當前位置:育文網(wǎng)>初中>初中數(shù)學> 初中數(shù)學知識點總結(jié)

初中數(shù)學知識點總結(jié)

時間:2024-06-16 12:00:10 初中數(shù)學

初中數(shù)學知識點總結(jié)15篇【精選】

  總結(jié)是指社會團體、企業(yè)單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經(jīng)驗,找出差距,得出教訓和一些規(guī)律性認識的一種書面材料,寫總結(jié)有利于我們學習和工作能力的提高,不如靜下心來好好寫寫總結(jié)吧。那么總結(jié)要注意有什么內(nèi)容呢?下面是小編收集整理的初中數(shù)學知識點總結(jié),希望對大家有所幫助。

初中數(shù)學知識點總結(jié)15篇【精選】

初中數(shù)學知識點總結(jié)1

  一、角的定義

  “靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。

  “動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

  如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。

  二、角的換算:1周角=2平角=4直角=360°;

  1平角=2直角=180°;

  1直角=90°;

  1度=60分=3600秒(即:1°=60′=3600″);

  1分=60秒(即:1′=60″).

  三、余角、補角的概念和性質(zhì):

  概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。

  如果兩個角的和是一個直角,那么這兩個角叫做互為余角。

  說明:互補、互余是指兩個角的數(shù)量關(guān)系,沒有位置關(guān)系。

  性質(zhì):同角(或等角)的余角相等;

  同角(或等角)的補角相等。

  四、角的比較方法:

  角的大小比較,有兩種方法:

  (1)度量法(利用量角器);

  (2)疊合法(利用圓規(guī)和直尺)。

  五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。

  常見考法

  (1)考查與時鐘有關(guān)的問題;(2)角的計算與度量。

  誤區(qū)提醒

  角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。

  初中數(shù)學知識點梳理

  1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

  2.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

  3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合并同類項……系數(shù)化為1 ……(檢驗方程的解)。

  4.列一元一次方程解應用題:

  (1)讀題分析法:多用于“和,差,倍,分問題”

  仔細讀題,找出表示相等關(guān)系的.關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程。

  (2)畫圖分析法:多用于“行程問題”

  利用圖形分析數(shù)學問題是數(shù)形結(jié)合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎。

  11.列方程解應用題的常用公式:

  (1)行程問題:距離=速度·時間;

  (2)工程問題:工作量=工效·工時;

  (3)比率問題:部分=全體·比率;

  (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

  (5)商品價格問題:售價=定價·折·,利潤=售價—成本,;

  (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

  本章內(nèi)容是代數(shù)學的核心,也是所有代數(shù)方程的基礎。豐富多彩的問題情境和解決問題的快樂很容易激起學生對數(shù)學的樂趣,所以要注意引導學生從身邊的問題研究起,進行有效的數(shù)學活動和合作交流,讓學生在主動學習、探究學習的過程中獲得知識,提升能力,體會數(shù)學思想方法。

初中數(shù)學知識點總結(jié)2

  三角形兩邊:

  定理三角形兩邊的和大于第三邊。

  推論三角形兩邊的差小于第三邊。

  三角形中位線定理:

  三角形的中位線平行于第三邊,并且等于它的一半。

  三角形的重心:

  三角形的重心到頂點的距離是它到對邊中點距離的2倍。

  在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線,三角形的三條中線交于一點,這一點叫做“三角形的重心”。

  與三角形有關(guān)的角:

  1、三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°,與三角形的形狀無關(guān)。

  2、直角三角形兩個銳角的關(guān)系:直角三角形的兩個銳角互余(相加為90°)。有兩個角互余的三角形是直角三角形。

  3、三角形外角的性質(zhì):三角形的一個外角等于與它不相鄰的兩個內(nèi)角之和;三角形的一個外角大于與它不相鄰的任何一個內(nèi)角;三角形三個外角和為360°。

  全等三角形的性質(zhì)和判定:

  全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對折也會構(gòu)成全等三角形。

 。ㄟ呥呥叄慈厡嗟鹊膬蓚三角形全等。

 。ㄟ吔沁叄,即三角形的其中兩條邊對應相等,且兩條邊的夾角也對應相等的兩個三角形全等。

 。ń沁吔牵,即三角形的其中兩個角對應相等,且兩個角夾的的邊也對應相等的'兩個三角形全等。

 。ń墙沁叄,即三角形的其中兩個角對應相等,且對應相等的角所對應的邊也對應相等的兩個三角形全等。

 。ㄐ边、直角邊),即在直角三角形中一條斜邊和一條直角邊對應相等的兩個直角三角形全等。

  等邊三角形的判定:

  1、三邊相等的三角形是等邊三角形(定義)。

  2、三個內(nèi)角都相等的三角形是等邊三角形。

  3、有一個角是60度的等腰三角形是等邊三角形。

  4、有兩個角等于60度的三角形是等邊三角形。

初中數(shù)學知識點總結(jié)3

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等——補角=180-角度。

  4、同角或等角的余角相等——余角=90-角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補

  15、定理

  xxx兩邊的和大于第三邊

  16、推論

  xxx兩邊的差小于第三邊

  17、xxx內(nèi)角和定理:

  xxx三個內(nèi)角的和等于180°

  18、推論1

  直角xxx的兩個銳角互余

  19、推論2

  xxx的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3

  xxx的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等xxx的對應邊、對應角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個xxx全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的

  兩個xxx全等

  24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個xxx全等

  25、邊邊邊公理(SSS):有三邊對應相等的兩個xxx全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角xxx全等

  27、定理1

  在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2

  到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1

  等腰xxx頂角的平分線平分底邊并且垂直于底邊

  31、推論2

  等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3

  等邊xxx的各角都相等,并且每一個角都等于60°

  33、等腰xxx的判定定理

  如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰xxx的性質(zhì)定理

  等腰xxx的兩個底角相等

  (即等邊對等角)

  35、推論1

  三個角都相等的xxx是等邊xxx

  36、推論

  有一個角等于60°的等腰xxx是等邊xxx

  37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角xxx斜邊上的中線等于斜邊上的一半

  39、定理

  線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理

  和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1

  關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理

  如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3

  兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

  45、逆定理

  如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理

  直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理

  如果xxx的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個xxx是直角xxx

  48、定理

  四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理

  n邊形的內(nèi)角的和等于(n-2)×180°

  51、推論

  任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1

  平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2

  平行四邊形的對邊相等

  54、推論

  夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3

  平行四邊形的對角線互相平分

  56、平行四邊形判定定理1

  兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2

  兩組對邊分別相等的四邊

  形是平行四邊形

  58、平行四邊形判定定理3

  對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4

  一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1

  矩形的四個角都是直角

  61、矩形性質(zhì)定理2

  矩形的對角線相等

  62、矩形判定定理1

  有三個角是直角的.四邊形是矩形

  63、矩形判定定理2

  對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1

  菱形的四條邊都相等

  65、菱形性質(zhì)定理2

  菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1

  四邊都相等的四邊形是菱形

  68、菱形判定定理2

  對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1

  正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2

  正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1

  關(guān)于中心對稱的兩個圖形是全等的

  72、定理2

  關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理

  如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74、等腰梯形性質(zhì)定理

  等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理

  在同一底上的兩個角相等的梯

  形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理

  如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1

  經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2

  經(jīng)過xxx一邊的中點與另一邊平行的直線,必平分第三邊

  81、xxx中位線定理

  xxx的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理

  梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2

  S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc

  如果

  ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理

  三條平行線截兩條直線,所得的對應線段成比例

  87、推論

  平行于xxx一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理

  如果一條直線截xxx的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于xxx的第三邊

  89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對應成比例

  90、定理

  平行于xxx一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的xxx與原xxx相似

  91、相似xxx判定定理1

  兩角對應相等,兩xxx相似(ASA)

  92、直角xxx被斜邊上的高分成的兩個直角xxx和原xxx相似

  93、判定定理2

  兩邊對應成比例且夾角相等,兩xxx相似(SAS)

  94、判定定理3

  三邊對應成比例,兩xxx相似(SSS)

  95、定理

  如果一個直角xxx的斜邊和一條直角邊與另一個直角xxx的斜邊和一條直角邊對應成比例,那么這兩個直角xxx相似(HL)

  96、性質(zhì)定理1

  相似xxx對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97、性質(zhì)定理2

  相似xxx周長的比等于相似比

  98、性質(zhì)定理3

  相似xxx面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理

  不在同一直線上的三點確定一個圓。

  110、垂徑定理

  垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧(直徑)

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果xxx一邊上的中線等于這邊的一半,那么這個xxx是直角xxx

  120、定理

  圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  121、①直線L和⊙O相交

  0

 、谥本L和⊙O相切

  d=r

 、壑本L和⊙O相離

  d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125、推論2

  經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離

  d>R+r

 、趦蓤A外切

  d=R+r

 、蹆蓤A相交

  R-r<d<R+r(R>r)

 、軆蓤A內(nèi)切

  d=R-r(R>r)

 、輧蓤A內(nèi)含

  d<R-r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角xxx

  141、正n邊形的面積Sn=pn*rn/2

  p表示正n邊形的周長

  142、正xxx面積√3a^2/4

  a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長=d-(R-r)

  外公切線長=d-(R+r)

初中數(shù)學知識點總結(jié)4

  1.有理數(shù):

 。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

 。2)有理數(shù)的分類:① ②

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數(shù):

 。1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

 。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對值:

 。1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。海1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而。唬5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負倒數(shù)。

  7.有理數(shù)加法法則:

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

 。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

 。3)一個數(shù)與0相加,仍得這個數(shù)。

  8.有理數(shù)加法的'運算律:

 。1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

 。1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

 。2)任何數(shù)同零相乘都得零;

 。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。

  11.有理數(shù)乘法的運算律:

 。1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

 。3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),。

  13.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

  (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

 。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。

  16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18.混合運算法則:先乘方,后乘除,最后加減。

  本章內(nèi)容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的基礎上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。

  體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要。激發(fā)學生學習數(shù)學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應該多創(chuàng)設情境,充分體現(xiàn)學生學習的主體性地位。

初中數(shù)學知識點總結(jié)5

  初中數(shù)學知識點總結(jié)及解法

  基本知識

  數(shù)與代數(shù)A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):

 、僬麛(shù)正整數(shù)/0/負整數(shù)

 、诜謹(shù)正分數(shù)/負分數(shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。

  ②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:

  加法:

 、偻栂嗉樱∠嗤姆,把絕對值相加。

 、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號得正,異號得負,絕對值相乘。

 、谌魏螖(shù)與0相乘得0。

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:

 、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

  ①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

 、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

  ③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。

  ④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

  ①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

  ②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

  ③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

  ①實數(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

  ①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

 、 同底數(shù)冪相乘:a^ma^n=a^(m+n)

 、 冪的乘方:(a^m)n=a^mn

 、 積的乘方:(ab)^m=a^mb^m

  ④ 同底數(shù)冪相除:a^ma^n=a^(m-n) (a0)

  這些公式也可以這樣用:⑤a^(m+n)= a^ma^n

 、轪^mn=(a^m)n

 、遖^mb^m=(ab)^m

  ⑧ a^(m-n)= a^ma^n (a0)

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

  ①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜阜质较嗉訙p,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。

  分式方程:

 、俜帜钢泻形粗獢(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  方程與不等式

  1、方程與方程組

  一元一次方程:

  ①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的`項的次數(shù)都是1的方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

  解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程

  1、一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學過二次函數(shù)(即拋物線)了,對它也有很深的了解,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了。

  2、一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(,),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解。

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解。

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。

  (3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a

  3、解一元二次方程的步驟:

  (1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式。

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。

  (3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c。

  4、韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=,二根之積=

  也可以表示為x1+x2=,x1x2=。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。

  5、一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為△,讀作diao ta,而△=b2-4ac,這里可以分為3種情況:

  I當△0時,一元二次方程有2個不相等的實數(shù)根;

  II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△0時,一元二次方程沒有實數(shù)根(在這里,學到高中就會知道,這里有2個虛數(shù)根)。

  2、不等式與不等式組

  不等式:

 、儆梅枴担=,〈號連接的式子叫不等式。

 、诓坏仁降膬蛇叾技由匣驕p去同一個整式,不等號的方向不變。

 、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。

 、懿坏仁降膬蛇叾汲艘曰虺酝粋負數(shù),不等號方向相反。

  不等式的解集:

 、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。

  ②一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

 、矍蟛坏仁浇饧倪^程叫做解不等式。

  一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。

  一元一次不等式組:

 、訇P(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

 、谝辉淮尾坏仁浇M中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

  ③求不等式組解集的過程,叫做解不等式組。

  一元一次不等式的符號方向:

  在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。

  在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:AB,A+CB+C

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:AB,A-CB-C

  在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:AB,A*CB*C(C0)

  在不等式中,如果乘以同一個負數(shù),不等號改向;例如:AB,A*C

  如果不等式乘以0,那么不等號改為等號

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。

  函數(shù)

  變量:因變量,自變量。

  在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):

 、偃魞蓚變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋擝=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時,則經(jīng)124象限;當K〉0,B〈0時,則經(jīng)134象限;當K〉0,B〉0時,則經(jīng)123象限。④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

  空間與圖形

  圖形的認識

  1、點,線,面

  點,線,面:

 、賵D形是由點,線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點。

  ③點動成線,線動成面,面動成體。

  展開與折疊:

  ①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:

 、儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  角

  線:

  ①線段有兩個端點。

 、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。

 、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。

 、芙(jīng)過兩點有且只有一條直線。

  比較長短:

 、賰牲c之間的所有連線中,線段最短。

 、趦牲c之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:

 、俳怯蓛蓷l具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。

  角的比較:

 、俳且部梢钥闯墒怯梢粭l射線繞著他的端點旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。

 、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:

 、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

 、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:

  1、對角線相等的菱形

  2、鄰邊相等的矩形

  基本方法

  1、配方法

  所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法

  因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。

  3、換元法

  換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

  4、判別式法與韋達定理

  一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。

  韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等

  5、待定系數(shù)法

  在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

  6、構(gòu)造法

  在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。

  7、反證法

  反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設,然后,從這個假設出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結(jié)論。

  反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。

  歸謬是反證法的關(guān)鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。

  8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。

  9、幾何變換法

  在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個**的任一元素到同一**的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。

  幾何變換包括:

  (1)平移;

  (2)旋轉(zhuǎn);

  (3)對稱。

  10、客觀性題的解題方法

  選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學生猜估答案的情況。

  要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

  (1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

  (2)驗證法:由題設找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。

  (3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

  (4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

  (5)圖解法:借助于符合題設條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

  (6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。

初中數(shù)學知識點總結(jié)6

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);

  (2)有理數(shù)的分類:① ②

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。

  3.相反數(shù):

  (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;

  (2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。

  4.絕對值:

  (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;

  (2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

  5.有理數(shù)比大。

  (1)正數(shù)的絕對值越大,這個數(shù)越大;

  (2)正數(shù)永遠比0大,負數(shù)永遠比0小;

  (3)正數(shù)大于一切負數(shù);

  (4)兩個負數(shù)比大小,絕對值大的反而小;

  (5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;

  (6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。

  6.互為倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1,a、b互為倒數(shù);若ab=—1,a、b互為負倒數(shù)。

  7.有理數(shù)加法法則:

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;

  (3)一個數(shù)與0相加,仍得這個數(shù)。

  8.有理數(shù)加法的運算律:

  (1)加法的交換律:a+b=b+a;

  (2)加法的結(jié)合律:(a+b)+c=a+(b+c)。

  9.有理數(shù)減法法則:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。

  10.有理數(shù)乘法法則:

  (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;

  (2)任何數(shù)同零相乘都得零;

  (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。

  11.有理數(shù)乘法的運算律:

  (1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac 。

  12.有理數(shù)除法法則:

  除以一個數(shù)等于乘以這個數(shù)的'倒數(shù);注意:零不能做除數(shù)。

  13.有理數(shù)乘方的法則:

  (1)正數(shù)的任何次冪都是正數(shù);

  (2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。

  14.乘方的定義:

  (1)求相同因式積的運算,叫做乘方;

  (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫做冪;

  15.科學記數(shù)法:

  把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。

  16.近似數(shù)的精確位:

  一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。

  17.有效數(shù)字:

  從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。

  18.混合運算法則:

  先乘方,后乘除,最后加減。

  本章內(nèi)容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的基礎上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。

  體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要。激發(fā)學生學習數(shù)學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應該多創(chuàng)設情境,充分體現(xiàn)學生學習的主體性地位。

  有關(guān)初中數(shù)學知識點

  一、圓

  1、圓的有關(guān)性質(zhì)

  在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

  由圓的意義可知:

  圓上各點到定點(圓心O)的距離等于定長的點都在圓上。

  就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。

  圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

  圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的.弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

  圓心相同,半徑不相等的兩個圓叫同心圓。

  能夠重合的兩個圓叫等圓。

  同圓或等圓的半徑相等。

  在同圓或等圓中,能夠互相重合的弧叫等弧。

  二、過三點的圓

  1、過三點的圓

  過三點的圓的作法:利用中垂線找圓心

  定理不在同一直線上的三個點確定一個圓。

  經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。

  2、反證法

  反證法的三個步驟:

  ①假設命題的結(jié)論不成立;

 、趶倪@個假設出發(fā),經(jīng)過推理論證,得出矛盾;

 、塾擅艿贸黾僭O不正確,從而肯定命題的結(jié)論正確。

  例如:求證三角形中最多只有一個角是鈍角。

  證明:設有兩個以上是鈍角

  則兩個鈍角之和>180°

  與三角形內(nèi)角和等于180°矛盾。

  ∴不可能有二個以上是鈍角。

  即最多只能有一個是鈍角。

  三、垂直于弦的直徑

  圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。

  垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。

  推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。

  弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。

  平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。

  推理2:圓兩條平行弦所夾的弧相等。

  四、圓心角、弧、弦、弦心距之間的關(guān)系

  圓是以圓心為對稱中心的中心對稱圖形。

  實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。

  頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

  定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

  推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。

  五、圓周角

  頂點在圓上,并且兩邊都和圓相交的角叫圓周角。

  推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。

  推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。

  推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。

  由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。

  為什么要學習數(shù)學

  作為一門普及度極廣的學科,數(shù)學在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會對數(shù)學產(chǎn)生排斥,認為它枯燥無味,但事實上,數(shù)學是所有學科的基石之一,對我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細闡述學習數(shù)學的重要性。

  首先,數(shù)學可以幫助我們提高邏輯思維能力。數(shù)學的學科性質(zhì)使我們在學習的過程中時時刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機會。通過長期的學習和練習,我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對我們在工作和生活中都非常有幫助,尤其是在解決復雜問題時更能得心應手。

  其次,數(shù)學在現(xiàn)代科技中起著至關(guān)重要的作用。在計算機科學、物理學、經(jīng)濟學、工程學等領域,數(shù)學可以幫助我們建立模型、分析數(shù)據(jù)、預測趨勢,并且可以在實際應用中優(yōu)化和改進。例如,在人工智能領域,深度學習技術(shù)所涉及的數(shù)學概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學基礎,很難理解和應用這些技術(shù)。同時,在工程學領域,許多機械、電子、化工等產(chǎn)品的設計和制造過程,也需要運用到數(shù)學知識,因此學習數(shù)學可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。

  除此之外,數(shù)學也是一種普遍使用的語言,許多學科和領域都使用數(shù)學語言進行表達和交流。例如,在自然科學領域,生物學、化學、物理學等學科都使用數(shù)學語言來描述自然世界的規(guī)律和現(xiàn)象。在社會科學和商科領域,經(jīng)濟學和金融學運用的數(shù)學概念,如微積分、線性代數(shù)和統(tǒng)計學等,使得我們能夠更好地理解經(jīng)濟和財務數(shù)據(jù),并進行決策。因此,學習數(shù)學可以讓我們更好地理解、溝通和交流各個領域的知識。

  最后,學習數(shù)學也可以為我們的職業(yè)發(fā)展帶來廣泛的機遇和發(fā)展空間。在許多領域,數(shù)學專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機會,如金融界、數(shù)據(jù)科學、研究機構(gòu)、教育等。數(shù)學專業(yè)的人才,不只會提供理論支持,同時也能夠解決現(xiàn)實中具體的問題,使其在各自領域脫穎而出。

  怎樣快速提高數(shù)學成績?

  一、查缺補漏,主攻薄弱

  請制作“失分分析表”,包括“不會做的”和“不該丟分的”兩部分,分析模擬考試等試卷失分情況,在緊跟老師復習的基礎上,針對自己的薄弱環(huán)節(jié)重點彌補、改進。

  別一味沖刺難題。做題是對理論知識的進一步鞏固與實檢,我們要在理解的基礎上加強練習,以達到鞏固的目的,但不能一味追求難題偏題。

  因為中考試卷中有30%是比較靈活的題型,只有10%是真正的難題。30%那部分題目是我們能拿但容易失分的題目,我們要做到盡量多拿分,但如果我們一味求難求險,就會因為忽視基礎題型的夯實和鞏固而失掉這部分該得的分。在基礎掌握后,有條件的同學可再進行一些難題怪題的攻關(guān),這樣的策略才更能保證效率。

  二、反思錯題

  不要盲目找題做,陷入題海中,不要“就題論題”停留在“這題我會了”的低水平上。解題能力是在反思中提升的。懂、會、悟是數(shù)學水平的三個層次。簡單說,聽懂了,但不一定會,更不意味著真正領悟了。

  三、克服無謂失分

  如何避免審題出錯?

  原因:看太快。

  應對策略:

  1.默讀法;2.重點字詞圈點勾畫法;3.審圖法。

  如何降低計算失誤?

  表面原因是粗心,其實是計算能力不足。平時對計算不以為然,認為“沒有技術(shù)含量”。事實上計算也有很多“聰明算法”,如:邊化簡邊計算、寧加勿減、寧乘勿除、小數(shù)化分數(shù)、找最小最短的設元、放縮法、湊整法、圖象法等等計算技巧。

  應對策略:

  1.不要為了趕時間而跳步計算;

  2.寧可筆算,少用口算,更不要再抱著計算器;

  3.對平時易算錯的題型,可以驗算一遍。

  四、關(guān)注幾個重點問題

  1.新定義題型、非常規(guī)題型、存在性問題。

  2.分析法—執(zhí)果索因,逆向思維,倒過來想,假設存在;不完全歸納法—根據(jù)例子,大膽猜想、努力驗證。反例排除法、特殊圖形(特殊位置、極端值)探究法等。

  提高數(shù)學成績常用方法有哪些

  1、預習

  預期常常由于 “沒時間,看不懂,不必要”等等原因被忽略。實際上預習是學習的必要過程,更是提高自學能力的好方法。

  2、學會聽課

  聽分析、聽思路、聽應用,關(guān)鍵內(nèi)容一字不漏,注意記錄。

  3、做好錯題本

  每個會學習的學生都會有錯題本。調(diào)查發(fā)現(xiàn)那些沒有錯題本,或者是只做不用的同學,學習效果都不好。

  4、用好課外書

  正確認識網(wǎng)絡課程和課外書籍,是副食,是幫助吸收的良藥。

  5、注重數(shù)學思維方法的培養(yǎng)

  要注意數(shù)學思想和方法的指導,站得高,才能看得遠。

初中數(shù)學知識點總結(jié)7

  一、基本知識

  一、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù):

  ①整數(shù)→正整數(shù),0,負整數(shù);

  ②分數(shù)→正分數(shù),負分數(shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

  ②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

  ③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

 、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。

  ②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0、兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:帶上符號進行正常運算。

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號得正,異號得負,絕對值相乘。

  ②任何數(shù)與0相乘得0、

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:

 、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。

  ②0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù),例如:π=…

  平方根:

 、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

  ②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

 、垡粋正數(shù)有2個平方根;0的平方根為0;負數(shù)沒有平方根。

  ④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

  ②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

 、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣;

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:

  ①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項;②把同類項合并成一項就叫做合并同類項。

  ③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:

  A^M+A^N=A^(M+N)

  (A^M)^N=A^(MN

 。ˋ/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、

  整式的除法:

 、賳雾検较喑严禂(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

  ②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、

 、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  分式的運算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜阜质较嗉訙p,分母不變,把分子相加減。

  ②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:

  ①分母中含有未知數(shù)的方程叫分式方程。

  ②使方程的分母為0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

 、僭谝粋方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1、

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的`方程叫做二元一次方程。

  二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

  適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。

  二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y=0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖像與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解

 。2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

 。3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a

  3)解一元二次方程的步驟:

 。1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

 。3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達定理

  利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a

  也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:

  I當△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當△=0時,一元二次方程有2個相同的實數(shù)根;

  III當△B,則A+C>B+C;

  在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;

  例如:如果A>B,則A—C>B—C;

  在不等式中,如果乘以同一個正數(shù),不等式符號不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個負數(shù),不等號改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號改為等號;

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

  3、函數(shù)

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。

  一次函數(shù):

 、偃魞蓚變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋擝=0時,稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖像:

 、侔岩粋函數(shù)的自變量X與對應的因變量Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖像。

 、谡壤瘮(shù)Y=KX的圖像是經(jīng)過原點的一條直線。

  ③在一次函數(shù)中,當K〈0,B〈O時,則經(jīng)234象限;

  當K〈0,B〉0時,則經(jīng)124象限;

  當K〉0,B〈0時,則經(jīng)134象限;

  當K〉0,B〉0時,則經(jīng)123象限。

 、墚擪〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認識

  1、點,線,面

  點,線,面:

 、賵D形是由點,線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點。

 、埸c動成線,線動成面,面動成體。

  展開與折疊:

  ①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:

 、儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  2、角

  線:

  ①線段有兩個端點。

 、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。

 、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。

  ④經(jīng)過兩點有且只有一條直線。

  比較長短:

 、賰牲c之間的所有連線中,線段最短。兩點之間直線最短。

  ②兩點之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:

 、俳怯蓛蓷l具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:

 、俳且部梢钥闯墒怯梢粭l射線繞著他的端點旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角,180、始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角,360、

 、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:

 、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

  ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

 、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;

  判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

  角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:

  1、對角線相等的菱形

  2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補角相等——補角=180—角度。

  4、同角或等角的余角相等——余角=90—角度。

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補,兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補

  15、定理:三角形兩邊的和大于第三邊

  16、推論:三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180°

  18、推論1:直角三角形的兩個銳角互余

  19、推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等三角形的對應邊、對應角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的兩個三角形全等

  24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等

  25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等

  27、定理1:在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3:等邊三角形的各角都相等,并且每一個角都等于60°

  33、等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  34、等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等(即等邊對等角)

  35、推論1:三個角都相等的三角形是等邊三角形

  36、推論:有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理:線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1:關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理:如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線

  44、定理3:兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

  45、逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理:如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48、定理:四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n—2)×180°

  51、推論:任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1:平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2:行四邊形的對邊相等

  54、推論:夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3:平行四邊形的對角線互相平分

  56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4:一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1:矩形的四個角都是直角

  61、矩形性質(zhì)定理2:矩形的對角線相等

  62、矩形判定定理1:有三個角是直角的四邊形是矩形

  63、矩形判定定理2:對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1:菱形的四條邊都相等

  65、菱形性質(zhì)定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1:四邊都相等的四邊形是菱形

  68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1:正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1:關(guān)于中心對稱的兩個圖形是全等的

  72、定理2:關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理:如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例

  87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

  88、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

  90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1:兩角對應相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3:三邊對應成比例,兩三角形相似(SSS)

  95、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)

  96、性質(zhì)定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比

  97、性質(zhì)定理2:相似三角形周長的比等于相似比

  98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)

  101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理:不在同一直線上的三點確定一個圓。

  110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

 、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條。ㄖ睆剑

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116、定理

  一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1

  同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2

  半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120、定理

  圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角

  121、①直線L和⊙O相交0<=d<r

  ②直線L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  122、切線的判定定理

  經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過切點的半徑

  124、推論1

  經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125、推論2

  經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理

  從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對的圓周角?

  129、推論

  如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理

  從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

  133、推論

  從圓外一點引圓的兩條割線,這一點到每條

  割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交R—r<d<R+r(R>r)

 、軆蓤A內(nèi)切d=R—r(R>r)

  ⑤兩圓內(nèi)含d<R—r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

  ⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理

  任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  139、正n邊形的每個內(nèi)角都等于(n—2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長

  142、正三角形面積√3a^2/4,a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4

  144、弧長計算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長=d—(R—r),外公切線長=d—(R+r)

初中數(shù)學知識點總結(jié)8

  1.相似三角形定義:

  對應角相等,對應邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。

  3.相似三角形的相似比:

  相似三角形的對應邊的比叫做相似比。

  4.相似三角形的預備定理:

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的"對應邊相等"的條件改為"對應邊

  成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學中的用類比的方法,在舊知識的基礎上找出新知識并從中探究新知識掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。

  (2)如果一個直角三角形的.斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似。

  7.相似三角形的性質(zhì)定理:

  (1)相似三角形的對應角相等。

  (2)相似三角形的對應邊成比例。

  (3)相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等于相似比。

  (4)相似三角形的周長比等于相似比。

  (5)相似三角形的面積比等于相似比的平方。

  8. 相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

初中數(shù)學知識點總結(jié)9

  初中數(shù)學知識點總結(jié):中位線

  知識要點:梯形的中位線平行于兩底,并且等于兩底和的一半。

  1.中位線概念

  (1)三角形中位線定義:連接三角形兩邊中點的線段叫做三角形的中位線。

  (2)梯形中位線定義:連結(jié)梯形兩腰中點的線段叫做梯形的中位線。

  注意:

  (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點和它對邊的中點,而三角形中位線是連結(jié)三角形兩邊中點的線段。

  (2)梯形的中位線是連結(jié)兩腰中點的線段而不是連結(jié)兩底中點的線段。

  (3)兩個中位線定義間的聯(lián)系:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。

  2.中位線定理

  (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

  三角形兩邊中點的連線(中位線)平行于第BC邊,且等于第三邊的一半。

  知識要領總結(jié):三角形的中位線所構(gòu)成的小三角形(中點三角形)面積是原三角形面積的四分之一。

  初中數(shù)學知識點總結(jié):平面直角坐標系

  下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。

  平面直角坐標系

  平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

  ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  初中數(shù)學知識點:平面直角坐標系的構(gòu)成

  對于平面直角坐標系的'構(gòu)成內(nèi)容,下面我們一起來學習哦。

  平面直角坐標系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構(gòu)成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。

  初中數(shù)學知識點:點的坐標的性質(zhì)

  下面是對數(shù)學中點的坐標的性質(zhì)知識學習,同學們認真看看哦。

  點的坐標的性質(zhì)

  建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質(zhì)知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  關(guān)于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

  初中數(shù)學知識點:因式分解

  下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶蕘G字母

  ②不準丟常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

  ④結(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉椮撎柗爬ㄌ柾

 、呃ㄌ杻(nèi)同類項合并。

  通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。

初中數(shù)學知識點總結(jié)10

  一、“三步六環(huán)”復習課型范式構(gòu)建的背景分析

 。ㄒ唬┏跞龜(shù)學總復習的低效教學影響了中考教學質(zhì)量的提高

  初三數(shù)學的復習教學,注重“四基”(基礎知識、基本技能、基本思想和基本活動經(jīng)驗)的鞏固和“四能”(發(fā)現(xiàn)問題、提出問題、分析問題、解決問題的能力)的提升。由于受復習教學方法傳統(tǒng)、時間不足等因素的限制,往往不能處理好知識鞏固與能力提升之間的關(guān)系,導致復習教學實效不強。尤其是在初三下學期的復習教學中,大多數(shù)教師采用“一基礎二專題三綜合”的復習方式,使得復習教學“高耗低效”,不能大大提高學生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力。同時在復習教學中,往往采用市面上的教輔資料,內(nèi)容超標,試題偏難,不符合復習教學的要求,制約著初三中考數(shù)學教學質(zhì)量的提高。

  (二)“三步六環(huán)”復習課型范式是課改實驗教學的時代產(chǎn)物

  目前,基礎教育課程改革深入推進,雖然帶來了許多可喜的變化,但許多一線初三教師在實踐中看到了許多隱藏的教學危機。如何利用小組合作學習提高初三中考的教學質(zhì)量,是許多課改實驗學校面臨的重大課題。筆者對任教學校班級的學生進行了抽樣訪談,訪談分析反映出初三學生數(shù)學總復習階段的四個問題:一是不熟悉中考數(shù)學考綱的考試要求和考試目標,沒有明確的初三數(shù)學總復習的方向;二是數(shù)學基礎知識掌握不夠全面,沒有完整的認知結(jié)構(gòu),對初中數(shù)學知識的邏輯關(guān)系不清晰;三是數(shù)學基本解題技能掌握不足,對初中數(shù)學知識的應用把握不清;四是數(shù)學基本思想和基本活動經(jīng)驗欠缺,不能靈活地運用所學知識和技能。

  “三步六環(huán)”復習課型范式的實踐研究,能轉(zhuǎn)變教師復習課的教學理念,建立更加適合本地區(qū)教學實際情況的初三數(shù)學“三步六環(huán)”復習課型的范式,掌握更加科學有效的復習方法,形成優(yōu)質(zhì)的初三數(shù)學復習教學資源,提升初三教師的.數(shù)學專業(yè)能力,轉(zhuǎn)變學生的數(shù)學學習方式,提升學生的課堂參與度,變被動的枯燥復習為主動的興趣探究,從而提高初三數(shù)學的教學質(zhì)量。

  二、“三步六環(huán)”復習課型范式構(gòu)建的策略分析

 。ㄒ唬╆P(guān)鍵詞的概念界定

  1、復習課型。復習課型是根據(jù)學生的認知特點和規(guī)律,在學習的某一階段,以鞏固、疏理已學知識、技能,促進知識系統(tǒng)化,提高學生運用所學知識解決問題的能力為主要任務的一種課型。開展數(shù)學復習課的目的是溫故知新,查漏補缺,完善認知結(jié)構(gòu),促進學生解題思想方法的形成,發(fā)展數(shù)學能力,增強學生運用數(shù)學知識解決問題的能力。

  2、“三步六環(huán)”。這是一種適合初三數(shù)學總復習教學的高效課堂模式,其基本框架如下:

  主要包括:

 。1)“三步”:第一步“先做后講”,體現(xiàn)在三點:①學生提前1~2天完成下發(fā)的復習導學案;②老師及時批改了解學生的預習情況;③老師根據(jù)考綱、課標,結(jié)合學生的預習反饋進行二次備課。

  第二步“反思診斷”,體現(xiàn)在四點:①有反思――作業(yè)講評;②有跟進――針對內(nèi)容的重難點和學生的易錯點;③有變式――針對內(nèi)容的重難點和學生的易錯點;④有系統(tǒng)――二次訂正整理。

  第三步“滾動測試”,體現(xiàn)在兩點:①滾動及時――重點考查近期重難點、易錯點知識;②反饋評價――關(guān)注師徒、小組捆綁評價。

  (2)“六環(huán)”:指初三數(shù)學復習課堂教學的六個步驟:自主復習、合作交流、展示質(zhì)疑、典例精講、訓練達標、總結(jié)評價。這六環(huán)環(huán)h遞進、相輔相成。只有保持復習課堂高效的可持續(xù)性,才能保障中考教學質(zhì)量的提升,這里很關(guān)鍵的兩點因素應務必關(guān)注:其一,教師要精心研讀課標考綱,悉心研究中考試題,用心編制總復習導學案,為學生高效進行總復習指明方向;其二,課堂教學中的發(fā)展性評價應及時跟進,讓學生學會反思歸納,分享復習的快樂。

初中數(shù)學知識點總結(jié)11

  一、數(shù)與代數(shù)

  1.有理數(shù)

  有理數(shù):包括正整數(shù)、0和負整數(shù)。

  數(shù)軸:包括原點、正方向和單位長度。

  相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。

  絕對值:正數(shù)的絕對值是其本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0。

  2.整式與分式

  整式:包括單項式和多項式。

  分式:包括一般形式和特殊形式。

  代數(shù)式:包括單字母、單項式和多項式。

  二、空間與圖形

  1.點、線、面

  點:沒有大小,沒有長度。

  線:沒有寬度,只有長度。

  面:有長度和寬度,沒有高度。

  2.基本圖形

  直線:包括直線、射線、線段。

  角:包括平角、周角和一般的角。

  三角形:包括等邊三角形、等腰三角形和一般三角形。

  四邊形:包括矩形、正方形、梯形和平行四邊形。

  圓:包括圓的性質(zhì)和圓的定理。

  三、統(tǒng)計與概率

  1.統(tǒng)計

  統(tǒng)計圖:包括扇形統(tǒng)計圖、折線統(tǒng)計圖和條形統(tǒng)計圖。

  統(tǒng)計表:包括簡單統(tǒng)計表和復合統(tǒng)計表。

  數(shù)據(jù)的收集與整理:包括抽樣調(diào)查、全面調(diào)查和自主調(diào)查。

  2.概率

  隨機事件:包括必然事件、不可能事件和隨機事件。

  概率:包括計算事件發(fā)生的概率和隨機事件的.概率。

  以上是初中數(shù)學知識點總結(jié)的主要內(nèi)容,這些知識點是數(shù)學學習的基礎,需要學生熟練掌握和應用。

初中數(shù)學知識點總結(jié)12

  初中數(shù)學例題的知識點梳理

  有理數(shù)的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好。【注】“大”減“小”是指絕對值的大小。

  合并同類項:合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。

  去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。

  恒等變換:兩個數(shù)字來相減,互換位置最常見,正負只看其指數(shù),奇數(shù)變號偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n

  平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方:完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。

  因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。

  “代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分數(shù)或負數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括。ㄐ 小螅

  單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進行同級(運)算,指數(shù)運算降級(進)行。

  一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數(shù)來除掉,兩邊除(以)負數(shù)時,不等號改向別忘了。

  一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。

  一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,。~)于(吃)取中間。

  分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡。

  分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。

  最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點。

  特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(—,+),(—,—)和(+,—),四個象限分前后;X軸上y為0,x為0在Y軸。

  象限角的'平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。

  平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。

  對稱點坐標:對稱點坐標要記牢,相反數(shù)位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。

  自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數(shù)不為零,整式、奇次根全能行。

  函數(shù)圖像的移動規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。

  一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠。

  二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對稱是關(guān)鍵;開口、頂點和交點,它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。

  反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數(shù)減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。

  巧記三角函數(shù)定義:初中所學的三角函數(shù)有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:

  正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。

  三角函數(shù)的增減性:正增余減。

  特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。

  數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)

  平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。

  梯形問題的輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。

  添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。

  圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對角互補記心間,外角等于內(nèi)對角,四邊形定內(nèi)接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內(nèi)切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。

  學霸分享的數(shù)學復習技巧

  1、把答案蓋住看例題

  例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。

  所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。

  經(jīng)過上面的訓練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。

  2、研究每題都考什么

  數(shù)學能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。

  3、錯一次反思一次

  每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。

  學生若能將每次考試或練習中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。

  4、分析試卷總結(jié)經(jīng)驗

  每次考試結(jié)束試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓。特別是將試卷中出現(xiàn)的錯誤進行分類。

  數(shù)學解題方法分別有哪些

  1、配方法

  所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學中不斷變形的重要方法,其應用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達式。

  2、因式分解法

  因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎。除了引入中學教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。

  3、換元法

  替代方法是數(shù)學中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的.參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。

  4、判別式法與韋達定理

  一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應用。

  韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應用。

  5、待定系數(shù)法

  在解決數(shù)學問題時,如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學問題,這種問題解決方法被稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。

  6、構(gòu)造法

  在解決問題時,我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個問題,這種解決問題的數(shù)學方法,我們稱之為構(gòu)造方法。運用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學知識相互滲透,有助于解決問題。

  數(shù)學經(jīng)常遇到的問題解答

  1、要提高數(shù)學成績首先要做什么?

  這一點,是很多學生所關(guān)注的,要提高數(shù)學成績,首先就應該從基礎知識學起。不少同學覺得基礎知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎不牢的表現(xiàn),因此要提高數(shù)學成績先要把基礎夯實。

  2、基礎不好怎么學好數(shù)學?

  對于基礎差的同學來說,課本是就是學好數(shù)學的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學活用,把課本的知識學透有兩個好處,第一,強化基礎;第二,提高得分能力。

  3、是否要采用題海戰(zhàn)術(shù)?

  方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實也是一種學習方法,但很多學生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學習效果。因此在做題后要總結(jié)至關(guān)重要,只有認真總結(jié)才能不斷積累做題經(jīng)驗,這樣才能取得理想成績。

  4、做題總是粗心怎么辦?

  很多學生成績不好,會說自己是因為粗心導致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學習中,一定要注重熟練度和精準度的練習。如果總是給自己找“粗心”的借口,也就變相否定了自己的學習弱點,所以,要告訴自己,高中數(shù)學沒有“粗心”只有“不用心”。

初中數(shù)學知識點總結(jié)13

  在初中數(shù)學課堂教學中,小結(jié)一般作為總結(jié)本課,開啟下一課的鑰匙。但是在具體執(zhí)行過程中,受到時間、學生心態(tài)、教師課堂設計水平等因素的限制,初中數(shù)學課堂小結(jié)在運用的過程中呈現(xiàn)出多種問題。究其原因是多方面的,而其最主要的原因則來源于教師對學生心理的把握力度不夠。心理學專家在當代少年兒童的大腦結(jié)構(gòu)分析基礎上所做出的研究表明,在初中階段的學生對課程的關(guān)注度主要集中在前15分鐘,個別注意力比較好的學生能堅持到15~25分鐘,隨著時間的推移,從25分鐘到45分鐘之間學生的記憶力和注意力則出現(xiàn)了逐漸下滑的趨勢。由此可見,教師在做初中數(shù)學課程設計時,僅僅按照傳統(tǒng)習慣將課堂小結(jié)作為課末總結(jié)的方式并不科學,對學生的課堂學習和課下探索延伸起不到推動作用。

  由此,在新的知識環(huán)節(jié)講解和學習的過程中,對課堂小結(jié)的設計,教師應該通過巧妙的規(guī)劃,實現(xiàn)溫故知新,而這又是對本堂課程的總結(jié)和反思的過程,具有極強的邏輯性和漸進性,環(huán)環(huán)相扣,同時要為學生的思考和課下探索的延伸留出獨立的空間。因此,按照具體的操作,本文以浙教版初中數(shù)學“探索多邊形的內(nèi)角和”的課堂學習為例,對課堂小結(jié)的運用從以下兩個方面進行闡述。

  一、撥迷梳“理”,溫故知新

  七年級“探索多邊形的內(nèi)角和”一課的教學重點是讓學生了解什么是多邊形、什么是內(nèi)角、如何求內(nèi)角和、如何在現(xiàn)實生活中利用此種計算方法。新課標要求,學生作為教學主體,對課程重點內(nèi)容的了解和領悟主要是以他們自身的動手操作為主,這也是教師在教案設計時的主要切入點之一。在明確本堂課的教學重點之后,教師需要對以往學習過的知識點進行梳理,并找出與本堂課有關(guān)聯(lián)性的知識點,在課程初始時作為引導,通過對以往知識點的回顧,如三角形、相交線等已學知識點引出本堂課的重點。而后面即將學習的課程,如“多姿多彩幾何圖形”等的相應測試,也可以作為學生課堂及課后的延伸知識點,在教師的課程講解過程中予以貫穿。當然,在課程設計初期,教師要尤為注意的是,應根據(jù)本堂課知識點的重點排序,由主到輔、由簡入深地安排好具有節(jié)奏感的講解內(nèi)容及小結(jié),而作為延伸思考的`知識點在每個小結(jié)部分可以按照其相關(guān)性和重要性進行穿插安排。

  二、動手操作,注重反思

  “探索多邊形的內(nèi)角和”中,多邊形的概念是本課各個難點展開的基礎,按照多邊形的概念,教師可以讓學生用線、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗多邊形的曲線美。引導學生嘗試以拉伸和縮小的方式構(gòu)架出凹多邊形和凸多變形后,教師可以讓學生按照體驗來描述二者的區(qū)別和相同點,并以此作為小結(jié)。當學生做完歸納后,根據(jù)本課“多邊形的內(nèi)角和主要以凸多邊形為主”的教學目標要求,教師可提問:“同學們目前已經(jīng)了解了二者的區(qū)別,本堂課要講解的‘多邊形內(nèi)角和’主要以凸多邊形為基礎,但是為什么我們不以凹多邊形為基礎呢?請同學們仔細想想原因!苯處煹倪@種講解模式既可以為下面對“內(nèi)角和”的重點講解作鋪墊,又可以讓學生深入思考之前對凹凸多邊形的描述是否恰當,是否符合多邊形的數(shù)學性規(guī)律。

  在此種引導方法下,學生會按照下一個知識點的內(nèi)容來反思之前的小結(jié)是否具有全面性。在反復的思考和對比過程中,學生的邏輯思維可以得到充分的訓練。這對培養(yǎng)學生的數(shù)學思維,以及對知識點的重復性推敲和反思能力的提升具有促進作用。一旦學生在思考和探討的過程中,摸索到數(shù)學本身的規(guī)律,并從復雜多樣的數(shù)學知識點中找到其原本的架構(gòu),自然會在頭腦中建立起一個符合自身記憶和領悟需要的數(shù)學知識體系。

  三、大道從簡,循環(huán)漸進

  大道從簡,按照初中數(shù)學的知識點架構(gòu)來看,每堂課的每個知識點都可以在被重點提煉之后作為節(jié)點來布置課堂小結(jié)。以數(shù)學的邏輯思維傳承性為基礎,課堂上的下一個知識點就可以作為反思和推敲上一個小結(jié)的試金石,如此循環(huán)往復后,課末的最終知識點總結(jié)則對本課所有知識點小結(jié)進行有效的補充和完善,進而延伸出下堂課以及與本堂課重點內(nèi)容相關(guān)的其他數(shù)學知識點的探索和思考。

  當然,這種教學方法也同樣可以運用到其他學科的教學中。借助教師的漸進式誘導,學生會自主加入到課堂探索中,通過由簡到難、由淺入深的逐層遞進式反思和討論提升在課堂中的興趣度和專注度。

初中數(shù)學知識點總結(jié)14

  初中數(shù)學的學科地位很高,一直以來是三大學科之一,影響著物理化學的學習。

  圓心角

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  推理過程

  根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時,顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點a與a'重合,b與b'重合。

  因此,弧ab與弧a'b'重合,ab與a'b'重合。即

  弧ab=弧a'b',ab=a'b'。

  則得到上面定理。

  同樣還可以得到:

  在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的.弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。

  所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應的其余各組量也相等。

  圓的圓心角知識要領很容易掌握,經(jīng)常會出現(xiàn)在關(guān)于圓的證明題中。

初中數(shù)學知識點總結(jié)15

  一、關(guān)于初高中數(shù)學成績分化原因的分析

  1、環(huán)境與心理的變化。

  對高一新生來講,環(huán)境可以說是全新的,新教材、新同學、新教師、新集體……學生有一個由陌生到熟悉的適應過程。另外,經(jīng)過緊張的中考復習,考取了自己理想的高中,必有些學生產(chǎn)生“松口氣”想法,入學后無緊迫感。也有些學生有畏懼心理,他們在入學前,就耳聞高中數(shù)學很難學,高中數(shù)學課一開始也確是些難理解的抽象概念,如映射、集合、異面直線等,使他們從開始就處于怵頭無趣的被動局面。以上這些因素都嚴重影響高一新生的學習質(zhì)量。

  2、教材的變化。

  首先,初中數(shù)學教材內(nèi)容通俗具體,多為常量,題型少而簡單;而高中數(shù)學內(nèi)容抽象,多研究變量、字母,不僅注重計算,而且還注重理論分析,這與初中相比增加了難度。

  其次,由于近幾年教材內(nèi)容的調(diào)整,雖然初高中教材都降低了難度,但相比之下,初中降低的幅度大,而高中由于受高考的限制,教師都不敢降低難度,造成了高中數(shù)學實際難度沒有降低。因此,從一定意義上講,調(diào)整后的教材不僅沒有縮小初高中教材內(nèi)容的難度差距,反而加大了。

  3、課時的變化。

  在初中,由于內(nèi)容少,題型簡單,課時較充足。因此,課容量小,進度慢,對重難點內(nèi)容均有充足時間反復強調(diào),對各類習題的解法,教師有時間進行舉例示范,學生也有足夠時間進行鞏固。而到高中,由于知識點增多,靈活性加大和新工時制實行,使課時減少,課容量增大,進度加快,對重難點內(nèi)容沒有更多的時間強調(diào),對各類型題也不可能講全講細和鞏固強化。這也使高一新生開始不適應高中學習而影響成績的提高。

  4、學法的變化。

  在初中,教師講得細,類型歸納得全,練得熟,考試時,學生只要記準概念、公式及教師所講例題類型,一般均可對號入座取得好成績。因此,學生習慣于圍著教師轉(zhuǎn),不注重獨立思考和對規(guī)律的歸納總結(jié)。到高中,由于內(nèi)容多時間少,教師不可能把知識應用形式和題型講全講細,只能選講一些具有典型性的題目,以落實“三基”培養(yǎng)能力。因此,高中數(shù)學學習要求學生要勤于思考,善于歸納總結(jié)規(guī)律,掌握數(shù)學思想方法,做到舉一反三,觸類旁通。然而,剛?cè)雽W的高一新生,往往繼續(xù)沿用初中學法,致使學習困難較多,完成當天作業(yè)都很困難,更沒有預習、復習及總結(jié)等自我消化自我調(diào)整的時間。這顯然不利于良好學法的形成和學習質(zhì)量的提高。

  二、搞好初高中銜接所采取的主要措施

  1、做好準備工作,為搞好銜接打好基礎。

 、俑愫萌雽W教育。這是搞好銜接的基礎工作,也是首要工作。通過入學教育提高學生對初高中銜接重要性的認識,增強緊迫感,消除松懈情緒,初步了解高中數(shù)學學習的特點,為其它措施的落實奠定基礎這里主要做好四項工作:一是給學生講清高一數(shù)學在整個中學數(shù)學中所占的位置和作用;二是結(jié)合實例,采取與初中對比的方法,給學生講清高中數(shù)學內(nèi)容體系特點和課堂教學特點;三是結(jié)合實例給學生講明初高中數(shù)學在學法上存在的本質(zhì)區(qū)別,并向?qū)W生介紹一些優(yōu)秀學法,指出注意事項;四是請高年級學生談體會講感受,引導學生少走彎路,盡快適應高中學習。

  ②摸清底數(shù),規(guī)劃教學。

  為了搞好初高中銜接,教師首先要摸清學生的學習基礎,然后以此來規(guī)劃自己的教學和落實教學要求,以提高教學的針對性。在教學實際中,我們一方面通過進行摸底測試和對入學成績的分析,了解學生的基礎;另一方面,認真學習和比較初高中教學大綱和教材,以全面了解初高中數(shù)學知識體系,找出初高中知識的銜接點、區(qū)別點和需要鋪路搭橋的知識點,以使備課和講課更符合學生實際,更具有針對性。

  2、優(yōu)化課堂教學環(huán)節(jié),搞好初高中銜接。

 、倭⒆阌诖缶V和教材,尊重學生實際,實行層次教學。高一數(shù)學中有許多難理解和掌握的知識點,如集合、映射等,對高一新生來講確實困難較大。因此,在教學中,應從高一學生實際出發(fā),采勸低起點、小梯度、多訓練、分層次”的方法,將教學目標分解成若干遞進層次逐層落實。在速度上,放慢起始進度,逐步加快教學節(jié)奏。在知識導入上,多由實例和已知引入。在知識落實上,先落實“死”課本,后變通延伸用活課本。在難點知識講解上,從學生理解和掌握的實際出發(fā),對教材作必要層次處理和知識鋪墊,并對知識的理解要點和應用注意點作必要總結(jié)及舉例說明。

 、谥匾曅屡f知識的聯(lián)系與區(qū)別,建立知識網(wǎng)絡。初高中數(shù)學有很多銜接知識點,如函數(shù)概念、平面幾何與立體幾何相關(guān)知識等,到高中,它們有的加深了,有的研究范圍擴大了,有些在初中成立的結(jié)論到高中可能不成立。因此,在講授新知識時,我們有意引導學生聯(lián)系舊知識,復習和區(qū)別舊知識,特別注重對那些易錯易混的知識加以分析、比較和區(qū)別。這樣可達到溫故知新、溫故而探新的效果。

 、壑匾曊故局R的形成過程和方法探索過程,培養(yǎng)學生創(chuàng)造能力。高中數(shù)學較初中抽象性強,應用靈活,這就要求學生對知識理解要透,應用要活,不能只停留在對知識結(jié)論的死記硬套上,這就要求教師應向?qū)W生展示新知識和新解法的產(chǎn)生背景、形成和探索過程,不僅使學生掌握知識和方法的本質(zhì),提高應用的靈活性,而且還使學生學會如何質(zhì)疑和解疑的思想方法,促進創(chuàng)造性思維能力的提高。

 、苤匾暸囵B(yǎng)學生自我反思自我總結(jié)的良好習慣,提高學習的自覺性。高中數(shù)學概括性強,題目靈活多變,只靠課上聽懂是不夠的,需要課后進行認真消化,認真總結(jié)歸納。這就要求學生應具備善于自我反思和自我總結(jié)的能力。為此,我們在教學中,抓住時機積極培養(yǎng)。在單元結(jié)束時,幫助學生進行自我章節(jié)小結(jié),在解題后,積極引導學生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規(guī)律的總結(jié)。由此培養(yǎng)學生善于進行自我反思的習慣,擴大知識和方法的應用范圍,提高學習效率。

 、葜匾晫n}教學。利用專題教學,集中精力攻克難點,強化重點和彌補弱點,系統(tǒng)歸納總結(jié)某一類問題的'前后知識、應用形式、解決方法和解題規(guī)律。并借此機會對學生進行學法的指點,有意滲透數(shù)學思想方法。

  3、加強學法指導。

  高中數(shù)學教學要把對學生加強學法指導作為教學的重要任務之一。指導以培養(yǎng)學習能力為重點,狠抓學習基本環(huán)節(jié),如“怎樣預習”、“怎樣聽課”等等。

  具體措施有三:一是寓學法指導于知識講解、作業(yè)講評、試卷分析等教學活動之中,這種形式貼近學生學習實際,易被學生接受;二是舉辦系列講座,介紹學習方法;三是定期進行學法交流,同學間互相取長補短,共同提高。

  4、優(yōu)化教育管理環(huán)節(jié),促進初高中良好銜接。

 、僦匾曔\用情感和成功原理,喚起學生學好數(shù)學的熱情。搞好初高中銜接,除了優(yōu)化教學環(huán)節(jié)外,還應充分發(fā)揮情感和心理的積極作用。我們在高一教學中,注意運用情感和成功原理,調(diào)動學生學習熱情,培養(yǎng)學習數(shù)學興趣。學生學不好數(shù)學,少責怪學生,要多找自己的原因。要深入學生當中,從各方面了解關(guān)心他們,特別是差生,幫助他們解決思想、學習及生活上存在的問題。給他們多講數(shù)學在各行各業(yè)廣泛應用,講祖國四化建設需要大批懂數(shù)學的專家學者;講愛因斯坦在初中一次數(shù)學竟沒有考及格,但他沒有氣餒,終于成了一名偉大科學家,華羅庚在學生時代奮發(fā)圖強,終于在數(shù)學研究中做出了卓越貢獻,等等。使學生提高認識,增強學好數(shù)學的信心。在提問和布置作業(yè)時,從學生實際出發(fā),多給學生創(chuàng)設成功的機會,以體會成功的喜悅,激發(fā)學習熱情。

  ②重視培養(yǎng)學生正確對待困難和挫折的良好心理素質(zhì)。由于高中數(shù)學的特點,決定了高一學生在學習中的困難大挫折多。為此,我們在教學中注意培養(yǎng)學生正確對待困難和挫折的良好心理素質(zhì),使他們善于在失敗面前,能冷靜地總結(jié)教訓,振作精神,主動調(diào)整自己的學習,并努力爭取今后的勝利。平時多注意觀察學生情緒變化,開展心理咨詢,做好個別學生思想工作。

 、垭娨曋R的反饋和落實。通過建立多渠道的反饋途徑,及時收集學生對知識的掌握情況和對教學的意見,為及時矯上學生的錯誤,調(diào)整教學,提高教學針對性提供依據(jù)。知識落實的思路為:以落實“三基”為中心,實行分層落實,做到提優(yōu)補差。主要措施是:平時練習層次化,單元結(jié)束考查制度化,做到章節(jié)會,單元清。

【初中數(shù)學知識點總結(jié)】相關(guān)文章:

初中數(shù)學必備知識點總結(jié)03-01

初中數(shù)學幾何知識點總結(jié)11-05

初中數(shù)學函數(shù)知識點總結(jié)11-24

初中數(shù)學圓的知識點總結(jié)12-05

初中數(shù)學函數(shù)知識點總結(jié)06-14

數(shù)學初中知識點總結(jié)06-10

初中數(shù)學知識點總結(jié)07-14

初中數(shù)學知識點總結(jié)07-15

(優(yōu))初中數(shù)學知識點總結(jié)12-04

初中數(shù)學知識點總結(jié)(精)05-15