高中數(shù)學(xué)解題的技巧5篇
高中數(shù)學(xué)解題的技巧1
(1)充分利用幾何圖形
解析幾何的研究對象就是幾何圖形及其性質(zhì),所以在處理解析幾何問題時,除了運(yùn)用代數(shù)方程外,充分挖掘幾何條件,并結(jié)合平面幾何知識,這往往能減少計算量。
(2)充分利用韋達(dá)定理及“設(shè)而不求”的策略
我們經(jīng)常設(shè)出弦的端點坐標(biāo)而不求它,而是結(jié)合韋達(dá)定理求解,這種方法在有關(guān)斜率、中點等問題中常常用到。
(3)充分利用曲線系方程
利用曲線系方程可以避免求曲線的交點,因此也可以減少計算。
(4)充分利用橢圓的參數(shù)方程
橢圓的參數(shù)方程涉及到正、余弦,利用正、余弦的有界性,可以解決相關(guān)的求最值的問題.這也是我們常說的三角代換法。
(5)線段長的幾種簡便計算方法
①充分利用現(xiàn)成結(jié)果,減少運(yùn)算過程。
、诮Y(jié)合圖形的特殊位置關(guān)系,減少運(yùn)算
在求過圓錐曲線焦點的弦長時,由于圓錐曲線的.定義都涉及焦點,結(jié)合圖形運(yùn)用圓錐曲線的定義,可回避復(fù)雜運(yùn)算。
③利用圓錐曲線的定義,把到焦點的距離轉(zhuǎn)化為到準(zhǔn)線的距離。
高中數(shù)學(xué)解題的技巧2
高中數(shù)學(xué)解題的方法
對于數(shù)學(xué)解題思維過程,G . 波利亞提出了四個階段*(見附錄),即弄清問題、擬定計劃、實現(xiàn)計劃和回顧。這四個階段思維過程的實質(zhì),可以用下列八個字加以概括:理解、轉(zhuǎn)換、實施、反思。
第一階段:理解問題是解題思維活動的開始。
第二階段:轉(zhuǎn)換問題是解題思維活動的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過程,是思維策略的選擇和調(diào)整過程。
第三階段:計劃實施是解決問題過程的實現(xiàn),它包含著一系列基礎(chǔ)知識和基本技能的靈活運(yùn)用和思維過程的具體表達(dá),是解題思維活動的重要組成部分。
第四階段:反思問題往往容易為人們所忽視,它是發(fā)展數(shù)學(xué)思維的一個重要方面,是一個思維活動過程的結(jié)束包含另一個新的思維活動過程的開始。
數(shù)學(xué)解題的'技巧
為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進(jìn)一步提高探索的成效,我們必須掌握一些解題的策略。
一切解題的策略的基本出發(fā)點在于“變換”,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。
基于這樣的認(rèn)識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。
一、 熟悉化策略
所謂熟悉化策略,就是當(dāng)我們面臨的是一道以前沒有接觸過的陌生題目時,要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、經(jīng)驗或解題模式,順利地解出原題。
一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認(rèn)識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。
常用的途徑有:
(一)、充分聯(lián)想回憶基本知識和題型:
按照波利亞的觀點,在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。
(二)、全方位、多角度分析題意:
對于同一道數(shù)學(xué)題,常?梢圆煌膫(cè)面、不同的角度去認(rèn)識。因此,根據(jù)自己的知識和經(jīng)驗,適時調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
(三)恰當(dāng)構(gòu)造輔助元素:
數(shù)學(xué)中,同一素材的題目,常?梢杂胁煌谋憩F(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。
數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點、線、面、體),構(gòu)造算法,構(gòu)造多項式,構(gòu)造方程(組),構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。
二、簡單化策略
所謂簡單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時,要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。
簡單化是熟悉化的補(bǔ)充和發(fā)揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。
因此,在實際解題時,這兩種策略常常是結(jié)合在一起進(jìn)行的,只是著眼點有所不同而已。
高二數(shù)學(xué)解析幾何訓(xùn)練題精選
一、選擇題:
1、直線 的傾斜角是______。
A. B. C. D.
2、直線m、l關(guān)于直線x = y對稱,若l的方程為 ,則m的方程為_____。
A. B. C. D.
3、已知平面內(nèi)有一長為4的定線段AB,動點P滿足PA—PB=3,O為AB中點,則OP的最小值為______ 。
A.1 B. C.2 D.3
4、點P分有向線段 成定比λ,若λ∈ ,則λ所對應(yīng)的點P的集合是___。
A.線段 B.線段 的延長線 C.射線 D.線段 的反向延長線
5 、已知直線L經(jīng)過點A 與點B ,則該直線的傾斜角為______。
A.150° B.135° C.75° D.45°
6、經(jīng)過點A 且與直線 垂直的直線為______。
A. B. C. D.
7、經(jīng)過點 且與直線 所成角為30°的直線方程為______。
A. B. 或
C. D. 或
8、已知點A 和點B ,直線m過點P 且與線段AB相交,則直線m的斜率k的取值范圍是______。
A. B. C. D.
9、兩不重合直線 和 相互平行的條件是______。
A. B. 或 C. D.
10、過 且傾斜角為15°的直線方程為______。
A. B. C. D.
高中數(shù)學(xué)解題的技巧3
數(shù)學(xué)解題的思維過程
對于數(shù)學(xué)解題思維過程,波利亞提出了四個階段(見附錄),即弄清問題、擬定計劃、實現(xiàn)計劃和回顧。這四個階段思維過程的實質(zhì),可以用下列八個字加以概括:理解、轉(zhuǎn)換、實施。
第一階段:理解問題是解題思維活動的開始。
第二階段:轉(zhuǎn)換問題是解題思維活動的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過程,是思維策略的選擇和調(diào)整過程。
第三階段:計劃實施是解決問題過程的實現(xiàn),它包含著一系列基礎(chǔ)知識和基本技能的靈活運(yùn)用和思維過程的具體表達(dá),是解題思維活動的重要組成部分。
第四階段:反思問題往往容易為人們所忽視,它是發(fā)展數(shù)學(xué)思維的一個重要方面,是一個思維活動過程的結(jié)束包含另一個新的思維活動過程的開始。
數(shù)學(xué)解題的技巧
為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進(jìn)一步提高探索的成效,我們必須掌握一些解題的策略。
一切解題的策略的基本出發(fā)點在于“變換”,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。
基于這樣的認(rèn)識,常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。
一、熟悉化策略
所謂熟悉化策略,就是當(dāng)我們面臨的`是一道以前沒有接觸過的陌生題目時,要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識、或解題模式,順利地解出原題。
一般說來,對于題目的熟悉程度,取決于對題目自身結(jié)構(gòu)的認(rèn)識和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。
常用的途徑有:
。ㄒ唬、充分聯(lián)想回憶基本知識和題型:
按照波利亞的觀點,在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識點和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。
。ǘ⑷轿、多角度分析題意:
對于同一道數(shù)學(xué)題,常?梢圆煌膫(cè)面、不同的角度去認(rèn)識。因此,根據(jù)自己的知識和經(jīng)驗,適時調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。
。ㄈ┣‘(dāng)構(gòu)造輔助元素:
數(shù)學(xué)中,同一素材的題目,常常可以有不同的表現(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。
數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點、線、面、體),構(gòu)造算法,構(gòu)造多項式,構(gòu)造方程(組),構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。
二、簡單化策略
所謂簡單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時,要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對新題的考察,啟迪解題思路,以簡馭繁,解出原題。
簡單化是熟悉化的補(bǔ)充和發(fā)揮。一般說來,我們對于簡單問題往往比較熟悉或容易熟悉。
因此,在實際解題時,這兩種策略常常是結(jié)合在一起進(jìn)行的,只是著眼點有所不同而已。
解題中,實施簡單化策略的途徑是多方面的,常用的有:尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當(dāng)分解結(jié)論等。
1、尋求中間環(huán)節(jié),挖掘隱含條件:
在些結(jié)構(gòu)復(fù)雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經(jīng)過適當(dāng)組合抽去中間環(huán)節(jié)而構(gòu)成的。
因此,從題目的因果關(guān)系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實現(xiàn)復(fù)雜問題簡單化的一條重要途徑。
2、分類考察討論:
在些數(shù)學(xué)題,解題的復(fù)雜性,主要在于它的條件、結(jié)論(或問題)包含多種不易識別的可能情形。對于這類問題,選擇恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn),把原題分解成一組并列的簡單題,有助于實現(xiàn)復(fù)雜問題簡單化。
3、簡單化已知條件:
有些數(shù)學(xué)題,條件比較、復(fù)雜,不太容易入手。這時,不妨簡化題中某些已知條件,甚至?xí)簳r撇開不顧,先考慮一個簡化問題。這樣簡單化了的問題,對于解答原題,常常能起到穿針引線的作用。
4、恰當(dāng)分解結(jié)論:
有些問題,解題的主要困難,來自結(jié)論的抽象概括,難以直接和條件聯(lián)系起來,這時,不妨猜想一下,能否把結(jié)論分解為幾個比較簡單的部分,以便各個擊破,解出原題。
三、直觀化策略:
所謂直觀化策略,就是當(dāng)我們面臨的是一道內(nèi)容抽象,不易捉摸的題目時,要設(shè)法把它轉(zhuǎn)化為形象鮮明、直觀具體的問題,以便憑借事物的形象把握題中所及的各對象之間的聯(lián)系,找到原題的解題思路。
。ㄒ唬、圖表直觀:
有些數(shù)學(xué)題,內(nèi)容抽象,關(guān)系復(fù)雜,給理解題意增添了困難,常常會由于題目的抽象性和復(fù)雜性,使正常的思維難以進(jìn)行到底。
對于這類題目,借助圖表直觀,利用示意圖或表格分析題意,有助于抽象內(nèi)容形象化,復(fù)雜關(guān)系條理化,使思維有相對具體的依托,便于深入思考,發(fā)現(xiàn)解題線索。
(二)、圖形直觀:
有些涉及數(shù)量關(guān)系的題目,用代數(shù)方法求解,道路崎嶇曲折,計算量偏大。這時,不妨借助圖形直觀,給題中有關(guān)數(shù)量以恰當(dāng)?shù)膸缀畏治,拓寬解題思路,找出簡捷、合理的解題途徑。
。ㄈD象直觀:
不少涉及數(shù)量關(guān)系的題目,與的圖象密切相關(guān),靈活運(yùn)用圖象的直觀性,常常能以簡馭繁,獲取簡便,巧妙的解法。
四、特殊化策略
所謂特殊化策略,就是當(dāng)我們面臨的是一道難以入手的一般性題目時,要注意從一般退到特殊,先考察包含在一般情形里的某些比較簡單的特殊問題,以便從特殊問題的研究中,拓寬解題思路,發(fā)現(xiàn)解答原題的方向或途徑。
五、一般化策略
所謂一般化策略,就是當(dāng)我們面臨的是一個計算比較復(fù)雜或內(nèi)在聯(lián)系不甚明顯的特殊問題時,要設(shè)法把特殊問題一般化,找出一個能夠揭示事物本質(zhì)屬性的一般情形的方法、技巧或結(jié)果,順利解出原題。
六、整體化策略
所謂整體化策略,就是當(dāng)我們面臨的是一道按常規(guī)思路進(jìn)行局部處理難以奏效或計算冗繁的題目時,要適時調(diào)整視角,把問題作為一個有機(jī)整體,從整體入手,對整體結(jié)構(gòu)進(jìn)行全面、深刻的分析和改造,以便從整體特性的研究中,找到解決問題的途徑和。
七、間接化策略
所謂間接化策略,就是當(dāng)我們面臨的是一道從正面入手復(fù)雜繁難,或在特定場合甚至找不到解題依據(jù)的題目時,要隨時改變思維方向,從結(jié)論(或問題)的反面進(jìn)行思考,以便化難為易解出原題。
高中數(shù)學(xué)解題的技巧4
1.解決絕對值問題(化簡、求值、方程、不等式、函數(shù)),把含絕對值的問題轉(zhuǎn)化為不含絕對值的問題。具體轉(zhuǎn)化方法有:
、俜诸愑懻摲:根據(jù)絕對值符號中的數(shù)或式子的正、零、負(fù)分情況去掉絕對值。
、诹泓c分段討論法:適用于含一個字母的多個絕對值的情況。
、蹆蛇吰椒椒ǎ哼m用于兩邊非負(fù)的方程或不等式。
、軒缀我饬x法:適用于有明顯幾何意義的情況。
2.根據(jù)項數(shù)選擇方法和按照一般步驟是順利進(jìn)行因式分解的重要技巧。因式分解的一般步驟是:
3. 利用完全平方公式把一個式子或部分化為完全平方式就是配方法,它是數(shù)學(xué)中的重要方法和技巧。配方法的主要根據(jù)有:
4. 解某些復(fù)雜的特型方程要用到:換元法。換元法解方程的一般步驟是:
5. 待定系數(shù)法是在已知對象形式的條件下求對象的一種方法。適用于求點的坐標(biāo)、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:
(1)設(shè)
(2)列
(3)解
(4)寫
6. 復(fù)雜代數(shù)等式型條件的使用技巧:
左邊化零,右邊變形
7. 圖像的平移規(guī)律是研究復(fù)雜函數(shù)的重要方法。平移規(guī)律是:
8. 討論函數(shù)性質(zhì)的重要方法是圖像法——看圖像、得性質(zhì)。
9. 化簡
的方法是觀察法:
10. 代數(shù)式求值的方法有:
(1)直接代入法
(2)化簡代入法
(3)適當(dāng)變形法(和積代入法)
注意:當(dāng)求值的代數(shù)式是字母的`“對稱式”時,通?梢曰癁樽帜浮昂团c積”的形式,從而用“和積代入法”求值。
11. 方程中除過未知數(shù)以外,含有的其它字母叫參數(shù),這種方程叫含參方程。解含參方程一般要用“分類討論法”,其原則是:
、侔凑疹愋颓蠼
、诟鶕(jù)需要討論
③分類寫出結(jié)論。
12. 恒相等成立的有用條件:
13. 由一元二次不等式解集為R的有關(guān)結(jié)論容易得到下列恒不等成立的條件:
高中數(shù)學(xué)解題的技巧5
1、配法
通過把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式解決數(shù)學(xué)問題的方法,叫配方法。配方法用的最多的是配成完全平方式,它是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2bxc=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
8、幾何變換法
在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動中的`研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。
9、反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;唯一/至少有兩個。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
【高中數(shù)學(xué)解題的技巧】相關(guān)文章:
高中數(shù)學(xué)解題的技巧12-06
高中數(shù)學(xué)解題技巧方法11-11
高中數(shù)學(xué)大題解題技巧04-04
高中數(shù)學(xué)學(xué)霸解題技巧歸納12-03