xué)生說(shuō)明找的方法,引導(dǎo)學(xué)生認(rèn)識(shí):只要想18除以哪些整數(shù)的結(jié)果是整數(shù),并且要從1開(kāi)始,一對(duì)一對(duì)地找,避免遺漏。如果學(xué)生還有其他想法,只要合理,教師都應(yīng)給予肯定。
(3)采用集合圖的方法。
教師指出也可用右面的集合圖來(lái)表示18的全部因數(shù)。明確:用圖示法表示18的因數(shù)時(shí),先畫(huà)一個(gè)橢圓,在橢圓的上面寫(xiě)上“18的因數(shù)”,再把18的因數(shù)按從小到大的順序有規(guī)律地寫(xiě)在橢圓里,每?jī)蓚(gè)因數(shù)之間也用逗號(hào)隔開(kāi),全部寫(xiě)完后不加句號(hào)。
(4)練習(xí)。讓學(xué)生找出30的因數(shù)和36的因數(shù),并組織交流。
30的因數(shù)有1,2,3,5,6,10,15,30。
36的因數(shù)有1,2,3,4,6,9,12,18,36。
三、鞏固練習(xí)
指導(dǎo)學(xué)生完成教材“練習(xí)二”第1、6題。學(xué)生獨(dú)立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。
四、課堂小結(jié)
師:通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲?
板書(shū)設(shè)計(jì):
因數(shù)和倍數(shù)
12÷2=6 12是2和6的倍數(shù)
2和6是12的因數(shù) 18的因數(shù)有1,2,3,6,9,18。
一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的。
作業(yè):教材第7頁(yè)“練習(xí)二”第2(1)題。
第二單元:因數(shù)和倍數(shù)
第二課時(shí):因數(shù)與倍數(shù)(2)
教學(xué)內(nèi)容:教材P6例3及練習(xí)二第2(1)、3~8題。
教學(xué)目標(biāo):
知識(shí)與技能:通過(guò)學(xué)習(xí),使學(xué)生能自主探究,找出求一個(gè)數(shù)的倍數(shù)的方法。 過(guò)程與方法:結(jié)合具體情境,使學(xué)生進(jìn)一步認(rèn)識(shí)自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。
情感、態(tài)度與價(jià)值觀:初步學(xué)會(huì)從數(shù)學(xué)的角度提出問(wèn)題、理解問(wèn)題,并能用所學(xué)知識(shí)解決問(wèn)題。在解決問(wèn)題的過(guò)程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系。
教學(xué)重點(diǎn):掌握求一個(gè)數(shù)的倍數(shù)的方法。
教學(xué)難點(diǎn):理解因數(shù)和倍數(shù)兩者之間的關(guān)系。
教學(xué)方法:?jiǎn)l(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。
教學(xué)準(zhǔn)備:多媒體。
教學(xué)過(guò)程:
一、復(fù)習(xí)導(dǎo)入
10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個(gè)數(shù)的?一個(gè)數(shù)的因數(shù)中,最大的是幾?最小的是幾?
二、探索新知
1.探索找倍數(shù)的方法。(教學(xué)例3)
出示例3:2的倍數(shù)有哪些?
師:你會(huì)找2的倍數(shù)嗎?給你們1分鐘的時(shí)間,看誰(shuí)寫(xiě)得又對(duì)、又快、又多!準(zhǔn)備好了嗎?開(kāi)始!
師:時(shí)間到,你寫(xiě)了多少個(gè)2的倍數(shù)?生1:15個(gè)。生2:24個(gè)。
師:大家都是用的什么方法呢?
生1:我是用乘法口訣,一二得二,二二得四……這樣寫(xiě)下去的。
生2:我也是用乘法,用2去乘1、乘2……
師:哪些同學(xué)也是用乘法做的?
師:你們都是用2去乘一個(gè)數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?
生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。
師:很好!如果給你更長(zhǎng)的.時(shí)間,你能把2的倍數(shù)全部寫(xiě)出來(lái)嗎?
師:為什么?(因?yàn)?的倍數(shù)有無(wú)數(shù)個(gè))
師:怎么辦?(用省略號(hào))
師:通過(guò)交流,你有什么發(fā)現(xiàn)?
引導(dǎo)學(xué)生初步體會(huì)2的倍數(shù)的個(gè)數(shù)是無(wú)限的。
追問(wèn):你能用集合圖表示2的倍數(shù)嗎?
學(xué)生填完后,教師組織學(xué)生進(jìn)行核對(duì)。
(4)即時(shí)練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時(shí)可能會(huì)產(chǎn)生錯(cuò)誤,教師要引導(dǎo)學(xué)生根據(jù)錯(cuò)例進(jìn)行適時(shí)剖析。
4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過(guò)程中,你有什么發(fā)現(xiàn)?
先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過(guò)全班交流,引導(dǎo)學(xué)生認(rèn)識(shí)以下三點(diǎn):
(1)一個(gè)數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。
(2)一個(gè)數(shù)的最小倍數(shù)是它本身,沒(méi)有最大倍數(shù)。
(3)一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的。
三、鞏固提升
1.指導(dǎo)學(xué)生完成教材第7~8頁(yè)“練習(xí)二”第4、5、6、7題。
學(xué)生獨(dú)立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。
集體訂正時(shí),教師著重引導(dǎo)學(xué)生認(rèn)識(shí)以下幾點(diǎn):
(1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。
(2)第5題中的第(2)小題是錯(cuò)的,因?yàn)橐粋(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無(wú)限的,第(4)小題也是錯(cuò)的,因?yàn)樵谘芯恳驍?shù)和倍數(shù)時(shí),我們所說(shuō)的數(shù)指的是自然數(shù),不含小數(shù)。
(3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。
2.利用求倍數(shù)的方法解決生活中的實(shí)際問(wèn)題
出示:媽媽買(mǎi)來(lái)幾個(gè)西瓜,2個(gè)2個(gè)地?cái)?shù),正好數(shù)完,5個(gè)5個(gè)地?cái)?shù),也正好數(shù)完。這些西瓜最少有多少個(gè)?
理解題意,分析解答。
教師提示“2個(gè)2個(gè)地?cái)?shù),正好數(shù)完,說(shuō)明西瓜的個(gè)數(shù)是2的倍數(shù),5個(gè)5
倍數(shù)和因數(shù)教學(xué)反思2
我在教學(xué)因數(shù)和倍數(shù)時(shí),我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來(lái)人教版教材比有了很大的變化,人教版教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時(shí)做了一些下的改動(dòng),讓學(xué)生用24張小正方形擺長(zhǎng)方形,然后自己用算式把擺法表示出來(lái)。這樣學(xué)生的算式就不僅限于乘法,有個(gè)別學(xué)生寫(xiě)了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因?yàn)楝F(xiàn)在我班也有個(gè)別學(xué)生在學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.
由于這節(jié)的概念較多,因此有不少是由老師直接告知的,但這并不意味著學(xué)生完全被動(dòng)的接受。如讓學(xué)生思考:你覺(jué)得4和24、6和24之間有什么關(guān)系呢?(對(duì)乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗(yàn),因此不少學(xué)生能說(shuō)出倍數(shù)關(guān)系,可能說(shuō)得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識(shí)了倍數(shù)之后,我進(jìn)行了設(shè)問(wèn):24是4的`倍數(shù),那反過(guò)來(lái)4和24是什么關(guān)系呢?盡管學(xué)生無(wú)法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會(huì)到24是4的倍數(shù),反過(guò)來(lái)4就是24的因數(shù),接下來(lái)就是6和24的關(guān)系,同學(xué)們都爭(zhēng)者要回答。
如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來(lái)說(shuō)有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫(xiě)的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問(wèn)題:
、儆檬裁捶椒ㄕ36的因數(shù)。
、谌绾握也恢貜(fù)也不遺漏。
通過(guò)在小組交流的過(guò)程中,學(xué)生與學(xué)生之間對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這比老師給予有效得多。學(xué)生就這樣輕松、愉快的學(xué)習(xí)了因數(shù)、倍數(shù)的有關(guān)知識(shí)。
倍數(shù)和因數(shù)教學(xué)反思3
《倍數(shù)和因數(shù)》這一章是人教版五年級(jí)下冊(cè)的內(nèi)容。由于這一單元概念較多,學(xué)生要掌握的知識(shí)較多,所以掌握起來(lái)較難。我上的這節(jié)復(fù)習(xí)課分以下四部分。
1、先從自然數(shù)入手,由自然數(shù)的概念讓學(xué)生總結(jié)自然數(shù)的個(gè)數(shù)是無(wú)限的,最小的自然數(shù)是0,沒(méi)有最大的自然數(shù)。又根據(jù)生活實(shí)際試著讓學(xué)生把自然數(shù)分成奇數(shù)和偶數(shù)。點(diǎn)名說(shuō)出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺(jué)。
2、由偶數(shù)都是2的倍數(shù),復(fù)習(xí)2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的.特征。學(xué)生邊復(fù)習(xí)老師邊板書(shū),由于大家共同協(xié)作,很快找出一個(gè)數(shù)的最小倍數(shù)是它本身,沒(méi)有最大的倍數(shù)。然后總結(jié)同時(shí)能被2、3整除的數(shù)就是6的倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學(xué)生隨便說(shuō)一個(gè)算式,說(shuō)明誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)”,學(xué)生列舉乘法或除法算式,準(zhǔn)確表達(dá)倍數(shù)與因數(shù)的關(guān)系,加深了學(xué)生對(duì)倍數(shù)與因數(shù)相互依存關(guān)系的理解和認(rèn)識(shí)。
3、隨便給出一個(gè)數(shù)找出它的所有因數(shù),得出一個(gè)數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個(gè)數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復(fù)習(xí)什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以?xún)?nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類(lèi)的呢?任意給出一個(gè)數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學(xué)生分解質(zhì)因數(shù)。先說(shuō)分解質(zhì)因數(shù)的方法,然后點(diǎn)名學(xué)生板演,教師巡視。指出錯(cuò)誤。
4、帶領(lǐng)學(xué)生一起做練習(xí),讓學(xué)生邊做邊說(shuō)思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習(xí)的設(shè)計(jì)不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性、趣味性。
不足之處是我缺乏個(gè)性化的語(yǔ)言評(píng)價(jià)激活學(xué)生的情感,以后需多努力。
倍數(shù)和因數(shù)教學(xué)反思4
【教學(xué)內(nèi)容】
人教版數(shù)學(xué)五年級(jí)下冊(cè)P12一14,練習(xí)二。
【教學(xué)過(guò)程】
一、操作空間,初步感知。
1.同桌用12塊完全一樣的小正方形拼成一個(gè)長(zhǎng)方形,有幾種拼法?要求:能想象的就想象,不能想象的才借助小正方形擺一擺。
2.學(xué)生動(dòng)手操作,并與同桌交流擺法。
3.請(qǐng)用算式表達(dá)你的擺法。
匯報(bào):1×12=12,2×6=12,3×4=12。
【評(píng)析】通過(guò)讓學(xué)生動(dòng)手操作、想象、表達(dá)等環(huán)節(jié),既為新知探索提供材料,又孕育求一個(gè)數(shù)的因數(shù)的思考方法。
二、探索空間,理解新知。
1.理解因數(shù)和倍數(shù)。
(1)觀察3×4=12,你能從數(shù)學(xué)的角度說(shuō)說(shuō)它們之間的關(guān)系嗎?師根據(jù)學(xué)生的表達(dá)完成以下板書(shū):3是12的因數(shù)12是3的倍數(shù)4是12的因數(shù)12是4的倍數(shù)3和4是12的因數(shù)12是3和4的倍數(shù)
(2)用因數(shù)和倍數(shù)說(shuō)說(shuō)算式1×12=12,2×6=12的關(guān)系。
(3)觀察因數(shù)和倍數(shù)的相互關(guān)系。揭示:研究因數(shù)和倍數(shù)時(shí),所指的數(shù)是整數(shù)(一般不包括O)。
2.求一個(gè)數(shù)的因數(shù)。
(1)出示2,5,12,15,36。從這些數(shù)中找一找誰(shuí)是誰(shuí)的因數(shù)。學(xué)生匯報(bào)。
師:2和12是36的因數(shù),找1個(gè)、2個(gè)不難,難就難在把36所有的因數(shù)全部找出來(lái),請(qǐng)同學(xué)們找出36的所有因數(shù)。
出示要求:
、倏瑟(dú)立完成,也可同桌合作。
、诳山柚鷦偛耪页12的所有因數(shù)的方法。
、蹖(xiě)出36的所有因數(shù)。
、芟胍幌,怎樣找才能保證既不重復(fù),又不遺漏。教師巡視,展示學(xué)生幾種答案。
生1:1,2,3,4,9,12,36。
生2:1,36,2,18,3,12,4,9,6。
生3:1,4,2,36,9,3,6,12,18。
(2)比較喜歡哪一種答案?為什么?
用什么方法找既不重復(fù)又不遺漏。(按順序一對(duì)一對(duì)找,一直找到兩個(gè)因數(shù)相差很小或相等為止)
師:有序思考更能準(zhǔn)確找出一個(gè)數(shù)的所有因數(shù)。完成板書(shū):描述式、集合式。
(3)30的因數(shù)有哪些?
【評(píng)析】學(xué)生圍繞教師出示的思考步驟,尋找36的所有因數(shù)。既留足了自主探索的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測(cè)。通過(guò)展示、比較不同的答案,發(fā)現(xiàn)了按順序一對(duì)一對(duì)找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點(diǎn)。
3.求一個(gè)數(shù)的倍數(shù)。
(1)3的倍數(shù)有:——,怎樣
有序地找,有多少個(gè)?
找一個(gè)數(shù)的倍數(shù),用1,2,3,4?分別乘這個(gè)數(shù)。 (2)練一練:6的倍數(shù)有:,40以?xún)?nèi)6的倍數(shù)有:一o
【評(píng)析】
由于有了有序思考的基礎(chǔ),求一個(gè)數(shù)的倍數(shù)水到渠成,本環(huán)節(jié)重在思考方法上的提升。
4.發(fā)現(xiàn)規(guī)律。
觀察上面幾個(gè)數(shù)的因數(shù)和倍數(shù)的例子,你對(duì)它們的最大數(shù)和最小數(shù)有什么發(fā)現(xiàn)?根據(jù)學(xué)生匯報(bào),歸納:一個(gè)數(shù)的最小因數(shù)是I,最大因數(shù)是它本身;一個(gè)數(shù)的`最小倍數(shù)是它本身,沒(méi)有最大的倍數(shù)。
【評(píng)析】
通過(guò)觀察板書(shū)上幾個(gè)數(shù)的因數(shù)和倍數(shù),放手讓學(xué)生發(fā)現(xiàn)規(guī)律,既突出了學(xué)生的主體地位,又培養(yǎng)了學(xué)生觀察、歸納的能力。三、歸納空間,內(nèi)化新知。
師生共同總結(jié):
(1)因數(shù)和倍數(shù)是相互的,不能單獨(dú)存在。
(2)找一個(gè)數(shù)的因數(shù)和倍數(shù),應(yīng)有序思考。
四、拓展空間,應(yīng)用新知。
1、15的因數(shù)有:——,15的倍數(shù)有:——。
2.判斷。
(1)6是因數(shù),24是倍數(shù)。( )
(2)3.6÷4=0.9,所以3.6是4的因數(shù)。 ( )
(3)1是1,2,3,4?的因數(shù)。 ( )
(4)一個(gè)數(shù)的最小倍數(shù)是21,這個(gè)數(shù)的因數(shù)有1,5,25。( )
3、選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識(shí)說(shuō)一句話。
4、舉座位號(hào)起立游戲。
(1)5的倍數(shù)。
(2)48的因數(shù)。
(3)既是9的倍數(shù),又是36的因數(shù)。
(4)怎樣說(shuō)一句話讓還坐著的同學(xué)全部起立。
【評(píng)析】
本環(huán)節(jié)的前3題側(cè)重于鞏固新知,后2題側(cè)重于發(fā)展思維。通過(guò)“說(shuō)一句話”和“起立游戲”,展現(xiàn)了學(xué)生的個(gè)性思維,體現(xiàn)了知識(shí)的應(yīng)用價(jià)值。
【反思】
本課教學(xué)設(shè)計(jì)重在讓學(xué)生通過(guò)自主探索,掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法,體驗(yàn)有序思考的重要性。體現(xiàn)了以下兩個(gè)特點(diǎn):一、留足空間,讓探索有質(zhì)量。
留足思維空間,才能充分調(diào)動(dòng)多種感官參與學(xué)習(xí),充分發(fā)揮知識(shí)經(jīng)驗(yàn)和生活經(jīng)驗(yàn),使探索成為知識(shí)不斷提升、思維不斷發(fā)展、情感不斷豐富的過(guò)程。第一,把教材中的飛機(jī)圖改為拼長(zhǎng)方形,讓同桌同學(xué)借助12塊完全一樣的正方形拼成一個(gè)長(zhǎng)方形。由于方法的多樣性,為不同思維的展現(xiàn)提供了空間。第二:放手讓每個(gè)同學(xué)找出36的所有因數(shù),由于個(gè)人經(jīng)驗(yàn)和思
維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個(gè)數(shù)的因數(shù)的思考方法。第三:通過(guò)觀察12,36,30的因數(shù)和3,6的倍數(shù),你發(fā)現(xiàn)了什么?由于提供了豐富的觀察對(duì)象,保證了觀察的目的性。第四:讓學(xué)生“選用4,6,8,24,1,5中的一些數(shù)字,用今天學(xué)習(xí)的知識(shí)說(shuō)一句話”。不拘形式的說(shuō)話空間,不僅體現(xiàn)了差異性教學(xué),更是體現(xiàn)了不同的人在數(shù)學(xué)上的不同發(fā)展。二、適度引導(dǎo),讓探索有方向。
引導(dǎo)與探索并不矛盾,探索前的適度引導(dǎo)正是讓探索走得更遠(yuǎn)。探索12塊完全一樣的正方形拼成一個(gè)長(zhǎng)方形,有幾種拼法?教師提示能想象的就想象,不能想象的可借助小正方形擺一擺。這樣的引導(dǎo),是尊重學(xué)生不同思維的有效引導(dǎo)。
在找36的所有因數(shù)時(shí),教師出示4條要求,既是引導(dǎo)學(xué)生思考的方向,又是提醒學(xué)生探索的任務(wù)。在讓學(xué)生觀察幾個(gè)數(shù)的因數(shù)和倍數(shù)時(shí),引導(dǎo)學(xué)生觀察最大數(shù)和最小數(shù),有什么發(fā)現(xiàn)?這樣的引導(dǎo),避免了學(xué)生的盲目觀察?梢(jiàn),適度的引導(dǎo),保證了自主探索思維的方向性和順暢性。
整堂課,學(xué)生想象豐富、思維活躍、思考有序。整個(gè)認(rèn)知過(guò)程是體驗(yàn)不斷豐富、概念不斷形成、知識(shí)不斷建構(gòu)的過(guò)程。
倍數(shù)和因數(shù)教學(xué)反思5
這個(gè)單元課時(shí)數(shù)比較多,對(duì)于學(xué)生數(shù)感的要求比較高,對(duì)于學(xué)生觀察能力,比較能力,推理能力的培養(yǎng)是個(gè)很好的訓(xùn)練。通過(guò)一個(gè)單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識(shí)點(diǎn)的學(xué)習(xí)和掌握上還存在一些問(wèn)題:
1、最大公因數(shù)和最小公倍數(shù)
教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個(gè)數(shù)的公因數(shù)(或公倍數(shù)),最后再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對(duì)于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫(xiě)結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對(duì)數(shù)的`感覺(jué)比較欠缺,特殊關(guān)系的數(shù)不容易看出來(lái),且兩個(gè)概念有時(shí)還會(huì)出現(xiàn)混淆情況,也就是對(duì)因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對(duì)找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實(shí),將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時(shí)每節(jié)課都有三到五個(gè)訓(xùn)練,并進(jìn)行專(zhuān)項(xiàng)過(guò)關(guān)。在應(yīng)用這個(gè)知識(shí)解決實(shí)際問(wèn)題時(shí),有少數(shù)后進(jìn)生比較難以理解,需要輔助圖形來(lái)分析,也需要一個(gè)時(shí)間的積淀過(guò)程。
2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)
這四個(gè)概念按照兩個(gè)不同的標(biāo)準(zhǔn)分類(lèi)所得。學(xué)生在分類(lèi)思考時(shí)對(duì)概念的理解比較清晰,但混同在一起容易出現(xiàn)概念的交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。
3、235倍數(shù)的特征
如果單獨(dú)讓學(xué)生去說(shuō)去判斷一個(gè)數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時(shí)就比較遲鈍,特別是用短除法尋找公因數(shù)時(shí),不能很快的進(jìn)行反應(yīng),數(shù)的感覺(jué)不佳。
以上是本單元學(xué)生在學(xué)習(xí)過(guò)程中的主要障礙,數(shù)感的培養(yǎng)需要一個(gè)過(guò)程,而概念的理解加深還需要平時(shí)不斷的訓(xùn)練。多給學(xué)生一點(diǎn)耐心,再堅(jiān)持一份恒心,相信學(xué)生們會(huì)有提高,會(huì)有改變。
倍數(shù)和因數(shù)教學(xué)反思6
《倍數(shù)和因數(shù)》是四下第九單元的內(nèi)容。教學(xué)時(shí),我首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長(zhǎng)方形,再讓學(xué)生寫(xiě)出不同的乘法算式,借助乘法算式引出倍數(shù)和因數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作到直觀感知,讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成倍數(shù)與因數(shù)的意義,使學(xué)生初步建立了“倍數(shù)與因數(shù)”的概念。根據(jù)算式直接說(shuō)明誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù),學(xué)生很容易接受,再通過(guò)學(xué)生自己舉例和交流,進(jìn)一步加深對(duì)倍數(shù)和因數(shù)意義的理解。從學(xué)生的反應(yīng)和課堂氣氛來(lái)看,教學(xué)效果還是不錯(cuò)的。
能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的倍數(shù)和因數(shù),是本課的教學(xué)難點(diǎn)。教學(xué)時(shí),我先讓學(xué)生自己找3的倍數(shù),匯報(bào)交流后通過(guò)對(duì)比(一種是沒(méi)有順序,一種是有序的)得出如何有序地找一個(gè)數(shù)的倍數(shù)的方法。對(duì)于倍數(shù),學(xué)生在以前的學(xué)習(xí)中已有所接觸,所以學(xué)生很容易學(xué),用的時(shí)間也比較少。
對(duì)于找一個(gè)數(shù)的因數(shù),學(xué)生最容易犯的錯(cuò)誤就是漏找,即找不全。所以在學(xué)生交流匯報(bào)時(shí),我結(jié)合學(xué)生所敘思維過(guò)程,相機(jī)引導(dǎo)并形成有條理的'板書(shū),如:36÷1=36,36÷2=18,36÷3=12,36÷4=9,36÷6=6。這樣的板書(shū)幫助學(xué)生有序的思考,形成明晰的解題思路。學(xué)生通過(guò)觀察,發(fā)現(xiàn)當(dāng)找到的兩個(gè)自然數(shù)非常接近時(shí),就不需要再找下去了。書(shū)寫(xiě)格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn)。
倍數(shù)和因數(shù)教學(xué)反思7
在上學(xué)期的白紙備課活動(dòng)中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個(gè)內(nèi)容是我沒(méi)有教過(guò)的,在看到教學(xué)內(nèi)容時(shí),我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點(diǎn)嗎?能突破重難點(diǎn)嗎?一連串問(wèn)題涌了上來(lái),最后我還是讓自己冷靜下來(lái),靜下心來(lái)認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點(diǎn),創(chuàng)設(shè)情境、設(shè)計(jì)游戲來(lái)突出重點(diǎn)、突破難點(diǎn)。在設(shè)計(jì)完教學(xué)過(guò)程后,我也與同組的老師交流了活動(dòng)體會(huì)。原來(lái)在老教材中沒(méi)有因數(shù)這個(gè)概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因?yàn)槲沂堑谝淮谓虒W(xué)這個(gè)內(nèi)容,很自然的`就沒(méi)有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭。現(xiàn)在剛好又教了這個(gè)內(nèi)容,仔細(xì)參考了教學(xué)用書(shū)我才真正領(lǐng)悟到了新教材的新穎所在。
新教材在引入因數(shù)和倍數(shù)的概念時(shí)與以往的教材有所不同。在以往的教材中,都是通過(guò)除法算式來(lái)引出整除的概念,每個(gè)除法算式對(duì)應(yīng)著一對(duì)有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實(shí)際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒(méi)有用數(shù)學(xué)化的語(yǔ)言給“整除”下定義,而是利用一個(gè)簡(jiǎn)單的實(shí)物圖(2行飛機(jī),每行6架)引出一個(gè)乘法算式2×6=12,通過(guò)這個(gè)乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過(guò)12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過(guò)12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的倍數(shù),大大簡(jiǎn)化了敘述和記憶的過(guò)程。在這兒,用一個(gè)乘法算式2×6=12可以同時(shí)說(shuō)明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)!
這樣的設(shè)計(jì)既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時(shí)盡量避免出現(xiàn)概念混淆、理解困難的問(wèn)題。學(xué)生對(duì)新知掌握較牢,在實(shí)際教學(xué)中我就是這樣處理的,學(xué)生樂(lè)學(xué),思路清晰。
倍數(shù)和因數(shù)教學(xué)反思8
體會(huì):
一、動(dòng)手實(shí)踐、合作交流是學(xué)生有效學(xué)習(xí)的重要方式
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:有效的數(shù)學(xué)學(xué)習(xí)活動(dòng),不能單純地依賴(lài)模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流,是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。
本片斷一開(kāi)始,以“用12個(gè)同樣大小的正方形,擺成一個(gè)長(zhǎng)方形”為例,讓學(xué)生動(dòng)手操作、合作交流,怎樣擺,有哪些不同的擺法?這里牛老師充分挖掘了教材,根據(jù)教材中的3種長(zhǎng)方形的擺法,教師預(yù)想到學(xué)生可能出現(xiàn)的6種操作方法,事先用課件預(yù)設(shè)好。同時(shí),教師在學(xué)生小組交流、操作后,又請(qǐng)各小組代表到黑板上演示自己的一種擺法,得到大家的認(rèn)可后,再用課件逐一呈現(xiàn)。這樣的安排,首先體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗(yàn)和動(dòng)手操作,很好的調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,同時(shí)知識(shí)的得到是從實(shí)際問(wèn)題的解決,抽象為具體討論的數(shù)學(xué)問(wèn)題。其次,這樣的安排體現(xiàn)了兩方面好處:一方面讓學(xué)生樂(lè)于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者,另一方面培養(yǎng)了學(xué)生善于觀察和傾聽(tīng)他人的想法的良好學(xué)習(xí)態(tài)度。這里的設(shè)計(jì),有效的解決了知識(shí)的傳授與理解。
二、能挖掘教材,精心設(shè)計(jì)練習(xí),達(dá)到有效的訓(xùn)練
本片斷的兩個(gè)練習(xí)。第一個(gè)練習(xí)是“請(qǐng)你做裁判”。這一組的3題突出了說(shuō)倍數(shù)和因數(shù)時(shí),強(qiáng)調(diào)誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù),同時(shí)也讓學(xué)生理解了兩個(gè)數(shù)的倍數(shù)和因數(shù)的關(guān)系。第二個(gè)練習(xí)是“請(qǐng)你說(shuō)一說(shuō)”。教師選擇了2,3,5,6,9,20這6個(gè)數(shù),讓學(xué)生選擇性的分析以上信息,運(yùn)用所學(xué)知識(shí)說(shuō)說(shuō)哪兩個(gè)數(shù)存在倍數(shù)和因數(shù)的關(guān)系。這樣的設(shè)計(jì),培養(yǎng)了學(xué)生觀察、分析問(wèn)題、口頭表達(dá)的.能力,也進(jìn)一步鞏固了倍數(shù)和因數(shù)的概念理解,接著教師又增加了“1”,讓學(xué)生再次用“1”與其它數(shù)比較,小組交流發(fā)現(xiàn)1與其它自然數(shù)的關(guān)系,學(xué)生很快總結(jié)出1是其它自然數(shù)的因數(shù),其它自然數(shù)是1的倍數(shù)。這樣的練習(xí)形式,很好的解決了本節(jié)課對(duì)于因數(shù)和倍數(shù)的概念理解,同時(shí),形式上也較多的鼓勵(lì)學(xué)生參與學(xué)習(xí)、發(fā)表自己的見(jiàn)解、小組交流等,充分調(diào)動(dòng)學(xué)生、相信學(xué)生、培養(yǎng)學(xué)生的學(xué)習(xí)能力,我覺(jué)得處理的較好。
反思:
一、教師的語(yǔ)言準(zhǔn)確性和科學(xué)性
這里需要說(shuō)明一點(diǎn),四年級(jí)國(guó)標(biāo)版教材的倍數(shù)和因數(shù),和蘇教版五年級(jí)第十冊(cè)教學(xué)的約數(shù)和倍數(shù)單元內(nèi)容相近,這里的概念也是建立在數(shù)的整除的基礎(chǔ)上,不同的是國(guó)標(biāo)版第八冊(cè)教材是用乘法的方式引入新知的學(xué)習(xí)。
牛琴老師在教學(xué)練習(xí)二時(shí),有一個(gè)學(xué)生說(shuō)出3是2的倍數(shù),2是3的因數(shù),該同學(xué)剛說(shuō)完,就有很多同學(xué)指出這種說(shuō)法的錯(cuò)誤,老師追問(wèn)錯(cuò)誤原因,有一個(gè)學(xué)生說(shuō)因?yàn)?除以2不能整除,教師也及時(shí)給出結(jié)論:因?yàn)?除以2不能除盡。這個(gè)結(jié)論顯然不準(zhǔn)確,或者說(shuō)犯了科學(xué)性的錯(cuò)誤,3除以2能除盡,但是3除以2得不到整數(shù)的商,所以3不可能被2整除,在這樣的前提下,3不是2的倍數(shù),2也不是3的因數(shù)。我覺(jué)得教師如果不自己下結(jié)論,而是讓學(xué)生結(jié)合這一問(wèn)題展開(kāi)討論、交流、對(duì)比,可能會(huì)使課堂增添一個(gè)意外的驚喜。
二、練習(xí)的設(shè)計(jì)與挖掘
1、練習(xí)一第3題:54是9的倍數(shù)。在學(xué)生判斷后,能否再展開(kāi)拓展,54還是哪些數(shù)的倍數(shù),鼓勵(lì)學(xué)生發(fā)現(xiàn)54與其它自然數(shù)的倍數(shù)關(guān)系,也為后面教學(xué)找一個(gè)數(shù)的所有因數(shù)做鋪墊。
2、練習(xí)二中,老師選擇了6個(gè)數(shù)字讓學(xué)生選擇其中的兩個(gè)數(shù)判斷倍數(shù)和因數(shù)關(guān)系,從實(shí)際情況看完成的較好,不過(guò)是否顯多了,能否去調(diào)2個(gè),這樣課的結(jié)構(gòu)會(huì)不會(huì)更緊密,課堂效果會(huì)更好呢?
當(dāng)然,我們的研究正如我們學(xué)校出版的教學(xué)片斷的書(shū)序中所說(shuō):燃一根火柴,會(huì)閃亮一點(diǎn),倘若用一根火柴點(diǎn)燃一堆篝火,定會(huì)帶來(lái)無(wú)限的精彩。希望我們的研究能給兄弟學(xué)校一定的思索,同時(shí)也希望兄弟學(xué)校能反饋給我們寶貴的建議,讓我們?cè)谡n程改革中,更加堅(jiān)定,更加執(zhí)著。
倍數(shù)和因數(shù)教學(xué)反思9
本單元的重點(diǎn)是讓學(xué)生掌握因數(shù)、倍數(shù)、質(zhì)數(shù)、合數(shù)等概念,以及它們之間的聯(lián)系和區(qū)別,內(nèi)容較為抽象,為讓學(xué)生理清各概念間的前后承接關(guān)系,達(dá)到融會(huì)貫通的程度,在學(xué)習(xí)《因數(shù)和倍數(shù)》這節(jié)課時(shí),我注意做到以下幾點(diǎn):
一、加強(qiáng)對(duì)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念。
因數(shù)和倍數(shù)是最基本的兩個(gè)概念,理解了因數(shù)和倍數(shù)的含義對(duì)于一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的、倍數(shù)的個(gè)數(shù)是無(wú)限的等結(jié)論自然也就掌握了。因此,教學(xué)時(shí),我引導(dǎo)學(xué)生觀察生活中的情景圖引出乘法算式2×6=12,讓學(xué)生在多說(shuō)中體會(huì)、理解乘法算式中兩數(shù)之間的因數(shù)與倍數(shù)的關(guān)系。學(xué)生在交流中輕松地理解了兩數(shù)之間因數(shù)與倍數(shù)之間的關(guān)系,同時(shí)引出12的所有因數(shù),讓孩子感受到用乘法算式找一個(gè)數(shù)的因數(shù)的方法,為后面學(xué)習(xí)找一個(gè)數(shù)的因數(shù)做好鋪墊。
二,引導(dǎo)孩子在自主探究中學(xué)習(xí)新知
在學(xué)習(xí)找一個(gè)數(shù)的因數(shù)時(shí),讓孩子們動(dòng)腦思考,小組合作中探究方法,孩子們想出的方法很多,充分發(fā)揮了他們智慧,然后在老師的引導(dǎo)中優(yōu)化了方法,孩子們?cè)隗w驗(yàn)中逐步掌握了方法,學(xué)得深刻,方法熟練。
三、注意培養(yǎng)學(xué)生的抽象思維能力
教學(xué)中,注重學(xué)生的動(dòng)腦思考、觀察,讓學(xué)生在自主的.探究學(xué)習(xí)中表達(dá)自己的想法,通過(guò)一些特殊的例子,引導(dǎo)學(xué)生用數(shù)學(xué)的語(yǔ)言總結(jié)概括一些概念,逐步形成從特殊到一般的歸納推理能力。
倍數(shù)和因數(shù)教學(xué)反思8
《倍數(shù)和因數(shù)》這一內(nèi)容與原來(lái)教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接認(rèn)識(shí)倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來(lái)說(shuō)是比較難掌握的內(nèi)容。首先是名稱(chēng)比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長(zhǎng)期的消化理解的過(guò)程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺(jué)得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長(zhǎng)。下面就說(shuō)說(shuō)我對(duì)本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。
比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒(méi)出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對(duì)學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過(guò)程中,自然而然的會(huì)結(jié)合自己對(duì)因數(shù)概念的理解,找到解決問(wèn)題的方法(培養(yǎng)學(xué)生對(duì)已有知識(shí)的運(yùn)用意識(shí)),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來(lái)求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。
倍數(shù)和因數(shù)教學(xué)反思10
《倍數(shù)和因數(shù)》這一內(nèi)容與原來(lái)教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接認(rèn)識(shí)倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來(lái)說(shuō)是比較難掌握的內(nèi)容。首先是名稱(chēng)比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長(zhǎng)期的消化理解的過(guò)程。
這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):
(一)操作實(shí)踐,舉例內(nèi)化,認(rèn)識(shí)倍數(shù)和因數(shù)
我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動(dòng)手操作把12個(gè)小正方形擺成不同的長(zhǎng)方形,再讓學(xué)生寫(xiě)出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識(shí)基礎(chǔ)上,從動(dòng)手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗(yàn)數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩難度,效果較好。
(二)自主探究,意義建構(gòu),找倍數(shù)和因數(shù)
整個(gè)教學(xué)過(guò)程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動(dòng)的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的'學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的意義,探索并掌握找一個(gè)數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動(dòng)口、動(dòng)手、動(dòng)腦中自主獲取知識(shí)。
新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見(jiàn),參與討論,獲得知識(shí),發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競(jìng)爭(zhēng)的意識(shí)。
找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),在教學(xué)過(guò)程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時(shí)間,最后就沒(méi)有很多的時(shí)間去練習(xí),我認(rèn)為雖然時(shí)間用的過(guò)多,但我認(rèn)為學(xué)生探索的比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來(lái)說(shuō)有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫(xiě)的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問(wèn)題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過(guò)程中,學(xué)生對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時(shí)老師再給予有效的指導(dǎo)和總結(jié)。
(三)變式拓展,實(shí)踐應(yīng)用---—促進(jìn)智能內(nèi)化
練習(xí)的設(shè)計(jì)不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動(dòng),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來(lái),學(xué)生不僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時(shí)讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。
由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動(dòng)地接受。教學(xué)之前我知道這節(jié)課時(shí)間會(huì)很緊,所以在備課的時(shí)候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時(shí)間安排的可以少一些,所以我在第一部分認(rèn)識(shí)因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時(shí)間,直接出示,實(shí)際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時(shí)運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來(lái),引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師應(yīng)該及時(shí)跟上個(gè)性化的語(yǔ)言評(píng)價(jià),激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來(lái)。
倍數(shù)和因數(shù)教學(xué)反思11
教學(xué)片斷:
1、出示12個(gè)小正方形。
師:數(shù)一數(shù),一共有幾個(gè)小正方形?如果老師請(qǐng)你把這12個(gè)同樣的小正方形拼成一個(gè)長(zhǎng)方形,會(huì)拼嗎?能不能用一條簡(jiǎn)單的乘法算式表達(dá)出來(lái)?
2、指名學(xué)生列式,提問(wèn)其他學(xué)生:“你知道他是怎么擺的嗎?”要求學(xué)生說(shuō)出每排擺幾個(gè),擺了幾排。
3、根據(jù)學(xué)生的回答,適時(shí)貼出各種不同擺法:
12×1=12
6×2=12
4×3=12
4、12個(gè)同樣大小的正方形拼成長(zhǎng)方形,能列出三道不同的乘法算式,千萬(wàn)別小看這些乘法算式,咱們今天研究的內(nèi)容就在這里。以4×3=12為例,12是4的倍數(shù),那12也是(3的倍數(shù)),4是12的因數(shù),那3也是(12的因數(shù))。同學(xué)們很有遷移的能力,這就是我們今天要研究的倍數(shù)和因數(shù)。(板書(shū)課題)
5、根據(jù)另外兩道乘法算式,說(shuō)說(shuō)誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的.因數(shù)。
6、剛才在聽(tīng)的時(shí)候發(fā)現(xiàn)12×1=12說(shuō)因數(shù)和倍數(shù)時(shí)有兩句特別拗口,是哪兩句?
說(shuō)明:雖然是拗口了點(diǎn),不過(guò)數(shù)學(xué)上還真是這么回事。12的確是12的因數(shù),12也確實(shí)是12的倍數(shù)。為了方便,我們?cè)谘芯勘稊?shù)和因數(shù)時(shí)所說(shuō)的數(shù)一般指不是0的自然數(shù)。
7、說(shuō)一說(shuō)
。1)根據(jù)72÷8=9,說(shuō)一說(shuō)哪一個(gè)數(shù)是哪一個(gè)數(shù)的倍數(shù),哪一個(gè)數(shù)是哪一個(gè)數(shù)的因數(shù)。
(2)從下面的數(shù)中任選兩個(gè)數(shù),說(shuō)一說(shuō)哪一個(gè)數(shù)是哪一個(gè)數(shù)的倍數(shù),哪一個(gè)數(shù)是哪一個(gè)數(shù)的因數(shù)。
3、5、18、20、36
反思:
陶老師從擺小正方形入手,提出“每排擺了幾個(gè)?”“擺了幾排?”這兩個(gè)問(wèn)題,引導(dǎo)學(xué)生用乘法算式把擺法表示出來(lái),再讓學(xué)生猜一猜“可能是怎么擺的”,學(xué)生充分經(jīng)歷了“由形到數(shù)、再由數(shù)到形”的過(guò)程,既為倍數(shù)和因數(shù)概念的提出積累了素材,又初步感知倍數(shù)和因數(shù)的關(guān)系,為正確理解概念提供了幫助。接著結(jié)合具體的乘法算式介紹倍數(shù)和因數(shù),并讓學(xué)生根據(jù)另外兩道乘法算式說(shuō)說(shuō)誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)。再通過(guò)除法算式讓學(xué)生說(shuō)說(shuō)誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)。最后讓學(xué)生從五個(gè)數(shù)中任選兩個(gè)數(shù)說(shuō)說(shuō)誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù),這樣層層深入,學(xué)生對(duì)倍數(shù)和因數(shù)的感受更加深刻。<
倍數(shù)和因數(shù)教學(xué)反思12
本節(jié)課的內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識(shí)(包括整數(shù)的知識(shí)、整數(shù)的四則運(yùn)算及其應(yīng)用)的基礎(chǔ)上,進(jìn)一步認(rèn)識(shí)整數(shù)的性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎(chǔ)知識(shí)。
成功之處:
1.理解分類(lèi)標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類(lèi),同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過(guò)學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類(lèi):一類(lèi)是商是整數(shù),另一類(lèi)是商是小數(shù);第二種是分為三類(lèi):一類(lèi)商是整數(shù),一類(lèi)是小數(shù),另一類(lèi)是循環(huán)小數(shù)。究竟怎樣分類(lèi)讓學(xué)生在爭(zhēng)論與交流中達(dá)成一致答案分為兩類(lèi)。然后根據(jù)第一類(lèi)情況得出倍數(shù)和因數(shù)的含義,特別強(qiáng)調(diào)的是對(duì)于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒(méi)有余數(shù)。具備了這兩個(gè)條件才能說(shuō)被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。
2.厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說(shuō)2是因數(shù),12是倍數(shù),而必須說(shuō)誰(shuí)是誰(shuí)的因數(shù),誰(shuí)是誰(shuí)的倍數(shù)。對(duì)于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的.研究范圍較之倍數(shù)范圍大一些。
不足之處:
1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。
2. 對(duì)因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來(lái)表示。
再教設(shè)計(jì):
1.根據(jù)課本的練習(xí)相應(yīng)的進(jìn)行補(bǔ)充。
2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。
倍數(shù)和因數(shù)教學(xué)反思13
《因數(shù)和倍數(shù)》是一節(jié)概念課。教學(xué)時(shí)我首先以拼圖比賽為素材,讓學(xué)生動(dòng)手操作快速把12個(gè)小正方形擺出一個(gè)長(zhǎng)方形,再讓學(xué)生用乘法算式表示出所擺的長(zhǎng)方形,在交流中得到三種不同的擺法和三種不同的乘法算式。借助乘法算式引出因數(shù)和倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,用學(xué)生已有的數(shù)學(xué)知識(shí)引出了新知識(shí),減緩了難度,這一環(huán)節(jié)的教學(xué),我覺(jué)得還是收到了預(yù)設(shè)的效果。
能不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計(jì)的:在根據(jù)1×12=12,2×6=12,3×4=12三個(gè)乘法算式說(shuō)出了誰(shuí)是誰(shuí)的因數(shù)、誰(shuí)是誰(shuí)的倍數(shù)后,我緊接著提問(wèn):12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問(wèn):你是用什么方式找到12的因數(shù)的?在學(xué)生說(shuō)出方法后,為了讓學(xué)生探索出找一個(gè)因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報(bào)時(shí),能借此解決如何有序、不重復(fù)、不遺漏地找出一個(gè)數(shù)的因數(shù)。但在實(shí)際交流時(shí),學(xué)生的方法出現(xiàn)了兩種意見(jiàn),并且各抒己見(jiàn),因?yàn)?5的因數(shù)只有兩對(duì),無(wú)論怎樣找都不會(huì)遺漏。作為老師,我這時(shí)沒(méi)有把我的意見(jiàn)強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對(duì)一對(duì)地找很快找出這兩個(gè)數(shù)的因數(shù),另一部分卻在無(wú)序的.情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個(gè)數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。雖然在這個(gè)環(huán)節(jié)上花了比較多的時(shí)間,但對(duì)學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。
最后引導(dǎo)學(xué)生歸納總結(jié)出一個(gè)數(shù)的因數(shù)的特點(diǎn)時(shí),由于及時(shí)跟上個(gè)性化的語(yǔ)言評(píng)價(jià),激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來(lái)。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個(gè)數(shù)的倍數(shù)的方法,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個(gè)數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。
由于本節(jié)課的容量比較大,練習(xí)題設(shè)計(jì)綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒(méi)有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。
倍數(shù)和因數(shù)教學(xué)反思14
我在教學(xué)時(shí)做到了以下幾點(diǎn):
(1)密切聯(lián)系生活中的數(shù)學(xué),幫助學(xué)生理解概念間的關(guān)系。
今天在教學(xué)前,我讓學(xué)生學(xué)說(shuō)話,就是培養(yǎng)學(xué)生對(duì)語(yǔ)言的概括能力和對(duì)事物間關(guān)系的理解能力。于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系,從而使學(xué)生更深一步的認(rèn)識(shí)倍數(shù)與因數(shù)的關(guān)系,
(2)改動(dòng)呈現(xiàn)倍數(shù)和因數(shù)概念的方式。
我改變了例題,用杯子翻動(dòng)的次數(shù)與杯口朝上的次數(shù)之間的關(guān)系,列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的基礎(chǔ)。這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。
(3)根據(jù)學(xué)生的實(shí)際情況,教學(xué)找一個(gè)數(shù)的因數(shù)的.方法
雖然學(xué)生不能有序地找出來(lái),但是基本能全部找到,再此基礎(chǔ)上讓體會(huì)有序找一個(gè)數(shù)因數(shù)的辦法學(xué)生容易接受,這樣的設(shè)計(jì)由易到難,由淺入深,我覺(jué)得能起到鞏固新知,發(fā)展思維的效果。
(4)設(shè)計(jì)有趣游戲活動(dòng),擴(kuò)大學(xué)生思維的空間,培養(yǎng)學(xué)生發(fā)散思維的能力。
譬如“找朋友”游戲,答案不唯一,學(xué)生思考問(wèn)題的空間很大,培養(yǎng)了學(xué)生的發(fā)散思維能力。我手里拿了5、17、38幾張數(shù)字卡片,讓學(xué)生判斷自己的學(xué)號(hào)數(shù)是哪些數(shù)的倍數(shù),是哪些數(shù)的因數(shù),,如果學(xué)生的學(xué)號(hào)數(shù)是老師出示卡片的倍數(shù)或因數(shù)就可以站起來(lái)。最后問(wèn)能不能想個(gè)辦法讓所有的學(xué)生都站起來(lái)。出示地卡片應(yīng)該是幾,找的朋友應(yīng)該是倍數(shù)還是因數(shù)?學(xué)生面對(duì)問(wèn)題積極思考,享受了數(shù)學(xué)思維的快樂(lè)
倍數(shù)和因數(shù)教學(xué)反思15
《倍數(shù)和因數(shù)》,由于之前沒(méi)上過(guò)這冊(cè)內(nèi)容,在看完教材后就和同組的老師說(shuō),這個(gè)內(nèi)容好像挺簡(jiǎn)單的。不過(guò)上完這節(jié)課后這個(gè)想法卻煙消云散,根本沒(méi)有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒(méi)有想到的問(wèn)題,下面對(duì)自己的課堂做一些反思:
1.在第一個(gè)環(huán)節(jié)認(rèn)識(shí)倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個(gè)同樣大小的小正方形擺成一個(gè)長(zhǎng)方形,并用乘法算式來(lái)表示你是怎么擺的,有幾種不同的擺法?通過(guò)讓學(xué)生動(dòng)手操作實(shí)踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識(shí)經(jīng)驗(yàn),抽象為具體討論的數(shù)學(xué)問(wèn)題。在抽象出三個(gè)不同的乘法算式后,我以第一個(gè)乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來(lái)以為說(shuō):“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡(jiǎn)單的兩句話,學(xué)生應(yīng)該會(huì)說(shuō),可是當(dāng)請(qǐng)學(xué)生來(lái)自己選擇一個(gè)乘法算式來(lái)說(shuō)一說(shuō)時(shí),好幾個(gè)學(xué)生卻被卡住了,還有的說(shuō)成了4是12的倍數(shù)。
針對(duì)學(xué)生出現(xiàn)的問(wèn)題,我覺(jué)得可能是自己在介紹時(shí)運(yùn)用的不到位,一個(gè)是比較小,后面的同學(xué)都沒(méi)能看清楚;另一方面我預(yù)想的比較簡(jiǎn)單,所以說(shuō)了一遍后也沒(méi)請(qǐng)學(xué)生再?gòu)?fù)述一遍。在說(shuō)到“誰(shuí)是誰(shuí)的倍數(shù),誰(shuí)是誰(shuí)的因數(shù)”時(shí)應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說(shuō)印象會(huì)更深刻,相信學(xué)生說(shuō)的也會(huì)比較好。
2。第二個(gè)環(huán)節(jié)是探求找一個(gè)數(shù)的倍數(shù)的方法,從上一個(gè)環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過(guò)疑問(wèn)來(lái)激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒(méi)有找全,于是再問(wèn),那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問(wèn)學(xué)生:觀察上面這幾個(gè)例子,你有什么發(fā)現(xiàn)?請(qǐng)了好幾個(gè)學(xué)生都沒(méi)能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?
針對(duì)最后請(qǐng)學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點(diǎn)這一問(wèn)題,我覺(jué)得我在設(shè)計(jì)時(shí)問(wèn)題提得太大,太籠統(tǒng)。學(xué)生聽(tīng)到問(wèn)題后可能無(wú)從下手,不知道該找什么。可以問(wèn):剛才找了2,3,5的倍數(shù),觀察這幾個(gè)數(shù)的倍數(shù),他們有什么共同特點(diǎn)?這樣學(xué)生就會(huì)比較有針對(duì)性地去尋找結(jié)果。
3。第三個(gè)環(huán)節(jié)是探求找一個(gè)數(shù)因數(shù)的方法,找一個(gè)數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),如何做到既不重復(fù)又不遺漏地找一個(gè)數(shù)的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來(lái)說(shuō)有是一定困難的,而這個(gè)環(huán)節(jié)我處理的.也不到位,學(xué)生對(duì)找一個(gè)數(shù)因數(shù)的方法掌握的不夠好。
我一開(kāi)始設(shè)計(jì)請(qǐng)學(xué)生自主找36的因數(shù),在巡視時(shí)發(fā)現(xiàn)有一部分學(xué)生沒(méi)有頭緒,無(wú)從下手,時(shí)間倒是花去了不少。所以我覺(jué)得是否可以先從12下手,因?yàn)榍懊嬉婚_(kāi)始已經(jīng)找過(guò)12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時(shí)就會(huì)好一些。
在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問(wèn)你是怎么找到的?學(xué)生說(shuō)是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實(shí)這里除了用除法來(lái)找之外,還可以用乘的方法來(lái)找,而乘的方法似乎對(duì)于學(xué)生來(lái)說(shuō)在找得時(shí)候還更簡(jiǎn)單一點(diǎn)。更重要的是我覺(jué)得一對(duì)對(duì)的找對(duì)于找全一個(gè)數(shù)的因數(shù)是一個(gè)很重要的方法,而我卻把這個(gè)方法忽略了,所以學(xué)生對(duì)于找一個(gè)數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。
4。第四個(gè)環(huán)節(jié)是鞏固練習(xí),我設(shè)計(jì)了2個(gè)小游戲。一個(gè)是看誰(shuí)反應(yīng)快,符合要求的請(qǐng)學(xué)生起立,這個(gè)游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰(shuí)的學(xué)號(hào)是幾的因數(shù),1每次都會(huì)起立,就更好的鞏固了一個(gè)數(shù)的因數(shù)最小是1。但是也有個(gè)別學(xué)生反應(yīng)比較慢。第二個(gè)小游戲是猜一猜老師的手機(jī)號(hào)碼是多少?但是由于前面時(shí)間用的比較多,所以沒(méi)來(lái)得及做。
原本認(rèn)為簡(jiǎn)單的課卻一點(diǎn)都不簡(jiǎn)單,每個(gè)細(xì)小環(huán)節(jié)的把握都要求我去仔細(xì)的鉆研教材,設(shè)計(jì)好每一步,這樣才能上好一節(jié)課。
【倍數(shù)和因數(shù)教學(xué)反思】相關(guān)文章:
因數(shù)和倍數(shù)的教學(xué)反思02-21
《倍數(shù)和因數(shù)》教學(xué)反思02-17
《因數(shù)和倍數(shù)》教學(xué)反思02-06
倍數(shù)和因數(shù)教學(xué)反思(精選15篇)05-24
倍數(shù)和因數(shù)教學(xué)反思15篇02-28