當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)知識點總結(jié)

初中數(shù)學(xué)知識點總結(jié)

時間:2024-05-24 14:01:01 初中數(shù)學(xué)

(必備)初中數(shù)學(xué)知識點總結(jié)15篇

  總結(jié)是對取得的成績、存在的問題及得到的經(jīng)驗和教訓(xùn)等方面情況進行評價與描述的一種書面材料,寫總結(jié)有利于我們學(xué)習(xí)和工作能力的提高,因此十分有必須要寫一份總結(jié)哦?偨Y(jié)一般是怎么寫的呢?以下是小編幫大家整理的初中數(shù)學(xué)知識點總結(jié),僅供參考,歡迎大家閱讀。

(必備)初中數(shù)學(xué)知識點總結(jié)15篇

初中數(shù)學(xué)知識點總結(jié)1

  一、基本知識

  ㈠、數(shù)與代數(shù)A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):

 、僬麛(shù)→正整數(shù)/0/負整數(shù)

 、诜謹(shù)→正分數(shù)/負分數(shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方

  向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的

  絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:

  加法:

 、偻栂嗉樱∠嗤姆,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。

 、谌魏螖(shù)與0相乘得0。

  ③乘積為1的兩個有理數(shù)互為倒數(shù)。除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。2、實數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

 、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

  ②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。

  ②把同類項合并成一項就叫做合并同類項。

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

  ②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算:AM+AN=A(M+N)

 。ˋM)N=AMN

  (A/B)N=AN/BN除法一樣。

  整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作

  為積的因式。

 、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則

  連同他的指數(shù)一起作為商的一個因式。

  ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組

  一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的`方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解(2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的

  形式去解(3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

  也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:

  I當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根;II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;

  III當(dāng)△B,A+C>B+C在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時,則經(jīng)124象限;當(dāng)K〉0,B〈0時,則經(jīng)134象限;當(dāng)K〉0,B〉0時,則經(jīng)123象限。

 、墚(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。

  ㈡空間與圖形A、圖形的認識1、點,線,面

  點,線,面:①圖形是由點,線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。

  展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相

  等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形;、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  2、角

  線:①線段有兩個端點。

  ②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。

  比較長短:①兩點之間的所有連線中,線段最短。

 、趦牲c之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。

  角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。

  ②一條射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。

 、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出

  現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線2、兩點之間線段最短

  3、同角或等角的補角相等4、同角或等角的余角相等

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內(nèi)錯角相等,兩直線平行11、同旁內(nèi)角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內(nèi)錯角相等14、兩直線平行,同旁內(nèi)角互補

  15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18、推論1直角三角形的兩個銳角互余

  19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21、全等三角形的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27、定理1在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個角都等于60°

  34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1三個角都相等的三角形是等邊三角形

  36、推論2有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半

  5

  39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形48、定理四邊形的內(nèi)角和等于360°49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1平行四邊形的對角相等53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個角都是直角61、矩形性質(zhì)定理2矩形的對角線相等

  62、矩形判定定理1有三個角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等

  65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71、定理1關(guān)于中心對稱的兩個圖形是全等的

  72、定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),

  那么(a+c++m)/(b+d++n)=a/b

  86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97、性質(zhì)定理2相似三角形周長的比等于相似比

  98、性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103、圓的外部可以看作是圓心的距離大于半徑的點的集合104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點確定一個圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116、定理一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120、定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑

  124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理弦切角等于它所夾的弧對的圓周角

  129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130、相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)

  ④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  一、常用數(shù)學(xué)公式

  公式分類公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|

  |a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式

  b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根

  b2-4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴謹。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法

  在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。10、客觀性題的解題方法

  選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復(fù)蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

 。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

  (2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。

 。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

 。4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

 。5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

 。6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。

初中數(shù)學(xué)知識點總結(jié)2

  知識點總結(jié)

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

 。1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補,對角相等;

  (3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:

  第一類:與四邊形的對邊有關(guān)

 。1)兩組對邊分別平行的四邊形是平行四邊形;

 。2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的`對角有關(guān)

 。4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對角線有關(guān)

 。5)對角線互相平分的四邊形是平行四邊形

  常見考法

 。1)利用平行四邊形的性質(zhì),求角度、線段長、周長;

  (2)求平行四邊形某邊的取值范圍;

  (3)考查一些綜合計算問題;

  (4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;

 。5)利用判定定理證明四邊形是平行四邊形。

  誤區(qū)提醒

 。1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯記成對角線相等;

 。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。

初中數(shù)學(xué)知識點總結(jié)3

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  正割(sec):斜邊比鄰邊,即secA=c/b;

  余割(csc):斜邊比對邊,即cscA=c/a。

  三角函數(shù)關(guān)系

  1、互余角的關(guān)系

  sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。

  2、平方關(guān)系

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  兩角和差公式

  sin(A+B)= sinAcosB+cosAsinB

  sin(A—B)= sinAcosB—cosAsinB

  cos(A+B)= cosAcosB—sinAsinB

  cos(A—B)= cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)

  tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  cot(A+B)=(cotAcotB—1)/(cotB+cotA)

  cot(A—B)=(cotAcotB+1)/(cotB—cotA)

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。

  3、圓是以圓心為對稱中心的中心對稱圖形。

  4、圓是定點的距離等于定長的點的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合。

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合。

  7、同圓或等圓的半徑相等。

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11、定理圓的'內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角。

  13、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。

  14、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑。

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點。

初中數(shù)學(xué)知識點總結(jié)4

  初中數(shù)學(xué)的學(xué)科地位很高,一直以來是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。

  圓心角

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  推理過程

  根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時,顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點a與a'重合,b與b'重合。

  因此,弧ab與弧a'b'重合,ab與a'b'重合。即

  弧ab=弧a'b',ab=a'b'。

  則得到上面定理。

  同樣還可以得到:

  在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的'弧相等,所對的弦心距也相等。

  所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應(yīng)的其余各組量也相等。

  圓的圓心角知識要領(lǐng)很容易掌握,經(jīng)常會出現(xiàn)在關(guān)于圓的證明題中。

初中數(shù)學(xué)知識點總結(jié)5

  1、重心的定義:

  平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。

  2、幾種幾何圖形的重心:

  ⑴線段的重心就是線段的中點;

  ⑵平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;

 、侨切蔚娜龡l中線交于一點,這一點就是三角形的重心;

 、热我舛噙呅味加兄匦模远噙呅蔚娜我鈨蓚頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。

  提示:⑴無論幾何圖形的形狀如何,重心都有且只有一個;

  ⑵從物理學(xué)角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的'力矩相同。

  3、常見圖形重心的性質(zhì):

  ⑴線段的重心把線段分為兩等份;

 、破叫兴倪呅蔚闹匦陌褜蔷分為兩等份;

 、侨切蔚闹匦陌阎芯分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。

  上面對重心知識點的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識。

  ①直線和圓無公共點,稱相離。 AB與圓O相離,d>r。

  ②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d

  ③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)

  平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:

  1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程

  如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。

  如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。

  2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1

  當(dāng)x=-C/Ax2時,直線與圓相離;

初中數(shù)學(xué)知識點總結(jié)6

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

  就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個圓叫同心圓。

  能夠重合的兩個圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點的圓

  l、過三點的圓

  過三點的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個點確定一個圓。

  經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個步驟:

  ①假設(shè)命題的結(jié)論不成立;

 、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;

 、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個角是鈍角。

  證明:設(shè)有兩個以上是鈍角

  則兩個鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個以上是鈍角。

  即最多只能有一個是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱中心的中心對稱圖形。

  實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

  頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。

  五、圓周角

  頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  由于以上的`定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  六、圓的判定性質(zhì)

  1.不在同一直線上的三點確定一個圓。

  2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2 圓的兩條平行弦所夾的弧相等

  3.圓是以圓心為對稱中心的中心對稱圖形

  4.圓是定點的距離等于定長的點的集合

  5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6.圓的外部可以看作是圓心的距離大于半徑的點的集合

  7.同圓或等圓的半徑相等

  8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等

  10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角

  12.①直線L和⊙O相交 d

 、谥本L和⊙O相切 d=r

 、壑本L和⊙O相離 dr

  13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑

  15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角

  18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角

  19.如果兩個圓相切,那么切點一定在連心線上

  20.①兩圓外離 dR+r ②兩圓外切 d=R+r

  ③.兩圓相交 R-rr)

 、.兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)

初中數(shù)學(xué)知識點總結(jié)7

  一、平移變換:

  1。概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

  2。性質(zhì):(1)平移前后圖形全等;

 。2)對應(yīng)點連線平行或在同一直線上且相等。

  3。平移的作圖步驟和方法:

 。1)分清題目要求,確定平移的方向和平移的距離;

  (2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點;

 。3)沿一定的方向,按一定的距離平移各個關(guān)健點;

 。4)連接所作的各個關(guān)鍵點,并標上相應(yīng)的字母;

 。5)寫出結(jié)論。

  二、旋轉(zhuǎn)變換:

  1。概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。

  說明:

  (1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

 。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。

 。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

  (4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

  2。性質(zhì):

  (1)對應(yīng)點到旋轉(zhuǎn)中心的.距離相等;

  (2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

 。3)旋轉(zhuǎn)前、后的圖形全等。

  3。旋轉(zhuǎn)作圖的步驟和方法:

 。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

 。2)找出圖形的關(guān)鍵點;

 。3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;

 。4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形。

  說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

  常見考法

  (1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

 。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計一些題目。

  誤區(qū)提醒

 。1)弄反了坐標平移的上加下減,左減右加的規(guī)律;

 。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

初中數(shù)學(xué)知識點總結(jié)8

  課題

  3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

  教學(xué)目標

  1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會用待定系數(shù)法確定函數(shù)的解析式

  教學(xué)重點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學(xué)難點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學(xué)方法

  講練結(jié)合法

  教學(xué)過程

 。↖)知識要點(見下表:)

  第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數(shù),在,-單調(diào)性k0時,在,0,k0時為增函數(shù)0,上為減函數(shù)k0時,為增函數(shù)b上為減函數(shù)2ak0時為減函數(shù)k0時,在,0,k0時,為減函數(shù)0,上為增函數(shù)ba0時,在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時奇函數(shù)b=0時偶函數(shù)a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax

  第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)

  2a2a4a2拋物線與x軸交點坐標(m,0),(n,0)(II)例題講解

  例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的頂點為P(1,5)且過點Q(3,3)

 。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,

  解:(1)設(shè)yax2bxc(a0),將A、B、C三點坐標分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點坐標代入,即a(31)253,得

  a2,故y2(x1)252x24x3

 。3)∵拋物線對稱軸為x2;

  ∴拋物線與x軸的兩個交點A、B應(yīng)關(guān)于x2對稱;∴由題設(shè)條件可得兩個交點坐標分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

  ∴所求二次函數(shù)為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數(shù)的.圖像過點(0,8),(1,(4,0)

 。1)求函數(shù)圖像的頂點坐標、對稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

  113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x

  224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時,函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

初中數(shù)學(xué)知識點總結(jié)9

  1、正數(shù)和負數(shù)的有關(guān)概念

  (1)正數(shù):

  比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負數(shù)的點在原點的左側(cè)。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和。

  (2)符號相反的兩數(shù)相加:當(dāng)兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當(dāng)兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零。

  (3)一個數(shù)同零相加,仍得這個數(shù)。

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫。

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和!

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為0時,積的符號由負因數(shù)的個數(shù)確定:當(dāng)負因數(shù)有奇數(shù)個時,積為負;

  當(dāng)負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的`倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

  初中數(shù)學(xué)知識點總結(jié)2平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:

  ①在同一平面

 、趦蓷l數(shù)軸

  ③互相垂直

 、茉c重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向。

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標系的構(gòu)成。

  對于平面直角坐標系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標系的構(gòu)成。

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

初中數(shù)學(xué)知識點總結(jié)10

  一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強。甚至有存在探究題目出現(xiàn)。

  主要考察內(nèi)容:

 、贂嬕淮魏瘮(shù)的圖像,并掌握其性質(zhì)。

 、跁鶕(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。

  ③能用一次函數(shù)解決實際問題。

 、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。

  突破方法:

 、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。

  ②運用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。

 、壅莆沼么ㄏ禂(shù)法球一次函數(shù)解析式。

 、茏鲆恍┚C合題的訓(xùn)練,提高分析問題的能力。

  函數(shù)性質(zhì):

  1.y的變化值與對應(yīng)的x的`變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。

  2.當(dāng)x=0時,b為函數(shù)在y軸上的點,坐標為(0,b)。

  3當(dāng)b=0時(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

  4.在兩個一次函數(shù)表達式中:

  當(dāng)兩一次函數(shù)表達式中的k相同,b也相同時,兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達式中的k相同,b不相同時,兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達式中的k不相同,b不相同時,兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達式中的k不相同,b相同時,兩一次函數(shù)圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)

  1、作法與圖形:通過如下3個步驟:

 。1)列表.

 。2)描點;[一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。

  正比例函數(shù)y=kx(k≠0)的圖象是過坐標原點的一條直線,一般。0,0)和(1,k)兩點。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點,并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點分別是-k分之b與0,0與b).

  2、性質(zhì):

 。1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。

  (2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點。

  3、函數(shù)不是數(shù),它是指某一變化過程中兩個變量之間的關(guān)系。

  4、k,b與函數(shù)圖像所在象限:

  y=kx時(即b等于0,y與x成正比例):

  當(dāng)k>0時,直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b

初中數(shù)學(xué)知識點總結(jié)11

  關(guān)鍵詞:初一數(shù)學(xué);基礎(chǔ)知識;教學(xué)策略

  初中數(shù)學(xué)是一個整體,相對而言,初一數(shù)學(xué)知識點很多,注重基礎(chǔ),初一數(shù)學(xué)是對學(xué)數(shù)學(xué)的適當(dāng)深入,也為后續(xù)的學(xué)習(xí)打下良好的基礎(chǔ)。在初一數(shù)學(xué)的教學(xué)中,注重學(xué)生基礎(chǔ)知識的掌握是非常必要的。如今的現(xiàn)狀是,剛?cè)氤踔械膶W(xué)生并沒有對打好數(shù)學(xué)基礎(chǔ)有足夠的重視。一些學(xué)生剛進入初中,在數(shù)學(xué)學(xué)習(xí)中感受不到壓力,沒有投入足夠的精力,因而漸漸地就積累了很多關(guān)于基礎(chǔ)知識的小問題,這些小問題在學(xué)生進入后續(xù)的學(xué)習(xí)中,慢慢就越來越多,形成大問題,大問題漸漸就會凸顯出來,學(xué)生漸漸就會感到力不從心。下面就針對初一學(xué)生學(xué)習(xí)中的問題,具體談?wù)勅绾未蚝贸跻粩?shù)學(xué)的基礎(chǔ)。

  一、打好初一數(shù)學(xué)基礎(chǔ)的重要性

  進入中學(xué),學(xué)生的科目增加,內(nèi)容拓展,知識深入,數(shù)學(xué)這門學(xué)科由具體到抽象,從文字發(fā)展成了符號,從靜態(tài)逐漸發(fā)展成了動態(tài)。初一數(shù)學(xué)學(xué)習(xí)是很重要的一年,能夠讓學(xué)生感受到初中數(shù)學(xué)與小學(xué)的不同,并能感受到數(shù)學(xué)學(xué)習(xí)帶來的快樂,然而,一些學(xué)生對數(shù)學(xué)產(chǎn)生厭惡情緒也大都是從初中開始的,由于基礎(chǔ)沒打好對數(shù)學(xué)產(chǎn)生厭惡是很多學(xué)生的通病;A(chǔ)知識是進行深入學(xué)習(xí)的根基,它為數(shù)學(xué)學(xué)習(xí)的深入做鋪墊,然而基礎(chǔ)知識卻并沒有得到初一學(xué)生應(yīng)有的足夠重視。初中的數(shù)學(xué)知識相對小學(xué)來說,已有了很大的深入,如果初一的基礎(chǔ)知識沒有打好,學(xué)生會漸漸感到吃力,從而跟不上教學(xué)步伐,導(dǎo)致產(chǎn)生厭學(xué)情緒。不利于學(xué)生的發(fā)展。因此,教師在教學(xué)中必須注重初一學(xué)生基礎(chǔ)知識的培養(yǎng),并使學(xué)生認識到打好基礎(chǔ)知識的重要性。

  二、初一數(shù)學(xué)學(xué)習(xí)中常出現(xiàn)的問題

  1、知識點理解不透徹

  初一學(xué)生剛?cè)氤踔,依然保留著小學(xué)生的一些習(xí)慣,愛玩并且厭煩課本上的基礎(chǔ)知識點。對知識點的理解停留在一知半解的.層次上。并且,學(xué)生并沒有對基礎(chǔ)知識有足夠的重視,沒有認識到基礎(chǔ)知識的重要性,從而導(dǎo)致基礎(chǔ)知識越來越差,產(chǎn)生對數(shù)學(xué)的厭煩,進入惡性循環(huán)。

  2、解答題目小錯誤多,無法完整地解決問題

  學(xué)生由于不重視基礎(chǔ),導(dǎo)致一些題目無法完整地進行解決,無論簡單的題型還是難的題型,都是建立在基礎(chǔ)知識點上的。學(xué)生的問題是無法把握其中的基礎(chǔ)技巧,忽視基礎(chǔ)知識,始終不能完整地解決問題。

  3、沒有養(yǎng)成歸納總結(jié)的好習(xí)慣

  學(xué)生在平時的練習(xí)中會有許多解錯的題型和忽視了的知識點,然而大都都是錯了就錯了,并沒有進行歸納總結(jié),導(dǎo)致對錯誤的題型沒有進行反思,從而一錯再錯。對一些基礎(chǔ)知識點,也沒有進行很好的歸納,腦海里沒有一個系統(tǒng)的基礎(chǔ)知識網(wǎng)。

  三、打好學(xué)生數(shù)學(xué)基礎(chǔ)的策略

  1、明確教學(xué)目標,突出重點

  每一堂課的教學(xué),都有它的重點內(nèi)容,每一堂課,作為教師,首先都需要明確這堂課的教學(xué)目標,并要突出重點,讓學(xué)生對這堂課所學(xué)的知識點有一個清晰的輪廓。教師可以在黑板的一角把重點內(nèi)容簡短地寫出來,并保持一節(jié)課,引起學(xué)生的關(guān)注和重視。教師要通過不斷強調(diào)和引用,使學(xué)生對重點知識點留下深刻的印象,并可以出一個引用了重點知識的題目讓學(xué)生解答。例如,學(xué)習(xí)《數(shù)軸》這一節(jié)時,教師可先對重點基礎(chǔ)知識點進行講解,讓學(xué)生了解數(shù)軸的基本定義,在腦海里留下一個概念,再讓學(xué)生上講臺到黑板上按要求畫下來。畫完后,讓學(xué)生自己做必要的講解,比如畫數(shù)軸的三要素原點、正方向、單位長度。這樣,學(xué)生對數(shù)軸的基礎(chǔ)知識點就會有一個深刻的印象。

  2、精講例題,多做課堂練習(xí)

  針對基礎(chǔ)知識,教師可在課堂上多設(shè)置一些例題,使學(xué)生能夠把基礎(chǔ)知識應(yīng)用到題目中去解答,從而認識到基礎(chǔ)知識的重要性。教師要精選例題,按照這節(jié)課的重點基礎(chǔ)內(nèi)容進行選題,從結(jié)構(gòu)特征、思維方式等各個方面進行對題型的剖析,從而讓學(xué)生在解題的基礎(chǔ)之上掌握基礎(chǔ)知識的關(guān)鍵。知識點講得再多也是抽象空洞的,只有與題目進行結(jié)合,讓學(xué)生靈活運用,才能夠使學(xué)生對知識點有一個深刻的理解。課堂上需根據(jù)實際情況布置課堂練習(xí),練習(xí)量針對知識點的難易程度可多可少,重要的是要讓學(xué)生有一個思考解答的過程。教師可讓學(xué)生自主進行解答,若解答不出教師則做必要的指點進行幫助,并且要鼓勵學(xué)生不懂就要問。還可以讓學(xué)生共同討論一些難點問題,促進學(xué)生勤學(xué)好問的習(xí)慣培養(yǎng)。

  3、形象教學(xué),變抽象為具體

  教師在實際課堂教學(xué)中,可以運用很多種教學(xué)方式,每一堂課都有其教學(xué)目標,教學(xué)需根據(jù)教學(xué)內(nèi)容的變化選擇適當(dāng)?shù)慕虒W(xué)方式,形象教學(xué)是很重要并且很有效的教學(xué)方式。例如,進行幾何的教學(xué),教師可以進行具體演示,向?qū)W生展示幾何模型,運用幾何模型來驗證幾何結(jié)論。

  4、讓學(xué)生收集題目,制作錯題集

  基礎(chǔ)是在無數(shù)次練習(xí)的基礎(chǔ)之上總結(jié)出來的,做題如同挖金礦,對待錯題就如同對待發(fā)掘冶煉金礦一樣。學(xué)生在做題時,會遇到很多難題和易錯題,對于做錯了的題目,學(xué)生看看就丟到一邊,是沒有起到練習(xí)應(yīng)有的效果的。教師要促使學(xué)生制作一個錯題集,專門收集自己做錯或者不會做的題目,讓學(xué)生自己分析做錯的原因,為什么會做錯,下次如何避免,學(xué)生在總結(jié)反思的過程中,自然而然就對知識進行了一次梳理。例如,用科學(xué)計數(shù)法計數(shù)是學(xué)生經(jīng)常容易犯錯的知識點,學(xué)生的粗心導(dǎo)致很簡單的問題經(jīng)常犯錯,通過錯題集,學(xué)生收集表示錯的科學(xué)計數(shù)法,不斷總結(jié)、強化,從而做到更細心。

  初一數(shù)學(xué)學(xué)習(xí)對剛進入初中的學(xué)生來說是非常重要的,其既是對小學(xué)數(shù)學(xué)知識的必要深入,也為后續(xù)更深層次的學(xué)習(xí)打下關(guān)鍵的基礎(chǔ)。然而,初一學(xué)生往往并沒有認識到進入初中打好數(shù)學(xué)基礎(chǔ)的重要性。本文針對學(xué)好初一數(shù)學(xué)的重要性和初一數(shù)學(xué)學(xué)習(xí)面臨的一些問題進行了具體討論,最后總結(jié)出提高學(xué)生數(shù)學(xué)基礎(chǔ)知識的幾條教學(xué)策略,給以后的數(shù)學(xué)教學(xué)提供參考。

  參考文獻:

  [1]吳遠,學(xué)生數(shù)學(xué)自主能力的培養(yǎng)[J]。巨人教學(xué)資源,20xx。

初中數(shù)學(xué)知識點總結(jié)12

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對邊相等且平行

  (2)平行四邊形的對角相等,鄰角互補

  (3)平行四邊形的對角線互相平分

  3、判定:

  (1)兩組對邊分別平行的四邊形是平行四邊形

  (2)兩組對邊分別相等的四邊形是平行四邊形

  (3)一組對邊平行且相等的四邊形是平行四邊形

  (4)兩組對角分別相等的四邊形是平行四邊形

  (5)對角線互相平分的四邊形是平行四邊形

  4、對稱性:平行四邊形是中心對稱圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個角都是直角,矩形的對角線相等

  3、判定:

  (1)有一個角是直角的平行四邊形叫做矩形

  (2)有三個角是直角的四邊形是矩形

  (3)兩條對角線相等的平行四邊形是矩形

  4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對角線互相垂直,并且每一條對角線平分一組對角

  (3)菱形被兩條對角線分成四個全等的直角xxx

  (4)菱形的面積等于兩條對角線長的積的一半

  2、s菱=爭6(n、6分別為對角線長)

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對角線互相垂直的平行四邊形是菱形

  4、對稱性:菱形是軸對稱圖形也是中心對稱圖形

  四、正方形定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形

  2、性質(zhì):

  (1)正方形四個角都是直角,四條邊都相等

  (2)正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  (3)正方形的一條對角線把正方形分成兩個全等的等腰直角xxx

  (4)正方形的對角線與邊的夾角是45°

  (5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角xxx

  3、判定:

  (1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個四邊形是菱形,再判定出有一個角是直角

  4、對稱性:正方形是軸對稱圖形也是中心對稱圖形

  五、梯形的定義、等腰梯形的性質(zhì)及判定

  1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形

  4、對稱性:等腰梯形是軸對稱圖形

  六、xxx的中位線平行于xxx的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

  七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;xxx的重心是三條中線的交點。

  八、依次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形。

  九、多邊形

  1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

  4、多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

  5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

  6、正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質(zhì)

  多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個內(nèi)角與它相鄰的外角是鄰補角,所以n邊形內(nèi)角和加外角和等于n·180°

  10、多邊形對角線的條數(shù):

  (1)從n邊形的一個頂點出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個xxx

  (2)n邊形共有n(n-3)/2條對角線

  圓知識點、概念總結(jié)

  1、不在同一直線上的三點確定一個圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對稱中心的中心對稱圖形

  4、圓是定點的距離等于定長的'點的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點的集合

  7、同圓或等圓的半徑相等

  8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  12、①直線L和⊙O相交d

  ②直線L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑

  15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角

  19、如果兩個圓相切,那么切點一定在連心線上

  20、①兩圓外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交R-rr)

  ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  (2)經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  23、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  24、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角xxx

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  27、正xxx面積√3a/4a表示邊長

  28、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長計算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  32、定理:一條弧所對的圓周角等于它所對的圓心角的一半

  33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  35、弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

  第二章整式的加減

  2、1整式

  1、單項式:由數(shù)字和字母乘積組成的式子。系數(shù),單項式的次數(shù)、單項式指的是數(shù)或字母的積的代數(shù)式、單獨一個數(shù)或一個字母也是單項式、因此,判斷代數(shù)式是否是單項式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運算關(guān)系,其也不是單項式、

  2、單項式的系數(shù):是指單項式中的數(shù)字因數(shù);

  3、單項數(shù)的次數(shù):是指單項式中所有字母的指數(shù)的和、

  4、多項式:幾個單項式的和。判斷代數(shù)式是否是多項式,關(guān)鍵要看代數(shù)式中的每一項是否是單項式、每個單項式稱項,常數(shù)項,多項式的次數(shù)就是多項式中次數(shù)的次數(shù)。多項式的次數(shù)是指多項式里次數(shù)項的次數(shù),這里是次數(shù)項,其次數(shù)是6;多項式的項是指在多項式中,每一個單項式、特別注意多項式的項包括它前面的性質(zhì)符號、

  5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項式和多項式的每一項都包括它前面的符號。

  6、單項式和多項式統(tǒng)稱為整式。

  2、2整式的加減

  1、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項。與字母前面的系數(shù)(≠0)無關(guān)。

  2、同類項必須同時滿足兩個條件:

 。1)所含字母相同;

 。2)相同字母的次數(shù)相同,二者缺一不可、同類項與系數(shù)大小、字母的排列順序無關(guān)

  3、合并同類項:把多項式中的同類項合并成一項?梢赃\用交換律,結(jié)合律和分配律。

  4、合并同類項法則:合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變;

  5、去括號法則:去括號,看符號:是正號,不變號;是負號,全變號。

  6、整式加減的一般步驟:

  一去、二找、三合

 。1)如果遇到括號按去括號法則先去括號

 。2)結(jié)合同類項

  (3)合并同類項葫蘆島

  1、一元二次方程解法:

  (1)配方法:(X±a)2=b(b≥0)注:二次項系數(shù)必須化為1

  (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計算b2-4ac≥0

  若b2-4ac>0則有兩個不相等的實根,若b2-4ac=0則有兩個相等的實根,若b2-4ac

  若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

  (3)分解因式法

 、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0

  平方差公式:a2-b2=0→(a+b)(a-b)=0

 、谶\用公式法:

  完全平方公式:a2±2ab+b2=0→(a±b)2=0

  ③十字相乘法

  2、銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin):對邊比斜邊,即sinA=a/c;

  余弦(cos):鄰邊比斜邊,即cosA=b/c;

  正切(tan):對邊比鄰邊,即tanA=a/b;

  余切(cot):鄰邊比對邊,即cotA=b/a;

  3、積的關(guān)系

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  4、倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  5、兩角和差公式

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

初中數(shù)學(xué)知識點總結(jié)13

  一、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的背景分析

  (一)初三數(shù)學(xué)總復(fù)習(xí)的低效教學(xué)影響了中考教學(xué)質(zhì)量的提高

  初三數(shù)學(xué)的復(fù)習(xí)教學(xué),注重“四基”(基礎(chǔ)知識、基本技能、基本思想和基本活動經(jīng)驗)的鞏固和“四能”(發(fā)現(xiàn)問題、提出問題、分析問題、解決問題的能力)的提升。由于受復(fù)習(xí)教學(xué)方法傳統(tǒng)、時間不足等因素的限制,往往不能處理好知識鞏固與能力提升之間的關(guān)系,導(dǎo)致復(fù)習(xí)教學(xué)實效不強。尤其是在初三下學(xué)期的復(fù)習(xí)教學(xué)中,大多數(shù)教師采用“一基礎(chǔ)二專題三綜合”的復(fù)習(xí)方式,使得復(fù)習(xí)教學(xué)“高耗低效”,不能大大提高學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。同時在復(fù)習(xí)教學(xué)中,往往采用市面上的教輔資料,內(nèi)容超標,試題偏難,不符合復(fù)習(xí)教學(xué)的要求,制約著初三中考數(shù)學(xué)教學(xué)質(zhì)量的提高。

 。ǘ叭搅h(huán)”復(fù)習(xí)課型范式是課改實驗教學(xué)的時代產(chǎn)物

  目前,基礎(chǔ)教育課程改革深入推進,雖然帶來了許多可喜的變化,但許多一線初三教師在實踐中看到了許多隱藏的教學(xué)危機。如何利用小組合作學(xué)習(xí)提高初三中考的教學(xué)質(zhì)量,是許多課改實驗學(xué)校面臨的重大課題。筆者對任教學(xué)校班級的學(xué)生進行了抽樣訪談,訪談分析反映出初三學(xué)生數(shù)學(xué)總復(fù)習(xí)階段的四個問題:一是不熟悉中考數(shù)學(xué)考綱的考試要求和考試目標,沒有明確的初三數(shù)學(xué)總復(fù)習(xí)的方向;二是數(shù)學(xué)基礎(chǔ)知識掌握不夠全面,沒有完整的認知結(jié)構(gòu),對初中數(shù)學(xué)知識的邏輯關(guān)系不清晰;三是數(shù)學(xué)基本解題技能掌握不足,對初中數(shù)學(xué)知識的應(yīng)用把握不清;四是數(shù)學(xué)基本思想和基本活動經(jīng)驗欠缺,不能靈活地運用所學(xué)知識和技能。

  “三步六環(huán)”復(fù)習(xí)課型范式的實踐研究,能轉(zhuǎn)變教師復(fù)習(xí)課的教學(xué)理念,建立更加適合本地區(qū)教學(xué)實際情況的初三數(shù)學(xué)“三步六環(huán)”復(fù)習(xí)課型的范式,掌握更加科學(xué)有效的復(fù)習(xí)方法,形成優(yōu)質(zhì)的初三數(shù)學(xué)復(fù)習(xí)教學(xué)資源,提升初三教師的數(shù)學(xué)專業(yè)能力,轉(zhuǎn)變學(xué)生的數(shù)學(xué)學(xué)習(xí)方式,提升學(xué)生的課堂參與度,變被動的.枯燥復(fù)習(xí)為主動的興趣探究,從而提高初三數(shù)學(xué)的教學(xué)質(zhì)量。

  二、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的策略分析

 。ㄒ唬╆P(guān)鍵詞的概念界定

  1、復(fù)習(xí)課型。復(fù)習(xí)課型是根據(jù)學(xué)生的認知特點和規(guī)律,在學(xué)習(xí)的某一階段,以鞏固、疏理已學(xué)知識、技能,促進知識系統(tǒng)化,提高學(xué)生運用所學(xué)知識解決問題的能力為主要任務(wù)的一種課型。開展數(shù)學(xué)復(fù)習(xí)課的目的是溫故知新,查漏補缺,完善認知結(jié)構(gòu),促進學(xué)生解題思想方法的形成,發(fā)展數(shù)學(xué)能力,增強學(xué)生運用數(shù)學(xué)知識解決問題的能力。

  2、“三步六環(huán)”。這是一種適合初三數(shù)學(xué)總復(fù)習(xí)教學(xué)的高效課堂模式,其基本框架如下:

  主要包括:

  (1)“三步”:第一步“先做后講”,體現(xiàn)在三點:①學(xué)生提前1~2天完成下發(fā)的復(fù)習(xí)導(dǎo)學(xué)案;②老師及時批改了解學(xué)生的預(yù)習(xí)情況;③老師根據(jù)考綱、課標,結(jié)合學(xué)生的預(yù)習(xí)反饋進行二次備課。

  第二步“反思診斷”,體現(xiàn)在四點:①有反思――作業(yè)講評;②有跟進――針對內(nèi)容的重難點和學(xué)生的易錯點;③有變式――針對內(nèi)容的重難點和學(xué)生的易錯點;④有系統(tǒng)――二次訂正整理。

  第三步“滾動測試”,體現(xiàn)在兩點:①滾動及時――重點考查近期重難點、易錯點知識;②反饋評價――關(guān)注師徒、小組捆綁評價。

 。2)“六環(huán)”:指初三數(shù)學(xué)復(fù)習(xí)課堂教學(xué)的六個步驟:自主復(fù)習(xí)、合作交流、展示質(zhì)疑、典例精講、訓(xùn)練達標、總結(jié)評價。這六環(huán)環(huán)h遞進、相輔相成。只有保持復(fù)習(xí)課堂高效的可持續(xù)性,才能保障中考教學(xué)質(zhì)量的提升,這里很關(guān)鍵的兩點因素應(yīng)務(wù)必關(guān)注:其一,教師要精心研讀課標考綱,悉心研究中考試題,用心編制總復(fù)習(xí)導(dǎo)學(xué)案,為學(xué)生高效進行總復(fù)習(xí)指明方向;其二,課堂教學(xué)中的發(fā)展性評價應(yīng)及時跟進,讓學(xué)生學(xué)會反思歸納,分享復(fù)習(xí)的快樂。

初中數(shù)學(xué)知識點總結(jié)14

  一、初中數(shù)學(xué)基本概念

  1.方程:含有未知數(shù)的等式叫做方程。

  2.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

  3.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的次數(shù)是1的二元一次方程。

  4.二元一次方程組:由兩個二元一次方程組成的方程組。

  5.一元二次方程:含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程。

  6.一元二次方程的解:使一元二次方程左右兩邊相等的未知數(shù)的值。

  7.一元二次方程的根:一元二次方程的解。

  8.一元二次方程的判別式:當(dāng)a是正數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個不相等的實數(shù)根;當(dāng)a是負數(shù)時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程沒有實數(shù)根;當(dāng)a是零時,如果一元二次方程左右兩邊相等時,那么這個一元二次方程有兩個相等的實數(shù)根。

  9.函數(shù):在某變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的函數(shù),x叫做自變量。

  10.一次函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),那么稱y是x的一次函數(shù)。

  11.正比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成正比,那么稱y是x的比例函數(shù)。

  12.反比例函數(shù):在某個變化過程中有兩個變量x、y,如果對于x在某一范圍內(nèi)的每一個確定的值,y都有唯一的值與它對應(yīng),并且這個數(shù)值在比例上成反比,那么稱y是x的反比例函數(shù)。

  13.平行四邊形:在同一個平面內(nèi)兩組對角分別平行的四邊形叫做平行四邊形。

  14.矩形:有一個內(nèi)角是直角的平行四邊形叫做矩形。

  15.菱形:有兩組鄰邊相等的平行四邊形叫做菱形。

  16.正方形:四邊相等的矩形叫做正方形。

  17.等腰梯形:兩條腰相等的.梯形叫做等腰梯形。

  18.三角形:在同一個平面內(nèi)由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  19.中線:連接一個頂點和它對邊的中點的線段叫做中線。

  20.高線:從三角形的一個頂點向它的對邊作垂線,垂足與頂點之間的線段叫做高線。

  21.角平分線:三角形的一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做角平分線。

  22.中位線:連接三角形兩邊中點的線段叫做中位線。

  23.軸對稱圖形:一條物體沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。

  24.直接開平方法:形如x2=p或者(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程的方法。

  25.配方法:把一元二次方程的常數(shù)項移到方程的右邊,兩邊加上一次項系數(shù)的一半的平方,再用右邊的式子除以左邊的式子,得到一個平方的形式,再用直接開平方的方法求解一元二次方程的方法。

  26.公式法:用求根公式解一元二次方程的方法。

  27.因式分解法:將一元二次方程分解成兩個一次因式的積等于0的一元二次方程,然后將各個因式分解,得到一元一次方程,再用直接開方法求解一元一次方程的方法。

  二、初中數(shù)學(xué)基本運算

  1.整式:單項式和多項式的統(tǒng)稱。

  2.單項式:由數(shù)字和字母的積組成的代數(shù)式叫做單項式。單獨的一個數(shù)字或字母也叫做單項式。

  3.多項式:幾個單項式的和叫做多項式。每個單項式叫做多項式的項。其中不含字母的項叫做常數(shù)

初中數(shù)學(xué)知識點總結(jié)15

  第一章:勾股定理

  1.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。

  2.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a的平方加上b的平方等于c的平方。

  3.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么兩條直角邊長的平方和等于斜邊長的平方。

  4.如果直角三角形的兩條直角邊長分別是a和b,斜邊長為c,那么a、b、c三者之間的關(guān)系是a的平方加上b的平方等于c的平方。

  第二章:四邊形

  1.平行四邊形:兩組對邊分別平行的四邊形叫做平行四邊形。

  2.菱形:有一組鄰邊相等的`平行四邊形叫做菱形。

  3.矩形:有一個角是直角的平行四邊形叫做矩形。

  4.正方形:有一組鄰邊相等的矩形叫做正方形。

  5.平行四邊形的性質(zhì):對邊平行且相等;對角相等,且互補;對角線互相平分。

  6.菱形的性質(zhì):四邊相等;對角線互相垂直,且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半。

  7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線相等。

  8.正方形的性質(zhì):四個角都是直角,四條邊都相等;對角線相等,且互相垂直平分,每條對角線平分一組對角;正方形被兩條對角線分成四個全等的直角三角形;正方形是特殊的長方形,所以正方形具有矩形的一切性質(zhì)。

  第三章:一次函數(shù)

  1.一次函數(shù):如果所給函數(shù)表達式是正比例函數(shù),那么它經(jīng)過原點(0,0);如果所給函數(shù)表達式是一次函數(shù)(斜截式),那么它經(jīng)過原點(0,0)。

  2.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  3.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

  4.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

  5.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  6.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

  7.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  8.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

  9.正比例函數(shù):如果y=kx(k是常數(shù),且k≠0),那么y叫做x的正比例函數(shù)。

  10.一次函數(shù):如果正比例函數(shù)y=kx(k是常數(shù),且k≠0)的圖像經(jīng)過第一、二、三象限,那么一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖像也經(jīng)過第一、二、三象限。

【初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

初中數(shù)學(xué)知識點總結(jié)07-14

初中數(shù)學(xué)圓的知識點總結(jié)12-05

初中數(shù)學(xué)知識點總結(jié)07-15

初中數(shù)學(xué)必備知識點總結(jié)03-01

初中數(shù)學(xué)函數(shù)知識點總結(jié)11-24

初中數(shù)學(xué)幾何知識點總結(jié)11-05

(優(yōu))初中數(shù)學(xué)知識點總結(jié)12-04

初中數(shù)學(xué)知識點歸納總結(jié)12-02

[精]初中數(shù)學(xué)知識點總結(jié)02-24

初中數(shù)學(xué)知識點總結(jié)(精)05-15