【通用】數(shù)學(xué)初中知識點總結(jié)
總結(jié)在一個時期、一個年度、一個階段對學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它可以促使我們思考,讓我們好好寫一份總結(jié)吧。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?下面是小編幫大家整理的數(shù)學(xué)初中知識點總結(jié),歡迎閱讀,希望大家能夠喜歡。
數(shù)學(xué)初中知識點總結(jié)1
一、圓
1、圓的有關(guān)性質(zhì)
在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等于定長的點都在圓上。
就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。
圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個點確定一個圓。
經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個步驟:
、偌僭O(shè)命題的結(jié)論不成立;
②從這個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設(shè)有兩個以上是鈍角
則兩個鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
六、圓的判定性質(zhì)
1.不在同一直線上的`三點確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、倨椒窒(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它 的內(nèi)對角
12.①直線L和⊙O相交 d
、谥本L和⊙O相切 d=r
、壑本L和⊙O相離 dr
13.切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑
15.推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16.推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內(nèi)對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離 dR+r ②兩圓外切 d=R+r
、.兩圓相交 R-rr)
、.兩圓內(nèi)切 d=R-r(Rr) ⑤兩圓內(nèi)含dr)
數(shù)學(xué)初中知識點總結(jié)2
中考沖刺數(shù)學(xué)知識點的幾個復(fù)習(xí)建議:
1)所有的知識點自己先復(fù)習(xí)一遍,標記好那些掌握不扎實的知識,第二輪復(fù)習(xí)的重點!
2)對于標記不扎實的知識,如果實在不理解,回到課本中查收相應(yīng)的內(nèi)容,特別是結(jié)合例題理解
3)平常學(xué)校一定有很多練習(xí),把做錯的題目和難題當成寶貝,因為我們要想進步就這是捷徑——理解消化錯題,所有保持積極的心態(tài)去面對那些錯題難題吧。
4)對于學(xué)過思維導(dǎo)圖的同學(xué),建議將這些知識點按章節(jié)梳理成知識體系,平常復(fù)習(xí)太好用了。
以下是詳細的知識點:
一、一元一次方程根的情況
△=b2-4ac
當△>0時,一元二次方程有2個不相等的實數(shù)根;
當△=0時,一元二次方程有2個相同的實數(shù)根;
當△<0時,一元二次方程沒有實數(shù)根
2、平行四邊形的性質(zhì):
、賰山M對邊分別平行的四邊形叫做平行四邊形。
②平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。
③平行四邊形的對邊/對角相等。
④平行四邊形的對角線互相平分。
菱形:
①一組鄰邊相等的平行四邊形是菱形
、陬I(lǐng)心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。
、叟卸l件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:
、儆幸粋內(nèi)角是直角的平行四邊形叫做矩形。
、诰匦蔚膶蔷相等,四個角都是直角。
③對角線相等的平行四邊形是矩形。
④正方形具有平行四邊形,矩形,菱形的一切性質(zhì)。
、菀唤M鄰邊相等的矩形是正方形。
多邊形:
、貼邊形的內(nèi)角和等于(N-2)180度
②多邊心內(nèi)角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內(nèi)角和(都等于360度)
平均數(shù):對于N個數(shù)X1,X2…XN,我們把(X1+X2+…+XN)/N叫做這個N個數(shù)的算術(shù)平均數(shù),記為X
加權(quán)平均數(shù):一組數(shù)據(jù)里各個數(shù)據(jù)的重要程度未必相同,因而,在計算這組數(shù)據(jù)的平均數(shù)時往往給每個數(shù)據(jù)加一個權(quán),這就是加權(quán)平均數(shù)。
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯角相等,兩直線平行
11、同旁內(nèi)角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯角相等
14、兩直線平行,同旁內(nèi)角互補
15、定理三角形兩邊的和大于第三邊
16、推論三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°
18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21、全等三角形的對應(yīng)邊、對應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)
31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1三個角都相等的三角形是等邊三角形
36、推論2有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角三角形斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1關(guān)于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46、勾股定理直角三角形兩直角邊a、b的.平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形
48、定理四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等
53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60、矩形性質(zhì)定理1矩形的四個角都是直角
61、矩形性質(zhì)定理2矩形的對角線相等
62、矩形判定定理1有三個角是直角的四邊形是矩形
63、矩形判定定理2對角線相等的平行四邊形是矩形
64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1關(guān)于中心對稱的兩個圖形是全等的
72、定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱
74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h
83、(1)比例的基本性質(zhì):
如果a:b=c:d,那么ad=bc
如果ad=bc ,那么a:b=c:d
84、(2)合比性質(zhì):
如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質(zhì):
如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例
87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
97、性質(zhì)定理2相似三角形周長的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101、圓是定點的距離等于定長的點的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理不在同一直線上的三點確定一個圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
數(shù)學(xué)初中知識點總結(jié)3
20xx年的工作臨近尾聲,回首本年度真是忙碌而充實,本年度我即擔(dān)任教導(dǎo)處主任一職又擔(dān)任班主任工作,經(jīng)常是忙的喝口水的時間都沒有。雖然在教導(dǎo)處主任的崗位上我只有不到一年的工作經(jīng)驗,但是在李校長的關(guān)心和培養(yǎng)下,在全體領(lǐng)導(dǎo)、老師、家長的熱情支持和幫助下,各項工作得以順利開展并在一些方面有了較為明顯的進步。現(xiàn)對自己一年來所做工作加以梳理和反思,力求在總結(jié)中發(fā)現(xiàn)不足,在反思中縮中差距,在創(chuàng)新中不斷提升。
一、思想品德方面
我熱愛教育事業(yè),始初不忘人民教師職責(zé),愛學(xué)校、愛學(xué)生。作為一名名師,我從自身嚴格要求自己,通過政治思想、學(xué)識水平、教育教學(xué)能力等方面的不斷提高來塑造自己的行為,使自己在教育行業(yè)中不斷成長,為社會培養(yǎng)出優(yōu)秀的人才,打下堅實的基礎(chǔ)。
二、主要成績
今年是我到工作的第五個年頭,幾年來我一直擔(dān)任班主任和年級的組長,同時又負責(zé)學(xué)校教導(dǎo)處工作,一直以來,我始初牢記"踏實工作、真心待人"的原則,在工作中嚴格要求自己,刻苦鉆研業(yè)務(wù),不斷提高業(yè)務(wù)水平,不斷學(xué)習(xí)新知識,探索教育教學(xué)規(guī)律,改進教育教學(xué)方法,努力使自己成為專家型教師。
1、在班主任工作方面:我投入了極強的責(zé)任心,關(guān)注每一名學(xué)生,及時發(fā)現(xiàn)他們的各種心理或行為動態(tài),還有學(xué)習(xí)的心態(tài)與學(xué)習(xí)情況,用愛心與耐心澆灌每一個孩子,并且及時與家長、科任老師進行溝通,使孩子在各個方面得到發(fā)展,幾年來,與學(xué)生形成了亦師亦友的和諧師生關(guān)系,在18年被評為省級師德先進個人,19年被評為省級優(yōu)秀教師。加強學(xué)習(xí),努力提升自身修為。
2、在教學(xué)方面:我嚴格要求自己,用心備課上課,每一節(jié)課都精心準備課件,仔細研究每一道習(xí)題,真正做到講練結(jié)合,學(xué)以致用,形成了趣實活新的教學(xué)風(fēng)格,同時,在教研方面,我積極去聽課評課,認真學(xué)習(xí)別人上課的長處,為己所用。在17年被評為市級名師工作室主持人,18年被評為省級學(xué)科帶頭人。
3、在教導(dǎo)方面:在做好班主任工作的同時,我作為校長助理、教導(dǎo)主任,我能正確定位,努力做好校長的助手,協(xié)調(diào)各種工作。
一直以來我總是以飽滿的`熱情對待本職工作,兢兢業(yè)業(yè),忠于職守,凡是要求老師們做到的,自己首先做到。我始初認真落實學(xué)校制定的教學(xué)教研常規(guī),不斷規(guī)范教師教學(xué)行為。從學(xué)期初開始,認真執(zhí)行教學(xué)教研工作計劃和工作記錄,嚴格按照學(xué)校修訂的規(guī)章制度去要求師生,定期檢查教師教案及作業(yè)批改情況,發(fā)現(xiàn)問題及時反饋及時做好總結(jié)并進行跟蹤檢查,期末對教案進行歸納整理。規(guī)范日常巡課制度,定時巡課與不定時巡課相結(jié)合,不定時跟班聽課,與執(zhí)教教師共同切磋存在的問題,加強對教學(xué)工作的監(jiān)控,促進教學(xué)質(zhì)量的提高。
學(xué)校要發(fā)展、要生存必須有一批高素質(zhì)的教師隊伍,同樣教師今后要生存要發(fā)展必須具有過硬的本領(lǐng)。我清楚的認識到必須加強骨干教師、青年教師的培養(yǎng)力度,也借助各種機遇,為教師搭建自我展示的平臺。加大新教師的培養(yǎng)力度,開展“師徒結(jié)對子”活動,通過推門聽課,領(lǐng)導(dǎo)聽課、一課三研、師傅引領(lǐng)課、新教師展示課等,鼓勵教師參加各級各類比賽、培訓(xùn)活動等形式,促進新教師的迅速成長。我精心制定了以人為本的校本培訓(xùn)計劃,每學(xué)期開展十多次骨干培訓(xùn)活動,并進行讀書交流活動,活動做到人人有準備,人人有發(fā)言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學(xué)水準。
通過開展語、數(shù)集體備課—上課—聽課——評課研討這樣的教研活動觀摩,讓更多的教師參與到校本教研活動中來,增強了教研活動的實效性,提高了教師的課堂教學(xué)水平。新教師展示課活動,“中荷才露尖尖角”,新教師在歷練中成長;常態(tài)化的研討課,“萬紫千紅總是春”,老師們?nèi)¢L補短,共同促進;名師、骨干教師的精品課,“萬綠叢中一點紅”,起了引領(lǐng)示范的作用。
教科研是教學(xué)的源泉,是教改的先導(dǎo),我十分重視課題研究、管理。18年獨立承擔(dān)了省級重點課題研究已經(jīng)結(jié)題,并被評為科研課題先進個人,19年又獨立承擔(dān)了中課題的研究,已經(jīng)接近尾聲。
4、自身提高方面:我能利用課余時間閱讀一些教育名著及教育教學(xué)刊物,并及時做好讀書筆記,建立個人博客,發(fā)表自己原創(chuàng)的教學(xué)感想、教案設(shè)計、學(xué)習(xí)心得、教育理念等文章。一份耕耘,一份收獲”,一年來,我積極參加各級各類比賽,多次獲獎,還被評為縣級學(xué)科帶頭人。
三、存在的不足
回顧一年來的工作,我雖然取得了一些成績,積累了一些經(jīng)驗,但是,實事求是地說,與領(lǐng)導(dǎo)的要求和自己的期待還有差距,主要表現(xiàn)在:
1、對教導(dǎo)處管理工作還須腳踏實地地去做,謙虛認真地去學(xué),以使自己取得更好的成績。
2、教學(xué)方面對差生主要是采取開中灶、嚴要求的方式進行強化管理,對其心理攻堅尚不到位,所以見效慢,容易激化師生間的矛盾,還得在實踐中多摸索。課堂教學(xué)水平有待提高,要與同事們多切磋,多學(xué)習(xí)。
3、教研方面,仍需強化、深化、細化地系統(tǒng)學(xué)習(xí)相關(guān)理論知識,所寫隨感不能僅僅停留在表面現(xiàn)象,還應(yīng)善于總結(jié)提升,以形成有一定深度的,并具有自我指導(dǎo)意義的理論型文字。
另外,意志仍不夠堅強,堅持還不夠徹底,實是欠缺“鐵杵磨成針”的精神?傊,回顧取得的成績,固然可喜,值得欣慰,但面對未來,仍感任重道遠、不敢懈怠。
最后,用一句話作為本年度的工作總結(jié),下一年度的開始,也就是:既然選擇了遠方,必然風(fēng)雨兼程。我將某某,繼續(xù)前行!
關(guān)于數(shù)學(xué)常見誤區(qū)有哪些
1、被動學(xué)習(xí)
許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。
2、學(xué)不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、不重視基礎(chǔ)
一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。
4、進一步學(xué)習(xí)條件不具備
高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。
如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。
數(shù)學(xué)初中知識點總結(jié)4
初中生經(jīng)過中考的奮力拼搏,剛跨入高中,都有十足的信心,旺盛的求知欲,都有把高中課程學(xué)好的愿望。但經(jīng)過一段時間,他們普遍感覺高中數(shù)學(xué)并非想象中那么簡單易學(xué),而是太枯燥,泛味,抽象,晦澀,有些章節(jié)如聽天書。在做習(xí)題,課外練習(xí)時,又是磕磕碰碰,跌跌撞撞,常常感到茫然一片,不知從何下手。造成這種現(xiàn)象的原因是多方面的,但最主要的根源還在于初,高中數(shù)學(xué)教學(xué)上的銜接問題。下面就這個問題進行分析,探討其原因,尋找解決對策。
一、高一學(xué)生學(xué)習(xí)數(shù)學(xué)產(chǎn)生困難是造成數(shù)學(xué)成績下降的主要原因
。ㄒ唬┙滩牡脑。
由于實行九年制義務(wù)教育和倡導(dǎo)全面提高學(xué)生素質(zhì),現(xiàn)行初中數(shù)學(xué)教材在內(nèi)容上進行了較大幅度的調(diào)整,難度,深度和廣度大大降低了,那些在高中學(xué)習(xí)中經(jīng)常應(yīng)用到的知識,如:對數(shù),二次不等式,解斜三角形,分數(shù)指數(shù)冪等內(nèi)容,都轉(zhuǎn)移到高一階段補充學(xué)習(xí)。這樣初中教材就體現(xiàn)了"淺,少,易"的特點,但卻加重了高一數(shù)學(xué)的份量。另外,初中數(shù)學(xué)教材中每一新知識的引入往往與學(xué)生日常生活實際很貼近,比較形象,并遵循從感性認識上升到理性認識的規(guī)律,學(xué)生一般都容易理解,接受和掌握。且目前初中教材敘述方法比較簡單,語言通俗易懂,直觀性,趣味性強,結(jié)論容易記憶,應(yīng)試效果也比較理想。
相對而言,高中數(shù)學(xué)一開始,概念抽象,定理嚴謹,邏輯性強,教材敘述比較嚴謹,規(guī)范,抽象思維和空間想象明顯提高,知識難度加大,且習(xí)題類型多,解題技巧靈活多變,計算繁冗復(fù)雜,體現(xiàn)了"起點高,難度大,容量多"的特點。
(二)教法的原因。
初中數(shù)學(xué)教學(xué)內(nèi)容少,知識難度不大,教學(xué)要求較低,因而教學(xué)進度較慢,對于某些重點,難點,教師可以有充裕的時間反復(fù)講解,多次演練,從而各個擊破、另外,為了應(yīng)付中考,初中教師大多數(shù)采用"滿堂灌"填鴨式的教學(xué)模式,單純地向?qū)W生傳授知識,并讓學(xué)生通過機械模仿式的重復(fù)練習(xí)以達到熟能生巧的程度,結(jié)果造成"重知識,輕能力","重局部,輕整體","重試卷(復(fù)習(xí)資料),輕書本"的不良傾向。這種封閉被動的傳統(tǒng)教學(xué)方式嚴重束縛了學(xué)生思維的發(fā)展,影響了學(xué)生發(fā)現(xiàn)意識的形成,創(chuàng)新思維受到了扼制。但是進入高中以后,教材內(nèi)涵豐富,教學(xué)要求高,進度快,知識信息廣泛,題目難度加深,知識的重點和難點也不可能象初中那樣通過反復(fù)強調(diào)來排難釋疑。而且高中教學(xué)往往通過設(shè)導(dǎo),設(shè)問,設(shè)陷,設(shè)變,啟發(fā)引導(dǎo),開拓思路,然后由學(xué)生自己去思考,去解答,比較注意知識的發(fā)生過程,傾重對學(xué)生思想方法的滲透和思維品質(zhì)的培養(yǎng)。這使得剛進入高中的學(xué)生不容易適應(yīng)這種教學(xué)方法。聽課時就存在思維障礙,不容易跟上教師的思維,從而產(chǎn)生學(xué)習(xí)障礙,影響數(shù)學(xué)的學(xué)習(xí)。
。ㄈ⿲W(xué)生自身的原因。
、俦粍訉W(xué)習(xí)
在初中,教師講得細,類型歸納得全,反復(fù)練習(xí)?荚嚂r,學(xué)生只要記憶概念,公式,及例題類型,一般都可以對號入座取得好成績。因此,學(xué)生習(xí)慣于圍著教師轉(zhuǎn),不需要獨立思考和對規(guī)律進行歸納總結(jié)。學(xué)生滿足于你講我聽,你放我錄,缺乏學(xué)習(xí)主動性。表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師上課的內(nèi)容不了解,上課忙于記筆記,沒聽到"門道",沒有真正理解所學(xué)內(nèi)容。而到了高中,數(shù)學(xué)學(xué)習(xí)要求學(xué)生勤于思考,善于歸納總結(jié)規(guī)律,掌握數(shù)學(xué)思想方法,做到舉一反三,觸類旁通。所以,剛?cè)雽W(xué)的高一新生,往往沿用初中學(xué)法,致使學(xué)習(xí)出現(xiàn)困難,完成當天作業(yè)都很困難,更沒有預(yù)習(xí),復(fù)習(xí),總結(jié)等自我消化,自我調(diào)整的.時間。這顯然不利于良好學(xué)法的形成和學(xué)習(xí)質(zhì)量的提高。造成高一學(xué)生數(shù)學(xué)學(xué)習(xí)的困難。
②學(xué)不得法
老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固,總結(jié),尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念,法則,公式,定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
二、搞好初高中數(shù)學(xué)教學(xué)銜接,幫助學(xué)生渡過學(xué)習(xí)數(shù)學(xué)"困難期"的對策
。ㄒ唬┳龊脺蕚涔ぷ鳎瑸楦愫勉暯哟蚝没A(chǔ)。
1、搞好入學(xué)教育。這是搞好銜接的基礎(chǔ)工作,也是首要工作。
通過入學(xué)教育提高學(xué)生對初高中銜接重要性的認識,增強緊迫感,消除松懈情緒,初步了解高中數(shù)學(xué)學(xué)習(xí)的特點,為其它措施的落實奠定基礎(chǔ)。這里主要做好四項工作:一是給學(xué)生講清高一數(shù)學(xué)在整個中學(xué)數(shù)學(xué)中所占的位置和作用;二是結(jié)合實例,采取與初中對比的方法,給學(xué)生講清高中數(shù)學(xué)內(nèi)容體系特點和課堂教學(xué)特點;三是結(jié)合實例給學(xué)生講明初高中數(shù)學(xué)在學(xué)法上存在的本質(zhì)區(qū)別,并向?qū)W生介紹一些優(yōu)秀學(xué)法,指出注意事項;四是請高年級學(xué)生談體會講感受,引導(dǎo)學(xué)生少走彎路,盡快適應(yīng)高中學(xué)習(xí)。
2、摸清底數(shù),規(guī)劃教學(xué)。為了搞好初高中銜接,教師首先要摸清學(xué)生的學(xué)習(xí)基礎(chǔ),然后以此來規(guī)劃自己的教學(xué)和落實教學(xué)要求,以提高教學(xué)的針對性。在教學(xué)實際中,一方面通過進行摸底測試和對入學(xué)成績的分析,了解學(xué)生的基礎(chǔ);另一方面,認真學(xué)習(xí)和比較初高中教學(xué)大綱和教材,以全面了解初高中數(shù)學(xué)知識體系,找出初高中知識的銜接點,區(qū)別點和需要鋪路搭橋的知識點,以使備課和講課更符合學(xué)生實際,更具有針對性。
。ǘ﹥(yōu)化課堂教學(xué)環(huán)節(jié),搞好初高中數(shù)學(xué)知識銜接教學(xué)。
1、立足于大綱和教材,尊重學(xué)生實際,實行層次教學(xué)。
高一數(shù)學(xué)中有許多難理解和掌握的知識點,如集合,映射等,對高一新生來講確實困難較大。因此,在教學(xué)中,應(yīng)從高一學(xué)生實際出發(fā),采用低起點,小梯度,多訓(xùn)練,分層次"的方法,將教學(xué)目標分解成若干遞進層次逐層落實。在速度上,放慢起始進度,逐步加快教學(xué)節(jié)奏。在知識導(dǎo)入上,多由實例和已知引入。在知識落實上,先落實"死"課本,后變通延伸用活課本。在難點知識講解上,從學(xué)生理解和掌握的實際出發(fā),對教材作必要層次處理和知識鋪墊,并對知識的理解要點和應(yīng)用注意點作必要總結(jié)及舉例說明。
2、重視新舊知識的聯(lián)系與區(qū)別,建立知識網(wǎng)絡(luò)。
初高中數(shù)學(xué)有很多銜接知識點,如函數(shù)概念,平面幾何與立體幾何相關(guān)知識等,到高中,它們有的加深了,有的研究范圍擴大了,有些在初中成立的結(jié)論到高中可能不成立。因此,在講授新知識時,應(yīng)當有意引導(dǎo)學(xué)生聯(lián)系舊知識,復(fù)習(xí)和區(qū)別舊知識,特別注重對那些易錯易混的知識加以分析,比較和區(qū)別。這樣可達到溫故知新,溫故而探新的效果。
3、重視展示知識的形成過程和方法探索過程,培養(yǎng)學(xué)生創(chuàng)造能力。
高中數(shù)學(xué)比初中數(shù)學(xué)抽象性強,應(yīng)用靈活,這就要求學(xué)生對知識理解要透,應(yīng)用要活,不能只停留在對知識結(jié)論的死記硬套上,這就要求教師應(yīng)向?qū)W生展示新知識和新解法的產(chǎn)生背景,形成和探索過程,不僅使學(xué)生掌握知識和方法的本質(zhì),提高應(yīng)用的靈活性,而且還使學(xué)生學(xué)會如何質(zhì)疑和釋疑的思想方法,促進創(chuàng)造性思維能力的提高。
4、重視培養(yǎng)學(xué)生自我反思自我總結(jié)的良好習(xí)慣,提高學(xué)習(xí)的自覺性。
高中數(shù)學(xué)概括性強,題目靈活多變,課上聽懂是不夠的,需要課后進行認真消化,認真總結(jié)歸納。這就要求學(xué)生應(yīng)具備善于自我反思和自我總結(jié)的能力。因此,在教學(xué)中,應(yīng)當抓住時機積極培養(yǎng)。在單元結(jié)束時,幫助學(xué)生進行自我章節(jié)小結(jié),在解題后,積極引導(dǎo)學(xué)生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規(guī)律的總結(jié)。由此培養(yǎng)學(xué)生善于進行自我反思的習(xí)慣,擴大知識和方法的應(yīng)用范圍,提高學(xué)習(xí)效率。
。ㄈ┘訌妼W(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣
數(shù)學(xué)初中知識點總結(jié)5
一、圓
1、圓的有關(guān)性質(zhì)
在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等于定長的點都在圓上。
就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。
圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個點確定一個圓。
經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個步驟:
①假設(shè)命題的結(jié)論不成立;
、趶倪@個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
、塾擅艿贸黾僭O(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設(shè)有兩個以上是鈍角
則兩個鈍角之和>180°
與三角形內(nèi)角和等于180°矛盾。
∴不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
相關(guān)的角:
1、對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
2、互為補角:如果兩個角的和是一個平角,這兩個角做互為補角。
3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。
4、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補角則要求兩個角有特殊的位置關(guān)系。
角的性質(zhì)
1、對頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補角相等。
其實角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。
角的靜態(tài)定義
具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的.頂點,這兩條射線叫做角的兩條邊。
角的動態(tài)定義
一條射線繞著它的端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號
角的符號:∠
角的種類
在動態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
角周角:等于360°的角叫做周角。
負角:按照順時針方向旋轉(zhuǎn)而成的角叫做負角。
正角:逆時針旋轉(zhuǎn)的角為正角。
0角:等于零度的角。
特殊角
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線相交后所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構(gòu)成兩對對頂角;閷斀堑膬蓚角相等。
鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個角,互為鄰補角。
內(nèi)錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的
內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對角叫做內(nèi)錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5
同旁內(nèi)角:兩個角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6
同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外錯角:兩條直線被第三條直線所截,構(gòu)成了八個角。如果兩個角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。
同旁外角:兩個角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7
終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:
A{bb=k_360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
、僦本和圓無公共點,稱相離。 AB與圓O相離,d>r。
、谥本和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的方程
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1
當x=-C/Ax2時,直線與圓相離;
數(shù)學(xué)初中知識點總結(jié)6
在初中數(shù)學(xué)課堂教學(xué)中,教師不僅需要使用引人入勝的導(dǎo)語、精彩絕倫的講課過程,同時還應(yīng)該為學(xué)生營造一個回味無窮的課堂結(jié)尾,讓學(xué)生學(xué)有所思,學(xué)有所悟。不過,在具體的初中數(shù)學(xué)課堂教學(xué)實踐中,不少教師往往忽視結(jié)尾的重要性,從而弱化了教學(xué)效果,而運用藝術(shù)性的課堂結(jié)尾,能夠有效提升學(xué)習(xí)效率。
1、初中數(shù)學(xué)課堂結(jié)尾的重要意義
初中數(shù)學(xué)課堂結(jié)尾指的是教師在結(jié)束講課過程時,在更高層次方面挖掘數(shù)學(xué)知識之際的內(nèi)在聯(lián)系,以及數(shù)學(xué)思想方法,同導(dǎo)入環(huán)節(jié)一樣,也是課堂教學(xué)的重要一部分。一節(jié)優(yōu)秀的初中數(shù)學(xué)課,從開頭直到結(jié)尾,教師與學(xué)生都應(yīng)該在思維活躍狀態(tài),師生雙方都是積極的投入者,應(yīng)該充分利用課堂時間,使課堂教學(xué)效果最大化。在課堂結(jié)尾時,學(xué)生的思想往往比較放松,容易松懈、疲勞,學(xué)習(xí)注意力不集中,如果教師運用藝術(shù)性的課堂結(jié)尾,能夠促使學(xué)生仍然保持較高的學(xué)習(xí)熱情,使課堂中學(xué)習(xí)的數(shù)學(xué)知識在歸納中升華,在總結(jié)中延續(xù),在練習(xí)中鞏固,通過相互比較各個數(shù)學(xué)知識點之間的區(qū)別與聯(lián)系,設(shè)置懸念激發(fā)學(xué)生的求知欲望,使學(xué)生對教學(xué)成果有更深層次的認知更加加深了學(xué)生對已學(xué)到的知識的認知。在初中數(shù)學(xué)課堂上,結(jié)尾與其它環(huán)節(jié)有機整合,可以使整節(jié)數(shù)學(xué)課產(chǎn)生和諧美與整體美,讓學(xué)生回味悠長,從而提升數(shù)學(xué)知識的審美情趣。
2、初中數(shù)學(xué)課堂藝術(shù)性結(jié)尾方法
2.1運用歸納式結(jié)尾,訓(xùn)練思維的發(fā)散性:在初中數(shù)學(xué)課堂結(jié)束之前,教師可以使用歸納式的結(jié)尾方式,訓(xùn)練學(xué)生思維的發(fā)散性與集中性。初中數(shù)學(xué)課堂上的歸納式結(jié)尾,要求教師使用簡潔、準確的表格、文字和圖示等,對本節(jié)課已經(jīng)前面所學(xué)習(xí)的數(shù)學(xué)知識進行歸納與總結(jié),不僅可以幫助學(xué)生掌握數(shù)學(xué)知識的重點與系統(tǒng)性,還能夠促使他們集中精力思考問題,以及運用數(shù)學(xué)信息綜合分析問題的發(fā)散性思維能力,有利于提升學(xué)習(xí)效率。例如,在進行《直線、射線、線段》教學(xué)時,教師可以讓學(xué)生對這三種線的異同點進行歸納和總結(jié),通過對三者之間的對比與總結(jié),對于直線、射線、線段之間的區(qū)別,學(xué)生能夠掌握的更加深刻,通過生活中實例,讓學(xué)生找出不同類型的直線、射線與線段,使他們的思維得以發(fā)散和集中。
2.2運用懸念式結(jié)尾,訓(xùn)練思維的創(chuàng)造性:在初中數(shù)學(xué)課堂教學(xué)中,為培養(yǎng)學(xué)生的創(chuàng)造性思維,教師可以運用懸念式的課堂結(jié)尾模式,促使學(xué)生在懸念中活躍思維,然后發(fā)現(xiàn)新的問題,研究新規(guī)律,并且尋求解決問題的新手段。懸念式的初中數(shù)學(xué)課堂結(jié)尾意識形式,指的是教師根據(jù)本節(jié)課所講的內(nèi)容,設(shè)置一些與本節(jié)或下節(jié)知識相關(guān)的問題,然后引發(fā)學(xué)生對問題進行思考和分析,促使他們產(chǎn)生積極的學(xué)習(xí)狀態(tài),引發(fā)學(xué)生通過思考和分析探究新知識、得出新方法和總結(jié)新規(guī)律,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。這個方法也可以通俗的講為“吊胃口”,這個方法的`好處在于可以調(diào)動學(xué)生的好奇心,引起他們的興趣,再加一些獎勵的措施,可以起到事半功倍的效果,好奇心和興趣是學(xué)習(xí)的最大動力。例如,在進行《等腰三角形》教學(xué)時,為訓(xùn)練學(xué)生的創(chuàng)造性思維,在課堂結(jié)尾時教師可以設(shè)置這樣一個懸念式問題:為什么等腰三角形會三線合一,讓學(xué)生對其進行分析和研究,從而為下一節(jié)課《等邊三角形》做鋪墊,引導(dǎo)他們發(fā)現(xiàn)等邊三角形是最為特殊的等腰三角形,激發(fā)學(xué)習(xí)動力。
2.3運用討論式結(jié)尾,訓(xùn)練思維的求異性:初中生對于新數(shù)學(xué)知識的學(xué)習(xí)與認識,往往是由區(qū)別它們的性質(zhì)開始,所以,求異思維在初中數(shù)學(xué)教學(xué)中十分重要。同時,培養(yǎng)它們的求異思維也是初中數(shù)學(xué)教學(xué)的主要目標之一。求異思維(DivergentThinking),又稱輻射思維、放射思維、擴散思維或發(fā)散思維,是指大腦在思維時呈現(xiàn)的一種擴散狀態(tài)的思維模式,它表現(xiàn)為思維視野廣闊,思維呈現(xiàn)出多維發(fā)散狀。如“一題多解”、“一事多寫”、“一物多用”等方式,培養(yǎng)發(fā)散思維能力。不少心理學(xué)家認為,發(fā)散思維是創(chuàng)造性思維的最主要的特點,是測定創(chuàng)造力的主要標志之一。為訓(xùn)練學(xué)生的求異思維,初中數(shù)學(xué)教師可以運用討論式的課堂結(jié)尾,讓他們對某一數(shù)學(xué)問題進行探討,通過互相討論,彼此分享自己的看法與觀點,然后進行比較和鑒別,發(fā)現(xiàn)數(shù)學(xué)知識的不同點與相同點,從而認識正確認識到數(shù)學(xué)知識的多元化,訓(xùn)練學(xué)生的求異思維。例如,在進行《正方形》教學(xué)時,針對課堂結(jié)尾,教師為培養(yǎng)學(xué)生的求異思維,可以讓他們根據(jù)本節(jié)課的具體教學(xué)內(nèi)容,從定義、性質(zhì)和判定等方面,討論正方形、菱形和矩形之間異同,促使學(xué)生在求異思維中構(gòu)建數(shù)學(xué)知識的縱向聯(lián)系與橫向聯(lián)系,加強對數(shù)學(xué)知識點的理解。
2.4運用練習(xí)式結(jié)尾,訓(xùn)練思維的系統(tǒng)性:初中數(shù)學(xué)教師在課堂教學(xué)中運用練習(xí)式的結(jié)尾藝術(shù),指的是在課堂臨近結(jié)尾時,教師給學(xué)生布置一些練習(xí)作業(yè),通過練習(xí)回顧和訓(xùn)練本節(jié)課的主要教學(xué)內(nèi)容,從而訓(xùn)練他們的系統(tǒng)性思維。學(xué)生通過對練習(xí)題的分析和解決,可以使本節(jié)知識掌握的更加牢固和更深層次的理解,從而養(yǎng)成熟練的解題技巧;通過有效的課堂練習(xí),可以檢測學(xué)生對數(shù)學(xué)知識的掌握和運用情況,考察學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和知識應(yīng)用水平。例如,在進行《一次函數(shù)》中“函數(shù)的圖象”教學(xué)時,針對課堂結(jié)尾,教師可以給學(xué)生布置一些課堂練習(xí)題,像:y=2x+3、y=7x-4和7=1/4x+8等,讓他們畫出這些一次函數(shù)的圖像,以此來檢測學(xué)生對知識的掌握與使用情況,促使他們數(shù)學(xué)知識學(xué)習(xí)的更加整體,訓(xùn)練學(xué)生的系統(tǒng)性思維。
3、總結(jié)
總之,在初中數(shù)學(xué)課堂教學(xué)中,結(jié)尾環(huán)節(jié)十分重要,許多初入課堂的教師講課結(jié)束得太過突然,對結(jié)尾不夠重視,有的虎頭蛇尾、草草結(jié)尾,有的拖堂、拖泥帶水啰嗦式的結(jié)尾,降低教學(xué)效果。他們的結(jié)束方法不夠平順,缺乏修飾。正確地說,他們沒有結(jié)尾,只是突然而急驟地停止。這種方式造成的效果令人感到不愉快,也顯示教師本人是個十足的外行。教師在具體的教學(xué)實踐中對于結(jié)尾藝術(shù)應(yīng)該給予特別關(guān)照,充分利用課堂結(jié)尾,幫助學(xué)生鞏固數(shù)學(xué)知識,加強對數(shù)學(xué)知識的理解與記憶,為下節(jié)課做好鋪墊工作,從而提升學(xué)生的學(xué)習(xí)效率。
數(shù)學(xué)初中知識點總結(jié)7
動點與函數(shù)圖象問題常見的四種類型:
1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
圖形運動與函數(shù)圖象問題常見的三種類型:
1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象.
2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象.
3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進行分段,判斷函數(shù)圖象.
動點問題常見的.四種類型:
1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.
2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.
總結(jié)反思:
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.
解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達到解題目的.
解答函數(shù)的圖象問題一般遵循的步驟:
1、根據(jù)自變量的取值范圍對函數(shù)進行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.
2、自變量變化函數(shù)值也變化的增減變化情況.
3、函數(shù)圖象的最低點和最高點.
數(shù)學(xué)初中知識點總結(jié)8
初中數(shù)學(xué)的學(xué)科地位很高,一直以來是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。
圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
推理過程
根據(jù)旋轉(zhuǎn)的'性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的位置時,顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點a與a'重合,b與b'重合。
因此,弧ab與弧a'b'重合,ab與a'b'重合。即
弧ab=弧a'b',ab=a'b'。
則得到上面定理。
同樣還可以得到:
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對的圓心角相等,所對的弧相等,所對的弦心距也相等。
所以,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,它們所對應(yīng)的其余各組量也相等。
圓的圓心角知識要領(lǐng)很容易掌握,經(jīng)常會出現(xiàn)在關(guān)于圓的證明題中。
數(shù)學(xué)初中知識點總結(jié)9
初中數(shù)學(xué)例題的知識點梳理
有理數(shù)的加法運算:同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好!咀ⅰ俊按蟆睖p“小”是指絕對值的大小。
合并同類項:合并同類項,法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號法則:去括號、添括號,關(guān)鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號。
恒等變換:兩個數(shù)字來相減,互換位置最常見,正負只看其指數(shù),奇數(shù)變號偶不變。(a—b)2n+1=—(b—a)2n+1(a—b)2n=(b—a)2n
平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方:完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號帶平方,尾項符號隨中央。
因式分解:一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(shù)(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚。
“代入”口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分數(shù)或負數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級向下變括。ㄐ 小螅
單項式運算:加、減、乘、除、乘(開)方,三級運算分得清,系數(shù)進行同級(運)算,指數(shù)運算降級(進)行。
一元一次不等式解題的一般步驟:去分母、去括號,移項時候要變號,同類項、合并好,再把系數(shù)來除掉,兩邊除(以)負數(shù)時,不等號改向別忘了。
一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無處找。
一元二次不等式、一元一次絕對值不等式的解集:大(魚)于(吃)取兩邊,。~)于(吃)取中間。
分式混合運算法則:分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;變號必須兩處,結(jié)果要求最簡。
分式方程的解法步驟:同乘最簡公分母,化成整式寫清楚,求得解后須驗根,原(根)留、增(根)舍別含糊。
最簡根式的條件:最簡根式三條件,號內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點。
特殊點坐標特征:坐標平面點(x,y),橫在前來縱在后;(+,+),(—,+),(—,—)和(+,—),四個象限分前后;X軸上y為0,x為0在Y軸。
象限角的'平分線:象限角的平分線,坐標特征有特點,一、三橫縱都相等,二、四橫縱確相反。
平行某軸的直線:平行某軸的直線,點的坐標有講究,直線平行X軸,縱坐標相等橫不同;直線平行于Y軸,點的橫坐標仍照舊。
對稱點坐標:對稱點坐標要記牢,相反數(shù)位置莫混淆,X軸對稱y相反,Y軸對稱,x前面添負號;原點對稱最好記,橫縱坐標變符號。
自變量的取值范圍:分式分母不為零,偶次根下負不行;零次冪底數(shù)不為零,整式、奇次根全能行。
函數(shù)圖像的移動規(guī)律:若把一次函數(shù)解析式寫成y=k(x+0)+b、二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,則用下面后的口訣“左右平移在括號,上下平移在末稍,左正右負須牢記,上正下負錯不了”。
一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠。
二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對稱是關(guān)鍵;開口、頂點和交點,它們確定圖象現(xiàn);開口、大小由a斷,c與Y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點位置先找見,Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點,雙曲線相背離的遠;k為正,圖在一、三(象)限,k為負,圖在二、四(象)限;圖在一、三函數(shù)減,兩個分支分別減。圖在二、四正相反,兩個分支分別添;線越長越近軸,永遠與軸不沾邊。
巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實際是三角形邊的比值,可以把兩個字用/隔開,再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚,說了這么一句話:正對魚磷(余鄰)直刀切。正:
正弦或正切,對:對邊即正是對;余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
三角函數(shù)的增減性:正增余減。
特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣“123,321,三九二十七”既可。
數(shù)字巧記:=1.414(意思意思而已)=1.7321(三人一起商量)=2.236(吾量量山路)=2.449(糧食是酒)=2.645(二流是我)=2.828(二爸二爸)=3.16(山藥,六兩)
平行四邊形的判定:要證平行四邊形,兩個條件才能行,一證對邊都相等,或證對邊都平行,一組對邊也可以,必須相等且平行。對角線,是個寶,互相平分“跑不了”,對角相等也有用,“兩組對角”才能成。
梯形問題的.輔助線:移動梯形對角線,兩腰之和成一線;平行移動一條腰,兩腰同在“△”現(xiàn);延長兩腰交一點,“△”中有平行線;作出梯形兩高線,矩形顯示在眼前;已知腰上一中線,莫忘作出中位線。
添加輔助線歌:輔助線,怎么添?找出規(guī)律是關(guān)鍵,題中若有角(平)分線,可向兩邊作垂線;線段垂直平分線,引向兩端把線連,三角形邊兩中點,連接則成中位線;三角形中有中線,延長中線翻一番。
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓最大弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對角互補記心間,外角等于內(nèi)對角,四邊形定內(nèi)接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內(nèi)切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。
學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會認為自己就是這么,其實自己并沒有理解透徹。
所以,在看例題時,把解答蓋住,自己去做,做完或做不出時再去看。這時要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經(jīng)過上面的訓(xùn)練,自己的思維空間擴展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個批注,說明此題的“題眼”及巧妙之處,收獲會更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個簡單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。
3、錯一次反思一次
每次業(yè)及考試或多或少會發(fā)生些錯誤,這并不可怕,要緊的是避免類似的錯誤再次重現(xiàn)。因此平時注意把錯題記下來。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯誤記錄下來分析,并盡力保證在下次考試時不發(fā)生同樣錯誤,那么以后人生中最重要的高考也就能避免犯錯了。
4、分析試卷總結(jié)經(jīng)驗
每次考試結(jié)束試卷發(fā)下來,要認真分析得失,總結(jié)經(jīng)驗教訓(xùn)。特別是將試卷中出現(xiàn)的錯誤進行分類。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個或多個多項式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達式。
2、因式分解法
因式分解是將多項式轉(zhuǎn)換為幾個積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進行因式分解。還有一些項目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變元。用新的參數(shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡單,更容易解決。
4、判別式法與韋達定理
一元二次方程ax2+ bx+ c=0(a、 b、 c屬于R,a≠0)根的判別,= b2—4 ac,不僅用來確定根的性質(zhì),還作為一個問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達定理除了知道二次方程的根外,還找到另一根;考慮到兩個數(shù)的和和乘積的簡單應(yīng)用并尋找這兩個數(shù),也可以找到根的對稱函數(shù)并量化二次方程根的符號。求解對稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問題時,如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問題時,我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個圖表,一個方程(組),一個方程,一個函數(shù),一個等價的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識相互滲透,有助于解決問題。
數(shù)學(xué)經(jīng)常遇到的問題解答
1、要提高數(shù)學(xué)成績首先要做什么?
這一點,是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績,首先就應(yīng)該從基礎(chǔ)知識學(xué)起。不少同學(xué)覺得基礎(chǔ)知識過于簡單,看兩遍基本上就都會了。這種“自我感覺良好”其實是一種錯覺,而真正考試時又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績先要把基礎(chǔ)夯實。
2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?
對于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識學(xué)透有兩個好處,第一,強化基礎(chǔ);第二,提高得分能力。
3、是否要采用題海戰(zhàn)術(shù)?
方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認真總結(jié)才能不斷積累做題經(jīng)驗,這樣才能取得理想成績。
4、做題總是粗心怎么辦?
很多學(xué)生成績不好,會說自己是因為粗心導(dǎo)致的,其實“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識不牢、沒有清晰的解題思路、計算能力不強。因此在平時的學(xué)習(xí)中,一定要注重熟練度和精準度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點,所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。
數(shù)學(xué)初中知識點總結(jié)10
本章內(nèi)容通過讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性質(zhì),進一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實際問題中體驗數(shù)學(xué)的快樂,激發(fā)對學(xué)習(xí)學(xué)習(xí)。
一.知識框架
二.知識概念
1.旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個圖形按某個方向轉(zhuǎn)動一個角度,這樣的運動叫做圖形的旋轉(zhuǎn)。這個定點叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。(圖形的旋轉(zhuǎn)是圖形上的每一點在平面上繞著某個固定點旋轉(zhuǎn)固定角度的位置移動,其中對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段的長度、對應(yīng)角的大小相等,旋轉(zhuǎn)前后圖形的`大小和形狀沒有改變。)
2.旋轉(zhuǎn)對稱中心:把一個圖形繞著一個定點旋轉(zhuǎn)一個角度后,與初始圖形重合,這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,大于360°)。
3.中心對稱和中心對稱圖形是兩個不同而又緊密聯(lián)系的概念.區(qū)別是:中心對稱是指兩個全等圖形之間的相互位置關(guān)系,這兩個圖形關(guān)于一點對稱,這個點是對稱中心,兩個圖形關(guān)于點的對稱也叫做中心對稱.成中心對稱的兩個圖形中,其中一個上所有點關(guān)于對稱中心的對稱點都在另一個圖形上,反之,另一個圖形上所有點的對稱點,又都在這個圖形上;而中心對稱圖形是指一個圖形本身成中心對稱.中心對稱圖形上所有點關(guān)于對稱中心的對稱點都在這個圖形本身上.如果將中心對稱的兩個圖形看成一個整體(一個圖形),那么這個圖形就是中心對稱圖形;一個中心對稱圖形,如果把對稱的部分看成是兩個圖形,那么它們又是關(guān)于中心對稱.
4.中心對稱圖形與中心對稱:
中心對稱圖形:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。
中心對稱:如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。
5.把一個圖形繞著某一點旋轉(zhuǎn)180°,如果它能與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱(centralsymmetry),這個點叫做對稱中心,這兩個圖形的對應(yīng)點叫做關(guān)于中心的對稱點。
6.中心對稱的性質(zhì):
關(guān)于中心對稱的兩個圖形是全等形。
關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或者在同一直線上)且相等。
數(shù)學(xué)初中知識點總結(jié)11
關(guān)鍵詞:初一數(shù)學(xué);基礎(chǔ)知識;教學(xué)策略
初中數(shù)學(xué)是一個整體,相對而言,初一數(shù)學(xué)知識點很多,注重基礎(chǔ),初一數(shù)學(xué)是對學(xué)數(shù)學(xué)的適當深入,也為后續(xù)的學(xué)習(xí)打下良好的基礎(chǔ)。在初一數(shù)學(xué)的教學(xué)中,注重學(xué)生基礎(chǔ)知識的掌握是非常必要的。如今的現(xiàn)狀是,剛?cè)氤踔械膶W(xué)生并沒有對打好數(shù)學(xué)基礎(chǔ)有足夠的重視。一些學(xué)生剛進入初中,在數(shù)學(xué)學(xué)習(xí)中感受不到壓力,沒有投入足夠的精力,因而漸漸地就積累了很多關(guān)于基礎(chǔ)知識的小問題,這些小問題在學(xué)生進入后續(xù)的學(xué)習(xí)中,慢慢就越來越多,形成大問題,大問題漸漸就會凸顯出來,學(xué)生漸漸就會感到力不從心。下面就針對初一學(xué)生學(xué)習(xí)中的問題,具體談?wù)勅绾未蚝贸跻粩?shù)學(xué)的基礎(chǔ)。
一、打好初一數(shù)學(xué)基礎(chǔ)的重要性
進入中學(xué),學(xué)生的科目增加,內(nèi)容拓展,知識深入,數(shù)學(xué)這門學(xué)科由具體到抽象,從文字發(fā)展成了符號,從靜態(tài)逐漸發(fā)展成了動態(tài)。初一數(shù)學(xué)學(xué)習(xí)是很重要的一年,能夠讓學(xué)生感受到初中數(shù)學(xué)與小學(xué)的不同,并能感受到數(shù)學(xué)學(xué)習(xí)帶來的快樂,然而,一些學(xué)生對數(shù)學(xué)產(chǎn)生厭惡情緒也大都是從初中開始的,由于基礎(chǔ)沒打好對數(shù)學(xué)產(chǎn)生厭惡是很多學(xué)生的通病;A(chǔ)知識是進行深入學(xué)習(xí)的根基,它為數(shù)學(xué)學(xué)習(xí)的深入做鋪墊,然而基礎(chǔ)知識卻并沒有得到初一學(xué)生應(yīng)有的足夠重視。初中的數(shù)學(xué)知識相對小學(xué)來說,已有了很大的深入,如果初一的基礎(chǔ)知識沒有打好,學(xué)生會漸漸感到吃力,從而跟不上教學(xué)步伐,導(dǎo)致產(chǎn)生厭學(xué)情緒。不利于學(xué)生的發(fā)展。因此,教師在教學(xué)中必須注重初一學(xué)生基礎(chǔ)知識的培養(yǎng),并使學(xué)生認識到打好基礎(chǔ)知識的重要性。
二、初一數(shù)學(xué)學(xué)習(xí)中常出現(xiàn)的問題
1、知識點理解不透徹
初一學(xué)生剛?cè)氤踔,依然保留著小學(xué)生的一些習(xí)慣,愛玩并且厭煩課本上的基礎(chǔ)知識點。對知識點的理解停留在一知半解的層次上。并且,學(xué)生并沒有對基礎(chǔ)知識有足夠的重視,沒有認識到基礎(chǔ)知識的重要性,從而導(dǎo)致基礎(chǔ)知識越來越差,產(chǎn)生對數(shù)學(xué)的厭煩,進入惡性循環(huán)。
2、解答題目小錯誤多,無法完整地解決問題
學(xué)生由于不重視基礎(chǔ),導(dǎo)致一些題目無法完整地進行解決,無論簡單的題型還是難的題型,都是建立在基礎(chǔ)知識點上的。學(xué)生的問題是無法把握其中的`基礎(chǔ)技巧,忽視基礎(chǔ)知識,始終不能完整地解決問題。
3、沒有養(yǎng)成歸納總結(jié)的好習(xí)慣
學(xué)生在平時的練習(xí)中會有許多解錯的題型和忽視了的知識點,然而大都都是錯了就錯了,并沒有進行歸納總結(jié),導(dǎo)致對錯誤的題型沒有進行反思,從而一錯再錯。對一些基礎(chǔ)知識點,也沒有進行很好的歸納,腦海里沒有一個系統(tǒng)的基礎(chǔ)知識網(wǎng)。
三、打好學(xué)生數(shù)學(xué)基礎(chǔ)的策略
1、明確教學(xué)目標,突出重點
每一堂課的教學(xué),都有它的重點內(nèi)容,每一堂課,作為教師,首先都需要明確這堂課的教學(xué)目標,并要突出重點,讓學(xué)生對這堂課所學(xué)的知識點有一個清晰的輪廓。教師可以在黑板的一角把重點內(nèi)容簡短地寫出來,并保持一節(jié)課,引起學(xué)生的關(guān)注和重視。教師要通過不斷強調(diào)和引用,使學(xué)生對重點知識點留下深刻的印象,并可以出一個引用了重點知識的題目讓學(xué)生解答。例如,學(xué)習(xí)《數(shù)軸》這一節(jié)時,教師可先對重點基礎(chǔ)知識點進行講解,讓學(xué)生了解數(shù)軸的基本定義,在腦海里留下一個概念,再讓學(xué)生上講臺到黑板上按要求畫下來。畫完后,讓學(xué)生自己做必要的講解,比如畫數(shù)軸的三要素原點、正方向、單位長度。這樣,學(xué)生對數(shù)軸的基礎(chǔ)知識點就會有一個深刻的印象。
2、精講例題,多做課堂練習(xí)
針對基礎(chǔ)知識,教師可在課堂上多設(shè)置一些例題,使學(xué)生能夠把基礎(chǔ)知識應(yīng)用到題目中去解答,從而認識到基礎(chǔ)知識的重要性。教師要精選例題,按照這節(jié)課的重點基礎(chǔ)內(nèi)容進行選題,從結(jié)構(gòu)特征、思維方式等各個方面進行對題型的剖析,從而讓學(xué)生在解題的基礎(chǔ)之上掌握基礎(chǔ)知識的關(guān)鍵。知識點講得再多也是抽象空洞的,只有與題目進行結(jié)合,讓學(xué)生靈活運用,才能夠使學(xué)生對知識點有一個深刻的理解。課堂上需根據(jù)實際情況布置課堂練習(xí),練習(xí)量針對知識點的難易程度可多可少,重要的是要讓學(xué)生有一個思考解答的過程。教師可讓學(xué)生自主進行解答,若解答不出教師則做必要的指點進行幫助,并且要鼓勵學(xué)生不懂就要問。還可以讓學(xué)生共同討論一些難點問題,促進學(xué)生勤學(xué)好問的習(xí)慣培養(yǎng)。
3、形象教學(xué),變抽象為具體
教師在實際課堂教學(xué)中,可以運用很多種教學(xué)方式,每一堂課都有其教學(xué)目標,教學(xué)需根據(jù)教學(xué)內(nèi)容的變化選擇適當?shù)慕虒W(xué)方式,形象教學(xué)是很重要并且很有效的教學(xué)方式。例如,進行幾何的教學(xué),教師可以進行具體演示,向?qū)W生展示幾何模型,運用幾何模型來驗證幾何結(jié)論。
4、讓學(xué)生收集題目,制作錯題集
基礎(chǔ)是在無數(shù)次練習(xí)的基礎(chǔ)之上總結(jié)出來的,做題如同挖金礦,對待錯題就如同對待發(fā)掘冶煉金礦一樣。學(xué)生在做題時,會遇到很多難題和易錯題,對于做錯了的題目,學(xué)生看看就丟到一邊,是沒有起到練習(xí)應(yīng)有的效果的。教師要促使學(xué)生制作一個錯題集,專門收集自己做錯或者不會做的題目,讓學(xué)生自己分析做錯的原因,為什么會做錯,下次如何避免,學(xué)生在總結(jié)反思的過程中,自然而然就對知識進行了一次梳理。例如,用科學(xué)計數(shù)法計數(shù)是學(xué)生經(jīng)常容易犯錯的知識點,學(xué)生的粗心導(dǎo)致很簡單的問題經(jīng)常犯錯,通過錯題集,學(xué)生收集表示錯的科學(xué)計數(shù)法,不斷總結(jié)、強化,從而做到更細心。
初一數(shù)學(xué)學(xué)習(xí)對剛進入初中的學(xué)生來說是非常重要的,其既是對小學(xué)數(shù)學(xué)知識的必要深入,也為后續(xù)更深層次的學(xué)習(xí)打下關(guān)鍵的基礎(chǔ)。然而,初一學(xué)生往往并沒有認識到進入初中打好數(shù)學(xué)基礎(chǔ)的重要性。本文針對學(xué)好初一數(shù)學(xué)的重要性和初一數(shù)學(xué)學(xué)習(xí)面臨的一些問題進行了具體討論,最后總結(jié)出提高學(xué)生數(shù)學(xué)基礎(chǔ)知識的幾條教學(xué)策略,給以后的數(shù)學(xué)教學(xué)提供參考。
參考文獻:
[1]吳遠,學(xué)生數(shù)學(xué)自主能力的培養(yǎng)[J]。巨人教學(xué)資源,20xx。
數(shù)學(xué)初中知識點總結(jié)12
一、基本知識
㈠、數(shù)與代數(shù)A、數(shù)與式:
1、有理數(shù)
有理數(shù):
、僬麛(shù)→正整數(shù)/0/負整數(shù)
②分數(shù)→正分數(shù)/負分數(shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方
向為正方向,就得到數(shù)軸。
、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。
、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。
、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
絕對值:
①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的
絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
、垡粋數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。
、谌魏螖(shù)與0相乘得0。
、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
、0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù);旌享樞颍合人愠朔,再算乘除,最后算加減,有括號要先算括號里的。2、實數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
、賹崝(shù)分有理數(shù)和無理數(shù)。
、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。
、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴。
、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算:AM+AN=A(M+N)
。ˋM)N=AMN
(A/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作
為積的因式。
、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則
連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的'方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法
大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的
形式去解(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數(shù)根;II當△=0時,一元二次方程有2個相同的實數(shù)根;
III當△B,A+C>B+C在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。
、墼谝淮魏瘮(shù)中,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時,則經(jīng)124象限;當K〉0,B〈0時,則經(jīng)134象限;當K〉0,B〉0時,則經(jīng)123象限。
④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
㈡空間與圖形A、圖形的認識1、點,線,面
點,線,面:①圖形是由點,線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相
等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形; ⑸刃危孩儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個扇形。
2、角
線:①線段有兩個端點。
、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。
、趦牲c之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。
、谝粭l射線繞著他的端點旋轉(zhuǎn),當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當他又和始邊重合時,所成的角叫做周角。
、蹚囊粋角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。
②經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。
、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出
現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線2、兩點之間線段最短
3、同角或等角的補角相等4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內(nèi)錯角相等,兩直線平行11、同旁內(nèi)角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內(nèi)錯角相等14、兩直線平行,同旁內(nèi)角互補
15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21、全等三角形的對應(yīng)邊、對應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1三個角都相等的三角形是等邊三角形
36、推論2有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半
5
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1關(guān)于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形48、定理四邊形的內(nèi)角和等于360°49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個角都是直角61、矩形性質(zhì)定理2矩形的對角線相等
62、矩形判定定理1有三個角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71、定理1關(guān)于中心對稱的兩個圖形是全等的
72、定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),
那么(a+c++m)/(b+d++n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97、性質(zhì)定理2相似三角形周長的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點的距離等于定長的點的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103、圓的外部可以看作是圓心的距離大于半徑的點的集合104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點確定一個圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙遥⑶移椒窒宜鶎Φ膬蓷l、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120、定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑
124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130、相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)
、軆蓤A內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):
⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
一、常用數(shù)學(xué)公式
公式分類公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|
|a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式
b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根
b2-4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴謹。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復(fù)蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當遇到定量命題時,常用此法。
。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
。4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
。5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
。6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。
數(shù)學(xué)初中知識點總結(jié)13
一、平移變換:
1、概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2、性質(zhì):
。1)平移前后圖形全等;
。2)對應(yīng)點連線平行或在同一直線上且相等。
3、平移的作圖步驟和方法:
。1)分清題目要求,確定平移的方向和平移的距離。
。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點。
。3)沿一定的方向,按一定的距離平移各個關(guān)健點。
。4)連接所作的各個關(guān)鍵點,并標上相應(yīng)的字母。
。5)寫出結(jié)論。
二、旋轉(zhuǎn)變換:
1、概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。
說明:
(1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;
。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。
。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。
。4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。
2、性質(zhì):
(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
。2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
(3)旋轉(zhuǎn)前、后的圖形全等。
3、旋轉(zhuǎn)作圖的步驟和方法:
。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;
。2)找出圖形的關(guān)鍵點;
。3)將圖形的'關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;
。4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形。
說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。
4、常見考法
。1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;
。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計一些題目。
誤區(qū)提醒
。1)弄反了坐標平移的上加下減,左減右加的規(guī)律;
。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。
數(shù)學(xué)初中知識點總結(jié)14
在初中數(shù)學(xué)課堂教學(xué)中,小結(jié)一般作為總結(jié)本課,開啟下一課的鑰匙。但是在具體執(zhí)行過程中,受到時間、學(xué)生心態(tài)、教師課堂設(shè)計水平等因素的限制,初中數(shù)學(xué)課堂小結(jié)在運用的過程中呈現(xiàn)出多種問題。究其原因是多方面的,而其最主要的原因則來源于教師對學(xué)生心理的把握力度不夠。心理學(xué)專家在當代少年兒童的大腦結(jié)構(gòu)分析基礎(chǔ)上所做出的研究表明,在初中階段的學(xué)生對課程的關(guān)注度主要集中在前15分鐘,個別注意力比較好的學(xué)生能堅持到15~25分鐘,隨著時間的推移,從25分鐘到45分鐘之間學(xué)生的記憶力和注意力則出現(xiàn)了逐漸下滑的趨勢。由此可見,教師在做初中數(shù)學(xué)課程設(shè)計時,僅僅按照傳統(tǒng)習(xí)慣將課堂小結(jié)作為課末總結(jié)的方式并不科學(xué),對學(xué)生的課堂學(xué)習(xí)和課下探索延伸起不到推動作用。
由此,在新的知識環(huán)節(jié)講解和學(xué)習(xí)的過程中,對課堂小結(jié)的設(shè)計,教師應(yīng)該通過巧妙的規(guī)劃,實現(xiàn)溫故知新,而這又是對本堂課程的總結(jié)和反思的過程,具有極強的邏輯性和漸進性,環(huán)環(huán)相扣,同時要為學(xué)生的思考和課下探索的延伸留出獨立的空間。因此,按照具體的操作,本文以浙教版初中數(shù)學(xué)“探索多邊形的內(nèi)角和”的課堂學(xué)習(xí)為例,對課堂小結(jié)的運用從以下兩個方面進行闡述。
一、撥迷梳“理”,溫故知新
七年級“探索多邊形的內(nèi)角和”一課的教學(xué)重點是讓學(xué)生了解什么是多邊形、什么是內(nèi)角、如何求內(nèi)角和、如何在現(xiàn)實生活中利用此種計算方法。新課標要求,學(xué)生作為教學(xué)主體,對課程重點內(nèi)容的了解和領(lǐng)悟主要是以他們自身的動手操作為主,這也是教師在教案設(shè)計時的主要切入點之一。在明確本堂課的教學(xué)重點之后,教師需要對以往學(xué)習(xí)過的知識點進行梳理,并找出與本堂課有關(guān)聯(lián)性的知識點,在課程初始時作為引導(dǎo),通過對以往知識點的回顧,如三角形、相交線等已學(xué)知識點引出本堂課的重點。而后面即將學(xué)習(xí)的課程,如“多姿多彩幾何圖形”等的相應(yīng)測試,也可以作為學(xué)生課堂及課后的延伸知識點,在教師的課程講解過程中予以貫穿。當然,在課程設(shè)計初期,教師要尤為注意的是,應(yīng)根據(jù)本堂課知識點的重點排序,由主到輔、由簡入深地安排好具有節(jié)奏感的講解內(nèi)容及小結(jié),而作為延伸思考的`知識點在每個小結(jié)部分可以按照其相關(guān)性和重要性進行穿插安排。
二、動手操作,注重反思
“探索多邊形的內(nèi)角和”中,多邊形的概念是本課各個難點展開的基礎(chǔ),按照多邊形的概念,教師可以讓學(xué)生用線、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗多邊形的曲線美。引導(dǎo)學(xué)生嘗試以拉伸和縮小的方式構(gòu)架出凹多邊形和凸多變形后,教師可以讓學(xué)生按照體驗來描述二者的區(qū)別和相同點,并以此作為小結(jié)。當學(xué)生做完歸納后,根據(jù)本課“多邊形的內(nèi)角和主要以凸多邊形為主”的教學(xué)目標要求,教師可提問:“同學(xué)們目前已經(jīng)了解了二者的區(qū)別,本堂課要講解的‘多邊形內(nèi)角和’主要以凸多邊形為基礎(chǔ),但是為什么我們不以凹多邊形為基礎(chǔ)呢?請同學(xué)們仔細想想原因!苯處煹倪@種講解模式既可以為下面對“內(nèi)角和”的重點講解作鋪墊,又可以讓學(xué)生深入思考之前對凹凸多邊形的描述是否恰當,是否符合多邊形的數(shù)學(xué)性規(guī)律。
在此種引導(dǎo)方法下,學(xué)生會按照下一個知識點的內(nèi)容來反思之前的小結(jié)是否具有全面性。在反復(fù)的思考和對比過程中,學(xué)生的邏輯思維可以得到充分的訓(xùn)練。這對培養(yǎng)學(xué)生的數(shù)學(xué)思維,以及對知識點的重復(fù)性推敲和反思能力的提升具有促進作用。一旦學(xué)生在思考和探討的過程中,摸索到數(shù)學(xué)本身的規(guī)律,并從復(fù)雜多樣的數(shù)學(xué)知識點中找到其原本的架構(gòu),自然會在頭腦中建立起一個符合自身記憶和領(lǐng)悟需要的數(shù)學(xué)知識體系。
三、大道從簡,循環(huán)漸進
大道從簡,按照初中數(shù)學(xué)的知識點架構(gòu)來看,每堂課的每個知識點都可以在被重點提煉之后作為節(jié)點來布置課堂小結(jié)。以數(shù)學(xué)的邏輯思維傳承性為基礎(chǔ),課堂上的下一個知識點就可以作為反思和推敲上一個小結(jié)的試金石,如此循環(huán)往復(fù)后,課末的最終知識點總結(jié)則對本課所有知識點小結(jié)進行有效的補充和完善,進而延伸出下堂課以及與本堂課重點內(nèi)容相關(guān)的其他數(shù)學(xué)知識點的探索和思考。
當然,這種教學(xué)方法也同樣可以運用到其他學(xué)科的教學(xué)中。借助教師的漸進式誘導(dǎo),學(xué)生會自主加入到課堂探索中,通過由簡到難、由淺入深的逐層遞進式反思和討論提升在課堂中的興趣度和專注度。
數(shù)學(xué)初中知識點總結(jié)15
基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯角相等,兩直線平行
11、同旁內(nèi)角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯角相等
14、兩直線平行,同旁內(nèi)角互補
15、定理xxx兩邊的和大于第三邊
16、推論xxx兩邊的差小于第三邊
17、xxx內(nèi)角和定理xxx三個內(nèi)角的和等于180°
18、推論1直角xxx的兩個銳角互余
19、推論2 xxx的一個外角等于和它不相鄰的兩個內(nèi)角的和
20、推論3 xxx的一個外角大于任何一個和它不相鄰的內(nèi)角
21、全等xxx的對應(yīng)邊、對應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個xxx全等
23、角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個xxx全等
24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個xxx全等
25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個xxx全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角xxx全等
27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的`點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰xxx的性質(zhì)定理等腰xxx的兩個底角相等(即等邊對等角)
31、推論1等腰xxx頂角的平分線平分底邊并且垂直于底邊
32、等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合
33、推論3等邊xxx的各角都相等,并且每一個角都等于60°
34、等腰xxx的判定定理如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35、推論1三個角都相等的xxx是等邊xxx
36、推論2有一個角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線等于斜邊上的一半
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1關(guān)于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上
45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果xxx的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個xxx是直角xxx
48、定理四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
【數(shù)學(xué)初中知識點總結(jié)】相關(guān)文章:
初中數(shù)學(xué)圓的知識點總結(jié)12-05
初中數(shù)學(xué)函數(shù)知識點總結(jié)06-14
初中數(shù)學(xué)必備知識點總結(jié)03-01
初中數(shù)學(xué)函數(shù)知識點總結(jié)11-24
初中數(shù)學(xué)幾何知識點總結(jié)11-05
初中數(shù)學(xué)知識點總結(jié)(精選)06-16