當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 實際問題與一元二次方程教案

實際問題與一元二次方程教案

時間:2024-06-17 11:09:55 教案 我要投稿
  • 相關(guān)推薦

實際問題與一元二次方程教案

  作為一名無私奉獻的老師,就有可能用到教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家收集的實際問題與一元二次方程教案,僅供參考,希望能夠幫助到大家。

實際問題與一元二次方程教案

實際問題與一元二次方程教案1

  【學(xué)習(xí)目標(biāo)】

  1.能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型.

  2.能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理.

  【教學(xué)重點】列一元二次方程解有關(guān)傳播問題、平均變化率問題的應(yīng)用題

  【教學(xué)難點】發(fā)現(xiàn)傳播問題、平均變化率問題中的等量關(guān)系

  【學(xué)習(xí)過程】

  一、知識回顧

  1、解一元二次方程都是有哪些方法?

  2、列一元一次方程解應(yīng)用題都是有哪些步驟?

  二、新知探究

  問題1:有一人患了流感,經(jīng)過兩輪傳染后共有121人患了流感,每輪傳染中平均一個人傳染了幾個人?

  分析:設(shè)每輪傳染中平均一個人傳染了x個人,那么患流感的這一個人在第一輪中傳染了_______人,第一輪后共有______人患了流感;

  第二輪傳染中,這些人中的每個人又傳染了_______人,第二輪后共有_______人患了流感。

  一.選一選

  1.王先生到銀行存了一筆三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.設(shè)王先生存入的本金為x元,則下面所列方程正確的是(  )

  A.x+3×4.25%x=33825 B.x+4.25%x=33825

  C.3×4.25%x=33825 D.3(x+4.25x)=33825

  【考點】由實際問題抽象出一元一次方程.

  【專題】增長率問題.

  【分析】根據(jù)“利息=本金×利率×?xí)r間”(利率和時間應(yīng)對應(yīng)),代入數(shù)值,計算即可得出結(jié)論.

  【解答】解:設(shè)王先生存入的本金為x元,根據(jù)題意得出:

  x+3×4.25%x=33825;

  故選:A.

  【點評】此題主要考查了一元一次方程的應(yīng)用,計算的關(guān)鍵是根據(jù)利息、利率、時間和本金的關(guān)系,進行計算即可.

  2.若一元二次方程x2﹣4x﹣5=0的根是直角三角形斜邊上的中線長,則這個直角三角形的斜邊長為(  )

  A.2 B.10 C.2或10 D.5

  【考點】直角三角形斜邊上的中線;解一元二次方程-因式分解法.

  【分析】解一元二次方程求出中線,再根據(jù)直角三角形斜邊上的'中線等于斜邊的一半解答.

  【解答】解:因式分解得,(x+1)(x﹣5)=0,由此得,x+1=0,x﹣5=0,所以,x1=﹣1,x2=5,所以,直角三角形斜邊上的中線長為5,所以,這個直角三角形的斜邊長為2×5=10.

  故選B.

  【點評】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),因式分解法解一元二次方程,熟記性質(zhì)是解題的關(guān)鍵.

  3.三角形兩邊的長是3和4,第三邊的長是方程x2﹣12x+35=0的根,則該三角形的周長為(  )

  A.14 B.12 C.12或14 D.以上都不對

  【考點】解一元二次方程-因式分解法;三角形三邊關(guān)系.

  【分析】易得方程的兩根,那么根據(jù)三角形的三邊關(guān)系,排除不合題意的邊,進而求得三角形周長即可.

  【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.

  當(dāng)x=7時,3+4=7,不能組成三角形;

  當(dāng)x=5時,3+4>5,三邊能夠組成三角形.

  ∴該三角形的周長為3+4+5=12,故選B.

  【點評】本題主要考查三角形三邊關(guān)系,注意在求周長時一定要先判斷是否能構(gòu)成三角形.

  一.積累·整合

  1.某產(chǎn)品,原來每件的成本價是500元,若每件售價625元,則每件利潤率是.

  A.12% B.25% C.30% D.50%

  2.某次商品交易會上,所有參加會議的商家之間都簽訂了一份合同,共簽訂合同55份,則共有商家參加了交易會.

  3.銀行的某種儲蓄的年利率為4%,小民存1000元,存滿一年,本息= 。

  4.長方形的長比寬多8cm,面積為20m2,則它的周長為________.

  二.拓展·應(yīng)用

  5.某鋼鐵廠去年1月某種鋼的產(chǎn)量為5000噸,3月上升到7200噸,這兩個月平均每個月增長的百分率________.

  6.已知三角形的兩邊長分別是3和8,第三邊的數(shù)值是一元二次方程

  x2-17x+66=0的根則此三角形的周長為_______.

  7.某工廠一月份生產(chǎn)零件1000個,二月份生產(chǎn)零件1200個,那么二月份比一月份增產(chǎn)個增長率是___.

  8.在一塊長12m,寬8m的長方形平地中央,劃出地方砌一個面積為24m2的長方形花臺,要使花壇四周的寬地寬度一樣,則這個寬度為多少?

  三.探索·創(chuàng)新

  9.某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加利潤,盡快減少庫存,商場決定采取適當(dāng)?shù)拇胧,?jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫降價1元,商場每天可多售出2件。

  (1)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?

  (2)每件襯衫降價多少元時,商場每天盈利最多?

實際問題與一元二次方程教案2

  教材分析

  本節(jié)課是以成本下降為問題探究,討論平均變化率的問題,這類問題在現(xiàn)實世界中有很多的原型,例如經(jīng)濟增長率、人口增長率等等,聯(lián)系生活實際很密切,這類問題也是一元二次方程在生活中最典型的應(yīng)用。本節(jié)課主要是討論兩輪(即兩個時間段)的平均變化率,它可以用一元二次方程作為數(shù)學(xué)模型。

  學(xué)情分析

  1、由于我們的學(xué)生對列方程解應(yīng)用題有畏懼的心理,感覺很困難,根據(jù)探究1學(xué)生的掌握情況來看,決定把探究2作為一課時,來專門學(xué)習(xí)。

  2、學(xué)生對列方程解應(yīng)用題的步驟已經(jīng)很熟悉,而且有了第一課時連續(xù)傳播問題的做鋪墊,適合用自主探究,合作交流的學(xué)習(xí)方法。

  3、連續(xù)增長問題的中的數(shù)量關(guān)系、規(guī)律的發(fā)現(xiàn)是本節(jié)課的'難點,所以我把問題分解了讓學(xué)生逐個突破,由于九年級學(xué)生具有一定的解題歸納能力,所以采用從一般到特殊的探究方式。

  教學(xué)目標(biāo)

  知識與技能:

  1、能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界某些問題的一個有效的數(shù)學(xué)模型。

  2、能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理。

  過程與方法:

  1、經(jīng)歷將實際問題抽象為數(shù)學(xué)問題的過程,探索問題中的數(shù)量關(guān)系,并能運用一元二次方程對之進行描述。

  2、通過成本降低、能源增長等實際問題,學(xué)會將實際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題,發(fā)展實踐應(yīng)用意識。

  情感與態(tài)度:通過用一元一次方程解決身邊的問題,體會數(shù)學(xué)知識的應(yīng)用價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點和難點

  重點:利用增長率問題中的數(shù)量關(guān)系,列出方程解決問題

  難點:理清增長率問題中的數(shù)量關(guān)系

實際問題與一元二次方程教案3

  一、教材分析:

  1、教材所處的地位:此前學(xué)生已經(jīng)學(xué)習(xí)了應(yīng)用一元一次方程與二元一次方程組來解決實際問題。本節(jié)仍是進一步討論如何建立和利用一元二次方程模型來解決實際問題,只是在問題中數(shù)量關(guān)系的復(fù)雜程度上又有了新的發(fā)展。

  2、教學(xué)目標(biāo)要求:

 。1)能根據(jù)具體問題中的數(shù)量關(guān)系,列出一元二次方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學(xué)模型;

 。2)能根據(jù)具體問題的實際意義,檢驗結(jié)果是否合理;

  (3)經(jīng)歷將實際問題抽象為代數(shù)問題的過程,探索問題中的數(shù)量關(guān)系,并能運用一元二次方程對之進行描述;

 。4)通過用一元二次方程解決身邊的問題,體會數(shù)學(xué)知識應(yīng)用的價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,了解數(shù)學(xué)對促進社會進步和發(fā)展人類理性精神的作用。

  3、教學(xué)重點和難點:

  重點:列一元二次方程解與面積有關(guān)問題的應(yīng)用題。

  難點:發(fā)現(xiàn)問題中的等量關(guān)系。

  二.教法、學(xué)法分析:

  1、本節(jié)課的設(shè)計中除了探究3教師參與多一些外,其余時間都堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,教師只注重點、引、激、評,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。

  2、本節(jié)內(nèi)容學(xué)習(xí)的關(guān)鍵所在,是如何尋求、抓準問題中的數(shù)量關(guān)系,從而準確列出方程來解答。因此課堂上從審題,找到等量關(guān)系,列方程等一系列活動都由生生交流,兵教兵從而達到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  三.教學(xué)流程分析:

  本節(jié)課是新授課,根據(jù)學(xué)生的知識結(jié)構(gòu),整個課堂教學(xué)流程大致可分為:

  活動1復(fù)習(xí)回顧解決課前參與

  活動2封面設(shè)計問題的探究

  活動3草坪規(guī)劃問題的延伸

  活動4課堂回眸

  這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。

  活動1復(fù)習(xí)回顧解決課前參與

  由學(xué)生展示課前參與題目,集體訂正。目的在于回顧常用幾何圖形的面積公式,并且引出本節(jié)學(xué)習(xí)內(nèi)容——面積問題。

  活動2封面設(shè)計問題的.探究

  通過學(xué)生自己獨立審題,找尋等量關(guān)系,教師引導(dǎo)學(xué)生對“正中央矩形與封面長寬比例相同”題意的理解,使學(xué)生明白中央矩形長寬比為9:7,從而進一步突破難點:上下邊襯與左右邊襯比也為9:7,為學(xué)生設(shè)未知數(shù)提供幫助。之后由學(xué)生分組完成方程的列法,以及取法。講解中注重簡便設(shè)法及解法的指導(dǎo)與評價。

  活動3草坪規(guī)劃問題的延伸

  放手給學(xué)生處理,以學(xué)生合作完成為主。突出利用平移變換為主的解決方式。多由學(xué)生分析不同的處理方法。

  活動4課堂回眸

  本課小結(jié)從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識是有很大的促進的。方法以學(xué)生暢談收獲為主。

實際問題與一元二次方程教案4

  一、出示學(xué)習(xí)目標(biāo):

  1.繼續(xù)感受用一元二次方程解決實際問題的過程;

  2.通過自學(xué)探究掌握裁邊分割問題。

  二、自學(xué)指導(dǎo):(閱讀課本P47頁,思考下列問題)

  1.閱讀探究3并進行填空;

  2.完成P48的思考并掌握裁邊分割問題的特點;

  3.在理解的基礎(chǔ)上完成P48-49第8、9題(不精確,只留根號即可)。

  探究3:要設(shè)計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的`矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(精確到0.1cm)?

  分析:封面的長寬之比為27﹕21=9﹕7,中央矩形的長寬之比也應(yīng)是9﹕7,則上下邊襯與左右邊襯的寬度之比是。9﹕7

  設(shè)上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則:

  由中下層學(xué)生口答書中填空,老師再給予補充。

  思考:如果換一種設(shè)法,是否可以更簡單?

  設(shè)正中央的長方形長為9acm,寬為7acm,依題意得

  9a·7a=(可讓上層學(xué)生在自學(xué)時,先上來板演)

  2.P48-49第8、9題中下層學(xué)生在自學(xué)完之后先板演

  效果檢測時,由同座的同學(xué)給予點評與糾正

  9.如圖,要設(shè)計一幅寬20m,長30m的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計彩條的寬帶?(討論用多種方法列方程比較)

  注意點:要善于利用圖形的平移把問題簡單化!

  三、當(dāng)堂訓(xùn)練:

  1.如圖,在一幅長90cm,寬40cm的風(fēng)景畫四周鑲上一條寬度相同的金色紙邊,制成一幅掛畫.如果要求風(fēng)景畫的面積是整個掛畫面積的72%,那么金邊的寬應(yīng)是多少?

  (只要求設(shè)元、列方程)

  2.要設(shè)計一個等腰梯形的花壇,上底長100m,下底長180m。上下底相距80m,在兩腰中點連線出有一橫向甬道,上下兩底之見有兩條縱向的甬道,各甬道寬度相等,甬道的面積是梯形面積的六分之一,甬道的寬應(yīng)是多少?

實際問題與一元二次方程教案5

  教學(xué)內(nèi)容

  根據(jù)面積與面積之間的關(guān)系建立一元二次方程的數(shù)學(xué)模型并解決這類問題.

  教學(xué)目標(biāo)

  掌握面積法建立一元二次方程的數(shù)學(xué)模型并運用它解決實際問題.

  利用提問的方法復(fù)習(xí)幾種特殊圖形的面積公式來引入新課,解決新課中的問題.

  重難點關(guān)鍵

  1.重點:根據(jù)面積與面積之間的等量關(guān)系建立一元二元方程的數(shù)學(xué)模型并運用它解決實際問題.

  2.難點與關(guān)鍵:根據(jù)面積與面積之間的等量關(guān)系建立一元二次方程的數(shù)學(xué)模型.

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.直角三角形的面積公式是什么?一般三角形的面積公式是什么呢?

  2.正方形的面積公式是什么呢?長方形的面積公式又是什么?

  3.梯形的面積公式是什么?

  4.菱形的'面積公式是什么?

  5.平行四邊形的面積公式是什么?

  6.圓的面積公式是什么?

  二、探索新知

  現(xiàn)在,我們根據(jù)剛才所復(fù)習(xí)的面積公式來建立一些數(shù)學(xué)模型,解決一些實際問題.

  例1.某林場計劃修一條長750m,斷面為等腰梯形的渠道,斷面面積為1.6m2,上口寬比渠深多2m,渠底比渠深多0.4m.

  (1)渠道的上口寬與渠底寬各是多少?

  (2)如果計劃每天挖土48m3,需要多少天才能把這條渠道挖完?

  分析:因為渠深最小,為了便于計算,不妨設(shè)渠深為xm,則上口寬為x+2,渠底為x+0.4,那么,根據(jù)梯形的面積公式便可建模.

  :(1)設(shè)渠深為xm

  則渠底為(x+0.4)m,上口寬為(x+2)m

  依題意,得: (x+2+x+0.4)x=1.6

  整理,得:5x2+6x-8=0

  解得:x1= =0.8m,x2=-2(舍)

  ∴上口寬為2.8m,渠底為1.2m.

  (2) =25天

  答:渠道的上口寬與渠底深各是2.8m和1.2m;需要25天才能挖完渠道.

  例2.如圖,要設(shè)計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(精確到0.1cm)?

  老師點評:依據(jù)題意知:中央矩形的長寬之比等于封面的長寬之比=9:7,由此可以判定:上下邊襯寬與左右邊襯寬之比為9:7,設(shè)上、下邊襯的寬均為9xcm,則左、右邊襯的寬均為7xcm,依題意,得:中央矩形的長為(27-18x)cm,寬為(21-14x)cm.

實際問題與一元二次方程教案6

  教學(xué)內(nèi)容

  由“倍數(shù)關(guān)系”等問題建立數(shù)學(xué)模型,并通過配方法或公式法或分解因式法解決實際問題.

  教學(xué)目標(biāo)

  掌握用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型,并利用它解決一些具體問題.

  通過復(fù)習(xí)二元一次方程組等建立數(shù)學(xué)模型,并利用它解決實際問題,引入用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型,并利用它解決實際問題.

  重難點關(guān)鍵

  1.重點:用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型

  2.難點與關(guān)鍵:用“倍數(shù)關(guān)系”建立數(shù)學(xué)模型

  教學(xué)過程 一、復(fù)習(xí)引入

 。▽W(xué)生活動)

  問題1:列方程解應(yīng)用題

  下表是某一周甲、乙兩種股票每天每股的收盤價(收盤價:股票每天交易結(jié)果時的價格):星期一二三四五甲12元12。5元12。9元12。45元12。75元乙13。5元13。3元13。9元13。4元13。75元某人在這周內(nèi)持有若干甲、乙兩種股票,若按照兩種股票每天的收盤價計算(不計手續(xù)費、稅費等),則在他帳戶上,星期二比星期一增加200元,星期三比星期二增加1300元,這人持有的甲、乙股票各多少股?

  老師點評分析:一般用直接設(shè)元,即問什么就設(shè)什么,即設(shè)這人持有的甲、乙股票各x、y張,由于從表中知道每天每股的收盤價,因此,兩種股票當(dāng)天的帳戶總數(shù)就是x或y乘以相應(yīng)的每天每股的收盤價,再根據(jù)已知的等量關(guān)系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.

  解:設(shè)這人持有的甲、乙股票各x、y張.

  則 解得

  答:(略)

  二、探索新知

  上面這道題大家都做得很好,這是一種利用二元一次方程組的`數(shù)量關(guān)系建立的數(shù)學(xué)模型,那么還有沒有利用其它形式,也就是利用我們前面所學(xué)過的一元二次方程建立數(shù)學(xué)模型解應(yīng)用題呢?請同學(xué)們完成下面問題.

  (學(xué)生活動)

  問題2:某工廠第一季度的一月份生產(chǎn)電視機是1萬臺,第一季度生產(chǎn)電視機的總臺數(shù)是3。31萬臺,求二月份、三月份生產(chǎn)電視機平均增長的百分率是多少?

  老師點評分析:直接假設(shè)二月份、三月份生產(chǎn)電視機平均增長率為x.因為一月份是1萬臺,那么二月份應(yīng)是(1+x)臺,三月份應(yīng)是在二月份的基礎(chǔ)上以二月份比一月份增長的同樣“倍數(shù)”增長,即(1+x)+(1+x)x=(1+x)2,那么就很容易從第一季度總臺數(shù)列出等式.

  解:設(shè)二月份、三月份生產(chǎn)電視機平均增長的百分率為x,則1+(1+x)+(1+x)2=3。31

  去括號:1+1+x+1+2x+x2=3。31

  整理,得:x2+3x—0。31=0

  解得:x=10%

  答:(略)

實際問題與一元二次方程教案7

  一、出示學(xué)習(xí)目標(biāo):

  1.繼續(xù)感受用一元二次方程解決實際問題的過程;

  2.通過自學(xué)探究掌握裁邊分割問題。

  二、自學(xué)指導(dǎo):(閱讀課本P47頁,思考下列問題)

  1.閱讀探究3并進行填空;

  2.完成P48的思考并掌握裁邊分割問題的特點;

  3.在理解的基礎(chǔ)上完成P48-49第8、9題(不精確,只留根號即可)。

  探究3:要設(shè)計一本書的封面,封面長27c,寬21c,正中央是一個與整個封面長寬比例相同的'矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(精確到0.1c)?

  分析:封面的長寬之比為27﹕21=9﹕7,中央矩形的長寬之比也應(yīng)是9﹕7,則上下邊襯與左右邊襯的寬度之比是。9﹕7

  設(shè)上、下邊襯的寬均為9xc,左、右邊襯的寬均為7xc,則:

  由中下層學(xué)生口答書中填空,老師再給予補充。

  思考:如果換一種設(shè)法,是否可以更簡單?

  設(shè)正中央的長方形長為9ac,寬為7ac,依題意得

  9a·7a=(可讓上層學(xué)生在自學(xué)時,先上來板演)

  2.P48-49第8、9題中下層學(xué)生在自學(xué)完之后先板演效果檢測時,由同座的同學(xué)給予點評與糾正

  9.如圖,要設(shè)計一幅寬20,長30的圖案,兩橫兩豎寬度之比為3∶2,若使彩條面積是圖案面積的四分之一,應(yīng)怎樣設(shè)計彩條的寬帶?(討論用多種方法列方程比較)

  注意點:要善于利用圖形的平移把問題簡單化!

  三、當(dāng)堂訓(xùn)練:

  1.如圖,在一幅長90c,寬40c的風(fēng)景畫四周鑲上一條寬度相同的金色紙邊,制成一幅掛畫.如果要求風(fēng)景畫的面積是整個掛畫面積的72%,那么金邊的寬應(yīng)是多少?

  (只要求設(shè)元、列方程)

  2.要設(shè)計一個等腰梯形的花壇,上底長100,下底長180。上下底相距80,在兩腰中點連線出有一橫向甬道,上下兩底之見有兩條縱向的甬道,各甬道寬度相等,甬道的面積是梯形面積的六分之一,甬道的寬應(yīng)是多少

實際問題與一元二次方程教案8

  教學(xué)目的 知識技能 使學(xué)生會用列一元二次方程的方法解決有關(guān)面積、體積方面和經(jīng)濟方面的問題.

  數(shù)學(xué)思考 提高將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力以及用數(shù)學(xué)的意識,滲透轉(zhuǎn)化的思想、方程的思想及數(shù)形結(jié)合的思想.

  解決問題 通過列一元二次方程的方法解決日常生活及生產(chǎn)實際中遇到的有關(guān)面積、體積方面和經(jīng)濟方面的問題.

  情感態(tài)度 通過探究性學(xué)習(xí),抓住問題的關(guān)鍵,揭示它的規(guī)律性,展示解題的簡潔性的數(shù)學(xué)美.

  教學(xué)難點 審題,從文字語言中挖掘有價值的信息.

  知識重點 會用列一元二次方程的方法解有關(guān)面積、體積方面和經(jīng)濟方面的問題.

  教學(xué)過程 設(shè)計意圖

  教學(xué)過程

  問題一:列方程解應(yīng)用題的一般步驟?

  師生共同回憶

  列方程解應(yīng)用題的步驟:

 。1)審題;(2)設(shè)未知數(shù);

 。3)列方程;(4)求解;

 。5)檢驗; (6)答.

  問題二:矩形的周長和面積?長方體的體積?

  問題三:如圖,某小區(qū)內(nèi)有一塊長、寬比為1:2的矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.

  教師活動:引導(dǎo)學(xué)生讀題,找到題目中的關(guān)鍵語句.

  學(xué)生活動:在關(guān)鍵語句中找到反映相等關(guān)系的語句,探究解決辦法.

  教師活動:用多媒體演示分析,解題方法.

  做一做

  如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的.長方體盒子.求剪去的小正方形的邊長.

  課堂練習(xí):將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的 ,求這個正方形的邊長.

  問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,平均每天能多售出2件.在國慶節(jié)期間,商場決定采取降價促銷的措施,以達到減少庫存、擴大銷售量的目的.如果銷售這種服裝每天贏利1200元,那么每件服裝應(yīng)降價多少元?

  學(xué)生活動:在眾多的文字中,找到關(guān)鍵語句,分析相等關(guān)系.

  教師活動:用多媒體幫助學(xué)生分析試題.提示學(xué)生檢驗解的合理性.

  課堂練習(xí):1.經(jīng)銷商以每雙21元的價格從廠家購進一批運動鞋,如果每雙鞋售價為a元,那么可以賣出這種運動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進價的120%.如果商店要賺400元,每雙鞋的售價應(yīng)定為多少元?需要賣出多少雙鞋?

  2.某商店從廠家以每件18元的價格購進一批商品,該商店可以自行定價.據(jù)市場調(diào)查,該商品的售價與銷售量的關(guān)系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進貨價25 %的.如果商店計劃要獲利400元,則每件商品的售價應(yīng)定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進貨價)

  復(fù)習(xí)列方程解應(yīng)用題的一般步驟.

  本題為后面解決有關(guān)面積、體積方面問題做鋪墊.

  提高學(xué)生的審題能力.使學(xué)生會解決有關(guān)面積的問題.

  解決體積問題的問題

  培養(yǎng)學(xué)生用數(shù)學(xué)的意識以及滲透轉(zhuǎn)化和方程的思想方法.

  強調(diào)對方程的解進行雙重檢驗.

  小結(jié)與作業(yè)

  課堂

  小結(jié) 利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養(yǎng).

  本課

  作業(yè) 課本第43頁 習(xí)題2

  課后隨筆(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)

【實際問題與一元二次方程教案】相關(guān)文章:

《實際問題與一元二次方程》說課稿07-06

實際問題與一元二次方程教學(xué)反思04-02

《實際問題與一元二次方程》說課稿3篇11-21

《實際問題與一元二次方程》說課稿(3篇)12-15

實際問題與一元二次方程教學(xué)反思7篇04-04

《實際問題與一元二次方程》說課稿(通用3篇)12-29

《實際問題與一元二次方程》說課稿(匯編3篇)12-29

實際問題與一元二次方程教學(xué)反思 9篇04-03

一元二次方程復(fù)習(xí)教案03-12

一元二次方程應(yīng)用教案11-28