當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 平面直角坐標(biāo)系教案

平面直角坐標(biāo)系教案

時(shí)間:2022-01-13 19:35:08 教案 我要投稿

平面直角坐標(biāo)系教案

  作為一位優(yōu)秀的人民教師,通常需要用到教案來輔助教學(xué),教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。那么問題來了,教案應(yīng)該怎么寫?下面是小編為大家收集的平面直角坐標(biāo)系教案,僅供參考,大家一起來看看吧。

平面直角坐標(biāo)系教案

平面直角坐標(biāo)系教案1

  一、說教材

  (一)本節(jié)教材所處的地位和作用:

  “平面直角坐標(biāo)系”是“數(shù)軸”的發(fā)展,它的建立,使代數(shù)的基本元素(數(shù)對)與幾何的基本元素(點(diǎn))之間產(chǎn)生一一對應(yīng),數(shù)發(fā)展成式、方程與函數(shù),點(diǎn)運(yùn)動而成直線、曲線等幾何圖形,于是實(shí)現(xiàn)了認(rèn)識上從一維空間到二維空間的發(fā)展,構(gòu)成更廣闊的范圍內(nèi)的數(shù)形結(jié)合、互相轉(zhuǎn)化的理論基礎(chǔ)。因此,平面直角坐標(biāo)系是溝通代數(shù)和幾何的橋梁,是非常重要的數(shù)學(xué)工具。直角坐標(biāo)系的基本知識是學(xué)習(xí)全章及至以后數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),在后面學(xué)習(xí)如何畫函數(shù)圖象以及研究一些具體函數(shù)圖象的性質(zhì)時(shí),都要應(yīng)用這些知識;注意到這種知識前后的關(guān)系,適當(dāng)把握好本小節(jié)的教學(xué)要求,是教好、學(xué)好本小節(jié)的關(guān)鍵。如果沒有透徹理解這部分知識,就很難學(xué)好整個(gè)一章內(nèi)容。

  (二)教材內(nèi)容的選擇

  這節(jié)課所選用的教學(xué)內(nèi)容是:6.1.2平面直角坐標(biāo)系(第二課時(shí))。

  (三)教學(xué)目標(biāo)的確定

  知識目標(biāo):能根據(jù)坐標(biāo)(都為整數(shù))描出點(diǎn)的位置,能在方格紙中建立平面直角坐標(biāo)系,描述事物的位置。

  能力目標(biāo):通過多不同象限的點(diǎn)的坐標(biāo)的符號的研究,培養(yǎng)歸納、概括能力。

  思想目標(biāo):在教學(xué)中滲透分類的思想,初步體會數(shù)形結(jié)合的思想。

  教學(xué)難點(diǎn):總結(jié)各象限點(diǎn)及坐標(biāo)軸的坐標(biāo)的符號。

  (四)教學(xué)重點(diǎn)、難點(diǎn)的確定

  我認(rèn)為本節(jié)課的教學(xué)重點(diǎn)是根據(jù)點(diǎn)的坐標(biāo)在直角坐標(biāo)系中描出點(diǎn)的位置,這是因?yàn)椋?/p>

  1.九年義務(wù)教育全日制初級中學(xué)數(shù)學(xué)教學(xué)大綱中明確規(guī)定要求學(xué)生掌握平面直角坐標(biāo)系,能夠使它成為有關(guān)論證思維工具。

  2.學(xué)習(xí)知識的'目的在于應(yīng)用,而平面直角坐標(biāo)系應(yīng)用相當(dāng)廣泛,它是代數(shù)、幾何學(xué)里最基本,最重要的解題的工具之一。

  教學(xué)難點(diǎn):總結(jié)各象限點(diǎn)及坐標(biāo)軸的坐標(biāo)的符號。是通過學(xué)生的探究實(shí)現(xiàn)的,用這種方法可以使學(xué)生更好的理解、記憶。

  二、說教法

  根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,我采用的是講練結(jié)合的方法。

  因?yàn)楸竟?jié)課的知識點(diǎn)之一是“象限”,這就需要教師的精講。教師要引導(dǎo)學(xué)生去理解心知,并配合相關(guān)的練習(xí),引導(dǎo)學(xué)生系統(tǒng)地掌握基礎(chǔ)知識和基本技能,培養(yǎng)學(xué)生分析問題及解決問題的能力。

  三、說學(xué)法

  通過這節(jié)課的教學(xué)使學(xué)生“會質(zhì)疑,會嘗試”學(xué)生有得必先有疑,只有產(chǎn)生疑問學(xué)習(xí)才有動力。學(xué)生通過動手、動腦、動口,通過觀察、分析、歸納得出結(jié)論,這樣使學(xué)生感知知識的產(chǎn)生和發(fā)展過程,從而使學(xué)生達(dá)到理解消化的目的。教師不但要讓學(xué)生學(xué)會、更應(yīng)讓他們會學(xué)。所以,在教學(xué)中我設(shè)計(jì)了兩個(gè)探究問題,讓他們自己探究,歸納。從而培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力。

  四、說課堂程序

  (一)以舊帶新:

  利用上一節(jié)課對平面直角坐標(biāo)系的初步認(rèn)識,設(shè)計(jì)了一道口答題,(看圖說出各點(diǎn)的坐標(biāo))設(shè)計(jì)意圖是復(fù)習(xí)有關(guān)舊知識,可幫助學(xué)生理解新知,從而引出新課。

  (二)教學(xué)新知

  1.象限的概念

  以教師講解的方式介紹四個(gè)象限的概念。

 。ㄔO(shè)計(jì)意圖:象限這種概念的教學(xué)還是以教師的講解為宜。)

  2.各象限點(diǎn)的坐標(biāo)的符號情況由學(xué)生探究。

  具體安排是由例題、練習(xí)題作為鋪墊進(jìn)行探究,設(shè)計(jì)意圖是通過學(xué)生自己的探究,已有利于對四個(gè)象限概念的理解,有有利于對點(diǎn)的坐標(biāo)的理解。

  3,同一圖形在不同直角坐標(biāo)系的坐標(biāo)不同。也是由學(xué)生進(jìn)行探究,具體由三步組成,一是找坐標(biāo)軸,二是寫坐標(biāo),三是從新建立坐標(biāo)系并寫出坐標(biāo),由淺入深的進(jìn)行探究,符合學(xué)生認(rèn)知水平的發(fā)展。

  4、練習(xí):一部分出現(xiàn)在新課幾探究后,一部分出現(xiàn)在新課后,題是平面直角坐標(biāo)系的變式練習(xí),可考察思維的靈活性和全面性。又體現(xiàn)了平面直角坐標(biāo)系的實(shí)用價(jià)值,突出考察思維的全面性和深刻性。

  練習(xí)的要有一定的梯度,首先,基礎(chǔ)型的題,找一名基礎(chǔ)稍差的學(xué)生來說,增強(qiáng)其信心,其次,作圖題,由于題的不是難點(diǎn),由全體學(xué)生筆練完成,不必探究。

  (三)總結(jié)歸納

  本節(jié)課的小結(jié),由教師進(jìn)行小結(jié),一方面可以小結(jié)新知,另一方面小結(jié)平面直角坐標(biāo)系的重要性及廣泛用途。

  (四)作業(yè)

  A組B組兩種領(lǐng)型,分兩種層次,即利于面向全體,又利于分類推進(jìn)。

  板書:

  6.1.2平面直角坐標(biāo)系

平面直角坐標(biāo)系教案2

  [教學(xué)目標(biāo)]

  1. 認(rèn)識平面直角坐標(biāo)系,了解點(diǎn)的坐標(biāo)的意義,會用坐標(biāo)表示點(diǎn),能畫出點(diǎn)的坐標(biāo)位

  2. 滲透對應(yīng)關(guān)系,提高學(xué)生的數(shù)感.

  [教學(xué)重點(diǎn)與難點(diǎn)]

  重點(diǎn):平面直角坐標(biāo)系和點(diǎn)的坐標(biāo).

  難點(diǎn):正確畫坐標(biāo)和找對應(yīng)點(diǎn).

  [教學(xué)設(shè)計(jì)]

  [設(shè)計(jì)說明]

  一.利用已有知識,引入

  1.如圖,怎樣說明數(shù)軸上點(diǎn)A和點(diǎn)B的位置,

  2.根據(jù)下圖,你能正確說出各個(gè)象棋子的位置嗎?

  二.明確概念

  平面直角坐標(biāo)系:平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系(rectangular coordinate system).水平的數(shù)軸稱為x軸(x-axis)或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸為y軸(y-axis)或縱軸,取向上方向?yàn)?/p>

  由數(shù)軸的表示引入,到兩個(gè)數(shù)軸和有序數(shù)對。

  從學(xué)生熟悉的物品入手,引申到平面直角坐標(biāo)系。

  描述平面直角坐標(biāo)系特征和畫法

  正方向;兩個(gè)坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  點(diǎn)的坐標(biāo):我們用一對有序數(shù)對表示平面上的`點(diǎn),這對數(shù)叫坐標(biāo)。表示方法為(a,b).a是點(diǎn)對應(yīng)橫軸上的數(shù)值,b是點(diǎn)在縱軸上對應(yīng)的數(shù)值。

  例1 寫出圖中A、B、C、D點(diǎn)的坐標(biāo)。

  建立平面直角坐標(biāo)系后,平面被坐標(biāo)軸分成四部分,分別叫第一象限,第二象限,第三象限和第四象限。

  你能說出例1中各點(diǎn)在第幾象限嗎?

  例2 在平面直角坐標(biāo)系中描出下列各點(diǎn)。

 。ǎ〢(3,4);B(-1,2);C(-3,-2);D(2,-2)

  問題1:各象限點(diǎn)的坐標(biāo)有什么特征?

  練習(xí):教材49頁:練習(xí)1,2。

  三.深入探索

  教材48頁:探索:

  識別坐標(biāo)和點(diǎn)的位置關(guān)系,以及由坐標(biāo)判斷兩點(diǎn)的關(guān)系以及兩點(diǎn)所確定的直線的位置關(guān)系。

  [鞏固練習(xí)]

  1. 教材49頁習(xí)題6.1——第1題

  2. 教材50頁——第2,4,5,6。

  [小結(jié)]

  1. 平面直角坐標(biāo)系;

  2. 點(diǎn)的坐標(biāo)及其表示

  3. 各象限內(nèi)點(diǎn)的坐標(biāo)的特征

  4. 坐標(biāo)的簡單應(yīng)用

  [作業(yè)]

  必做題:教科書50頁:3題

 。ń滩51頁綜合運(yùn)用7,8,9,10為練習(xí)課內(nèi)容)

  明確點(diǎn)的坐標(biāo)的表示法

  仿照例題,畫坐標(biāo)軸,描點(diǎn),要求能正確畫平面直角坐標(biāo)系

  通過探究,發(fā)現(xiàn)坐標(biāo)不但能代表點(diǎn)的位置,而且能反映他所在的直線的特征

平面直角坐標(biāo)系教案3

  教學(xué)目標(biāo):

  1、通過現(xiàn)實(shí)情景感受利用有序數(shù)對表示位置的廣泛性,能利用有序數(shù)對來表示位置。

  2、讓學(xué)生感受到可以用數(shù)量表示圖形位置,幾何問題可以轉(zhuǎn)化為代數(shù)問題,形成數(shù)形結(jié)合的意識。

  教學(xué)重點(diǎn):理解有序數(shù)對的概念,用有序數(shù)對來表示位置。

  教學(xué)難點(diǎn):理解有序數(shù)對是“有序的”并用它解決實(shí)際問題,課時(shí)安排:1課時(shí)

  教學(xué)過程

  一、創(chuàng)設(shè)問題情境,引入新課

  展示書P105畫面并提出問題,在建國50周年的慶典活動中,天安門廣場上出現(xiàn)了壯觀的背景圖案,你知道它是怎么組成的嗎?

  原來,他們舉起不同顏色的花束(如第10排第25列舉紅花,第28排第30列舉黃花)整個(gè)方陣就組成了絢麗的背景圖章。類似用“第幾排第幾列”來確定同學(xué)的'位置,我們在日常生活中經(jīng)常用的方法。

  二、師生共同參于教學(xué)活動

 。1)影院對觀眾席所有的座位都按“幾排幾號”編號,以便確定每個(gè)座位在影院中的位置觀眾根據(jù)入場券上的“排數(shù)”和“號數(shù)”準(zhǔn)確入座。

  師:只給一個(gè)數(shù)據(jù)如“第5號”你能確定某個(gè)同學(xué)的位置嗎?為什么?要確定必須怎樣?

  生:不能,要確定還必須知道“排數(shù)”。

 。2)教師書寫平面圖通知,由學(xué)生分組討論。

  今天以下座位的同學(xué)放學(xué)后參加數(shù)學(xué)問題討論:(1,5), (2,4),(4,2),(3,3),(5,6)。

  師:你們能明白它的意思嗎?

  學(xué)生通過交流合作后得到共識:規(guī)定了兩個(gè)數(shù)所表示的含義后就可以表示座位的位置。

  師:請同學(xué)們思考以下問題:

  ①怎樣確定你自己的座位的位置?

 、谂艛(shù)和列數(shù)先后須序?qū)ξ恢糜杏绊憜幔?/p>

  生:通過討論,交流后得到以下共識:

 、倏捎门艛(shù)和列數(shù)兩個(gè)不同的數(shù)來確定位置。

 、谂艛(shù)和列數(shù)的先后須序?qū)ξ恢糜杏绊憽?/p>

 。3)讓學(xué)生的問題都是通過像“9排8號”,第2列第4排,這樣含有兩個(gè)數(shù)的詞來表示一個(gè)確定的位置,其中兩個(gè)數(shù)各自表示不同的含義。例如前面的表示“排數(shù)”后面的表示“列數(shù)”。我們把這種有順序的兩個(gè)數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)。

 。4)在生活中還有用有序數(shù)對表示一個(gè)位置的例子嗎?

  學(xué)生分組討論,交流,教師深入小組參與活動,傾聽學(xué)生的交流,并對學(xué)生提供的生活素材給予肯定和鼓勵(lì)。

  例如:人們常用經(jīng)緯度來表示,地球上的地點(diǎn)

  三、鞏固練習(xí)

  讓學(xué)生完成p46的練習(xí)。

  四、布置作業(yè)

  1、課本習(xí)題6,1,1。

  2、“怪獸吃豆豆”是一種計(jì)算機(jī)游戲,圖中標(biāo)志表示“怪獸”按圖中箭頭先后經(jīng)過的幾個(gè)位置,如果用(1,2)表示“怪獸”按圖中箭頭所指路線經(jīng)過的第3個(gè)位置,那么你能用同樣的方式表示出圖中“怪獸”經(jīng)過的其他幾個(gè)位置嗎?

  1 2 3 4 5 6 7 8

  五、教后反思

  師:談?wù)劚竟?jié)課,你有哪些收獲?

  由同學(xué)交流解決問題,教師設(shè)疑為以后的學(xué)習(xí)奠定基礎(chǔ)。

平面直角坐標(biāo)系教案4

  一 教材分析

 。薄⒔滩牡牡匚慌c作用

  本節(jié)課的教學(xué)內(nèi)容是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書,七年級下冊第6.1.2節(jié)平面直角坐標(biāo)系又稱笛卡兒坐標(biāo)。平面直角坐標(biāo)系是圖形與數(shù)量之間的橋梁,有了它我們便可以把幾何問題轉(zhuǎn)化為代數(shù)問題,也可以把代數(shù)問題轉(zhuǎn)化為幾何問題。本章內(nèi)容從數(shù)的角度刻畫了第五章有關(guān)平移的內(nèi)容,對學(xué)生以后的學(xué)習(xí)起到鋪墊作用,6.1.2節(jié)平面坐標(biāo)系主要是介紹如何建立平面坐標(biāo)系,如何確定點(diǎn)的坐標(biāo)和由點(diǎn)的坐標(biāo)尋找點(diǎn)的位置,以及平面坐標(biāo)系中特殊部位點(diǎn)的坐標(biāo)特征,根據(jù)學(xué)生的接受能力,我把本內(nèi)容分為2課時(shí),這是第一課時(shí),主要介紹如何建立坐標(biāo)系和在給定的坐標(biāo)系中確定點(diǎn)的坐標(biāo)。

  2、教學(xué)目標(biāo)

  根據(jù)新課標(biāo)要求,數(shù)學(xué)的教學(xué)不僅要傳授知識,更要注重學(xué)生在學(xué)習(xí)中所表現(xiàn)出來的情感態(tài)度,幫助學(xué)生認(rèn)識自我、建立信心。

  知識能力:①認(rèn)識平面直角坐標(biāo)系,了解點(diǎn)與坐標(biāo)的對應(yīng)系;②在給定的直角坐標(biāo)系中,能由點(diǎn)的位置寫出點(diǎn)坐標(biāo)。

  數(shù)學(xué)思考:①通過尋找確定位置,發(fā)展初步的空間觀念;②通過學(xué)習(xí)用坐標(biāo)的位置,滲透數(shù)形結(jié)合思想

  解決問題:通過運(yùn)用確定點(diǎn)坐標(biāo),發(fā)展學(xué)生的應(yīng)用意識。

  情感態(tài)度:①通過建立平面直角坐標(biāo)系和確定坐標(biāo)系中點(diǎn)的坐標(biāo),培養(yǎng)學(xué)生合作交流與探索精神;②通過介紹數(shù)學(xué)家的故事,滲透理想和情感的教育。

  3、重難點(diǎn)

  根據(jù)本章知識內(nèi)容以及學(xué)生對坐標(biāo)橫縱坐標(biāo)書寫易出錯(cuò)誤,確定本節(jié)重難點(diǎn)為:

  重點(diǎn):認(rèn)識平面坐標(biāo)系

  難點(diǎn):根據(jù)點(diǎn)的位置寫出點(diǎn)的坐標(biāo)

  一、 教法分析

  針對學(xué)初一學(xué)生的年齡特點(diǎn)和心理特征,以及他們現(xiàn)有知識水平,通過科學(xué)家發(fā)現(xiàn)點(diǎn)的坐標(biāo)形成的經(jīng)過啟迪學(xué)生思維,通過小組合作與交流及嘗試練習(xí),促進(jìn)學(xué)生共同進(jìn)步,并用肯定和激勵(lì)的言語鼓舞、激勵(lì)學(xué)生。

  二、 學(xué)法分析

  通過教學(xué)引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),并借助如何確定點(diǎn)的坐標(biāo),培養(yǎng)學(xué)生的創(chuàng)新能力和概括表達(dá)能力,運(yùn)用科學(xué)家的故事,激發(fā)學(xué)生勇于挑戰(zhàn)困難決心,形成在科學(xué)探索中的堅(jiān)忍不拔的毅力。

  三、 教學(xué)過程分析

  教學(xué)流程

  創(chuàng)設(shè)問題情景,引入新課 → 故事《笛卡兒的夢》,啟迪探索問題思路 → 嘗試與探索 → 鞏固練習(xí) → 總結(jié)歸納,布置作業(yè)

  活動1、孔子曰:“溫故而知新”,所以開課我先創(chuàng)建問題(1)用于復(fù)習(xí)數(shù)軸,在復(fù)習(xí)了相舊知的基礎(chǔ)上,引出如果學(xué)校東150米有圖書館,如何確定圖書館的位置,從而引出新知,也讓學(xué)生到數(shù)學(xué)的發(fā)展是隨著人們對觀察事物認(rèn)識發(fā)展而發(fā)展。

  活動2、笛卡兒的夢。新課程標(biāo)準(zhǔn)提出學(xué)生對數(shù)學(xué)不僅要關(guān)注學(xué)習(xí)的結(jié)果,更要關(guān)注他們的學(xué)習(xí)過程,通過笛卡兒的夢可讓學(xué)生經(jīng)歷數(shù)學(xué)問題,產(chǎn)生和解決的.過程啟迪學(xué)生的思維,順利實(shí)現(xiàn)學(xué)生對點(diǎn)與坐標(biāo)的對應(yīng)關(guān)系,由一維到二維過渡,從而達(dá)到突出重點(diǎn)、突破難點(diǎn),通過此過程也讓學(xué)生體會科學(xué)家在探究問題中所表現(xiàn)出的那種精神,培養(yǎng)學(xué)生勇于探索,克服困難的品質(zhì)和意志。

  活動3、嘗試探索。在嘗試中給出直角坐標(biāo)系和坐標(biāo)系中的一些點(diǎn),讓學(xué)生確定點(diǎn)的坐標(biāo),這樣有利用鞏固重點(diǎn),并根據(jù)反饋情況及時(shí)糾正錯(cuò)誤,接下來給出另一坐標(biāo)系和坐標(biāo)軸上的點(diǎn),讓學(xué)生先寫出點(diǎn)的坐標(biāo),再根據(jù)點(diǎn)的坐描述坐標(biāo)軸上點(diǎn)的特征,這樣按排先學(xué)一般點(diǎn)的坐標(biāo),再探究特殊點(diǎn)的坐標(biāo)符合學(xué)生的學(xué)習(xí)規(guī)律,也更容易理解和掌握。另外,通過數(shù)據(jù)描述點(diǎn)的特征,有利于發(fā)展學(xué)生的統(tǒng)計(jì)觀念。

  活動4、鞏固訓(xùn)練①P49第1題用來進(jìn)一步鞏固知識;②用坐標(biāo)來表示引例,②中的問題使所學(xué)知識馬上得到應(yīng)用,讓學(xué)生能體會到知識的應(yīng)用。

  活動5、總結(jié)歸納。根據(jù)教師所提出的問題讓學(xué)生歸納有利于培養(yǎng)學(xué)生的歸納能力和表述能力,利用“人生就是一個(gè)坐標(biāo)”及時(shí)對學(xué)生進(jìn)行理想教育,有利于學(xué)生人格的塑造。

平面直角坐標(biāo)系教案5

  第1課時(shí)

  1.1.1平面直角坐標(biāo)系(一)

  學(xué)習(xí)目標(biāo)

  1.回顧在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法.

  2. 能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題.

  學(xué)習(xí)過程

  一、學(xué)前準(zhǔn)備

  1、通過直角坐標(biāo)系,平面上的 與 ( ),曲線與 建立了聯(lián)系,實(shí)現(xiàn)了 。

  2、閱讀P3思考得出在直角坐標(biāo)系中解決實(shí)際問題的過程是:

  二、新課導(dǎo)學(xué)

  ◆探究新知(預(yù)習(xí)教材P1~P4,找出疑惑之處)

  問題1:如何刻畫一個(gè)幾何圖形的位置?

  問題2:如何創(chuàng)建坐標(biāo)系?

  問題3:(1).如何把平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(x,y)建立聯(lián)系?(2).平面直角坐標(biāo)系中點(diǎn)和有序?qū)崝?shù)對(x,y)是怎樣的關(guān)系?

  問題4:如何研究曲線與方程間的關(guān)系?結(jié)合課本例子說明曲線與方程的關(guān)系?

  問題5:如何刻畫一個(gè)幾何圖形的位置?

  需要設(shè)定一個(gè)參照系

  (1)、數(shù)軸 它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定

  (2)、平面直角坐標(biāo)系 :在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(x,y)確定

  (3)、空間直角坐標(biāo)系 :在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(x,y,z)確定

  (4)、抽象概括:在平面直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:A.曲線C上的點(diǎn)坐標(biāo)都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。

  問題6:如何建系?

  根據(jù)幾何特點(diǎn)選擇適當(dāng)?shù)闹苯亲鴺?biāo)系。

  (1)如果圖形有對稱中心,可以選對稱中心為坐標(biāo)原點(diǎn);

  (2)如果圖形有對稱軸,可以選擇對稱軸為坐標(biāo)軸;

  (3)使圖形上的特殊點(diǎn)盡可能多的在坐標(biāo)軸上。

  ◆應(yīng)用示例

  例1.已知△ABC的三邊 滿足 ,BE,CF分別為AC,AB上的中線,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系探究BE和CF的位置關(guān)系。(教材P4例1)

  ◆反饋練習(xí)

  1.兩個(gè)定點(diǎn)的距離為6,點(diǎn)M到這兩個(gè)定點(diǎn)的`距離的平方和為26,求點(diǎn)M的軌跡。

  解:

  三、總結(jié)提升

  ◆本節(jié)小結(jié)

  1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?

  答:建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題

  學(xué)習(xí)評價(jià)

  一、自我評價(jià)

  你完成本節(jié)導(dǎo)學(xué)案的情況為( )

  A.很好 B.較好 C. 一般 D.較差

  課后作業(yè)

  1. 已知點(diǎn)A為定點(diǎn),線段BC在定直線 上滑動,已知 ,點(diǎn)A到直線 的距離為3,求△ABC的外心的軌跡方程。

  2. (選做題)用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。

平面直角坐標(biāo)系教案6

  一、教學(xué)目標(biāo)

  1、知識與技能目標(biāo):認(rèn)識平面直角坐標(biāo)系,了解點(diǎn)與坐標(biāo)的對應(yīng)關(guān)系;

  2、過程與方法目標(biāo):通過研究平面直角坐標(biāo)中數(shù)與點(diǎn)的對應(yīng)關(guān)系,能根據(jù)坐標(biāo)描出點(diǎn)的位置;

  3、情感態(tài)度與價(jià)值觀目標(biāo):感受代數(shù)與幾何問題的相互轉(zhuǎn)換。體會品面直角坐標(biāo)系在解決實(shí)際問題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。

  二、教學(xué)重難點(diǎn)

  重點(diǎn):理解平面直角坐標(biāo)中點(diǎn)與數(shù)的一一對應(yīng)關(guān)系;

  難點(diǎn):根據(jù)坐標(biāo)描出點(diǎn)的位置,以及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)。

  三、教學(xué)用具

  教師準(zhǔn)備四張大的紙質(zhì)坐標(biāo)格子。

  四、教學(xué)過程

  (一)溫故知新,導(dǎo)入新課

  游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對,大家學(xué)習(xí)積極性很高,今天老師先考考你們, 看你們掌握了多少。

  我們將教室里的座位分為八列七排。a排b號記做有序數(shù)對(a,b),同學(xué)們先找準(zhǔn)自己的數(shù)對號。聽老師報(bào)數(shù)對,若是你自己的數(shù)對號,就快速站起來。反應(yīng)太慢和站錯(cuò)了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。

  我們可以發(fā)現(xiàn),通過教室平面內(nèi)的有序數(shù)對,可以唯一的確定與之對應(yīng)的同學(xué)。

  (二)新課教學(xué)

  課本例子:我們知道數(shù)軸上的點(diǎn)可以用一個(gè)數(shù)來表示,這個(gè)數(shù)叫做這個(gè)點(diǎn)的坐標(biāo)。例如點(diǎn)A數(shù)軸上的坐標(biāo)是-4,點(diǎn)B數(shù)軸上的坐標(biāo)是2;我們說坐標(biāo)是3.5的點(diǎn),也可以在數(shù)軸上唯一確定。

  教師提問1:類似于數(shù)軸確定直線上點(diǎn)的位置,能不能找到一種方法來確定平面內(nèi)點(diǎn)的位置呢?平面內(nèi)給出任意點(diǎn)A、B、C、D,我們怎么確定這些點(diǎn)的位置

  學(xué)生活動:小a說可以像教室座位一樣給任意點(diǎn)編一個(gè)橫排縱排的號,小B說我們可以每個(gè)點(diǎn)列一個(gè)數(shù)軸···

  教師活動:引導(dǎo)學(xué)生思考,怎么才能用同一標(biāo)準(zhǔn),方便的確定每一點(diǎn)的位置?

  結(jié)合橫縱排編號以及數(shù)軸,我們可以綜合考慮,引出一個(gè)橫縱的數(shù)軸?

  得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系,水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

  那有了這樣的平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用之前學(xué)的有序數(shù)對來表示了。例如:由A分別向x軸和y軸作垂線。垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是4,我們說A的坐標(biāo)是3,縱坐標(biāo)是4,有序數(shù)對(3,4)就叫做A的坐標(biāo),記作A(3,4)

  教師提問2:同學(xué)們按照這種做法,在坐標(biāo)紙上標(biāo)出B、C、D的坐標(biāo)。

  教師活動:走下講臺,關(guān)注學(xué)生的匯坐標(biāo)過程方法,指出學(xué)生出現(xiàn)問題的地方,并予以改正。

  教師提問3:在橫縱坐標(biāo)軸上各標(biāo)一點(diǎn)E、F,問:坐標(biāo)原點(diǎn)以及這兩點(diǎn)的坐標(biāo)是什么?

  教師活動:引導(dǎo)學(xué)生思考?xì)w納坐標(biāo)軸上的'點(diǎn)的坐標(biāo)的特點(diǎn)。

  得出結(jié)論:原點(diǎn)的坐標(biāo)是(0,0),x軸上的點(diǎn)的坐標(biāo)的縱坐標(biāo)為0;y軸上的點(diǎn)的坐標(biāo)的橫坐標(biāo)為0。

  (三)課程鞏固

  師生互動:與學(xué)生一起回憶平面直角坐標(biāo)系的各部分的意義,平面內(nèi)的點(diǎn)怎么對應(yīng)坐標(biāo),以及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)。

  “練一練”:

  在黑板上貼出四張事先準(zhǔn)備好的紙質(zhì)坐標(biāo)格子,在上面標(biāo)出任意的ABCDEFG等點(diǎn),每組我點(diǎn)一個(gè)按坐標(biāo)序列對,對應(yīng)的同學(xué)上黑板,來描出各點(diǎn)的坐標(biāo)。對一個(gè)加一分,錯(cuò)一個(gè)扣一分,得分相同的看用時(shí),時(shí)間短者勝,過程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。

  (1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來描點(diǎn)。

  教師活動:規(guī)范課堂氣氛,公平的評判,對于表現(xiàn)好的小組代表予以表揚(yáng),表現(xiàn)稍遜的學(xué)生不要?dú)怵H,給予鼓勵(lì),爭取下一次可以獲勝。

  (四)小結(jié)作業(yè)

  思考平面直角坐標(biāo)系中坐標(biāo)與點(diǎn)的對應(yīng)關(guān)系,如何由坐標(biāo)值確定點(diǎn)的位置。下節(jié)課我們會探討這個(gè)問題。

  五、板書設(shè)計(jì)

  平面直角坐標(biāo)系:平面內(nèi)畫兩條相互垂直、原點(diǎn)重合的數(shù)軸組成

  水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;

  豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;

  兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

平面直角坐標(biāo)系教案7

  教學(xué)目標(biāo):

  1.理解平面直角坐標(biāo)系中的伸縮變換;

  2.了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況;

  3.會用坐標(biāo)變換、伸縮變換解決實(shí)際問題,體驗(yàn)用數(shù)學(xué)知識解釋生活問題的樂趣。

  教學(xué)重點(diǎn):理解平面直角坐標(biāo)系中的伸縮變換。

  教學(xué)難點(diǎn):會用坐標(biāo)變換、伸縮變換解決實(shí)際問題。

  授課類型:新授課

  教學(xué)過程:

  一.復(fù)習(xí)引入

  在三角函數(shù)圖象的學(xué)習(xí)中,我們研究過下面一些問題:

 。1)怎樣由正弦曲線y=sinx得到曲線y=sin2x和y=sin?

 。2)怎樣由正弦曲線y=sinx得到曲線y=2sinx和y=sinx?

  作圖:

  二.新課講解

  引導(dǎo),觀察啟發(fā)與y=sinx的圖象作比較,結(jié)論:

  1.函數(shù)y=sinωx,x?R(ω>0且ω11)的圖象,可看作把正弦曲線上所有點(diǎn)的橫坐標(biāo)縮短(ω>1)或伸長(0<ω<1)到原來的倍(縱坐標(biāo)不變)。

  2.y=Asinx,x?R(A>0且A11)的圖象可以看作把正數(shù)曲線上的所有點(diǎn)的縱坐標(biāo)伸長(A>1)或縮短(0設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),保持縱坐標(biāo)y不變,將橫坐標(biāo)x縮為原來的倍,得到P’(x’,y’),那么 ①

  我們把①式叫做平面直角坐標(biāo)系中的一個(gè)坐標(biāo)壓縮變換。

  設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),保持橫坐標(biāo)x不變,將縱坐標(biāo)y伸長為原來的.2倍,得到P’(x’,y’),那么 ②

  我們把②式叫做平面直角坐標(biāo)系中的一個(gè)坐標(biāo)伸長變換。

  提出問題:怎樣由正弦曲線得到曲線y=2sin2x?(它是由①②兩種變換合成的)

  平面直角坐標(biāo)系中的任意一點(diǎn)P(x,y),經(jīng)過上述變換后變?yōu)辄c(diǎn)P’(x’,y’),那么 ③

  我們把③式叫做平面直角坐標(biāo)系中的坐標(biāo)伸縮變換。

  定義:設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換 ④的作用下,點(diǎn)P(x,y)對應(yīng)到點(diǎn)P’(x’,y’),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換。

  三.例題講解

  例1在平面直角坐標(biāo)系中,求下列方程所對應(yīng)的圖形經(jīng)過伸縮變換后的圖形。

 。1)2x+3y=0

 。2)x2+y2=1

  四.課堂練習(xí)

  課本P8第4題

  五.課堂小結(jié)

  設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換 ④的作用下,點(diǎn)P(x,y)對應(yīng)到點(diǎn)P’(x’,y’),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡稱伸縮變換。

  六.作業(yè)布置

平面直角坐標(biāo)系教案8

  活動1:知識回顧

  1、請學(xué)生展示自己設(shè)計(jì)的知識結(jié)構(gòu)圖

  2、教師展示知識結(jié)構(gòu)圖

  活動2:知識落實(shí)

  1、基礎(chǔ)訓(xùn)練

  復(fù)習(xí)各個(gè)知識點(diǎn)及平時(shí)解題應(yīng)注意的地方,進(jìn)行鞏固各知識點(diǎn)的基礎(chǔ)題訓(xùn)練。

  2、能力提高

  把本章內(nèi)容和以前的.知識點(diǎn)聯(lián)系起來,解決問題。

  3應(yīng)用拓展(合作探究)

  春天到了,七年級二班組織同學(xué)們到公園春游,張明王麗李華三位同學(xué)和其他同學(xué)走散了,同學(xué)們已經(jīng)到了中心廣場,而他們?nèi)栽谀档@賞花,他們對著景區(qū)示意圖在電話中向老師說明了他們的位置。

  活動3:知識檢測

  游戲環(huán)節(jié)(快樂之旅)

  7個(gè)金蛋你可以任選一個(gè),如果出現(xiàn)“恭喜你”的字樣,你將直接過關(guān);否則將有考驗(yàn)?zāi)愕臄?shù)學(xué)問題,當(dāng)然你可以自己作答,也可以求助你周圍的老師或同學(xué).

  活動4:小結(jié)提升

  通過本節(jié)復(fù)習(xí)課,你對本章知識是否有了更深的認(rèn)識呢?談?wù)勀愕捏w會。

  活動5:布置作業(yè)

  1、必做題:P96—3、4、7

  2、選做題:P97—9、10

  3、探究題

  利用本章的基礎(chǔ)知識分析問題,解決問題。

  學(xué)生思考交流

  提出解決問題的策略。

  學(xué)生先讀題獨(dú)立思考,再通過合作探究,分析問題,得到問題的解決方案,利用已學(xué)的知識分析問題,闡述解題的思路,進(jìn)而完善問題的答案。

平面直角坐標(biāo)系教案9

  【溫故互查】

  填空:①規(guī)定了、、的直線叫做數(shù)軸。

  ②數(shù)軸上原點(diǎn)及原點(diǎn)右邊的點(diǎn)表示的數(shù)是;原點(diǎn)左邊的點(diǎn)表示的數(shù)是。

  ③畫數(shù)軸時(shí),一般規(guī)定向(或向)為正方向。

  【設(shè)問導(dǎo)讀】

  (一)平面直角坐標(biāo)系

  1、觀察:在數(shù)軸上,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為。

  即:數(shù)軸上的點(diǎn)可以用一個(gè)來表示,這個(gè)數(shù)叫做這個(gè)點(diǎn)的。

  反過來,知道數(shù)軸上的一個(gè)點(diǎn)的坐標(biāo),這個(gè)點(diǎn)在數(shù)軸上的位置也就確定了。

  2、思考:能不能有一種辦法來確定平面內(nèi)的點(diǎn)的位置呢?

  3、平面直角坐標(biāo)系概念:

  平面內(nèi)畫兩條互相、原點(diǎn)的數(shù)軸,組成平面直角坐標(biāo)系.

  水平的數(shù)軸稱為或,習(xí)慣上取向?yàn)檎较?豎直的數(shù)軸為或,取向?yàn)檎较?兩個(gè)坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的。

  4、點(diǎn)的坐標(biāo):

  我們用一對表示平面上的點(diǎn),這對數(shù)叫。表示方法為(a,b).a是點(diǎn)對應(yīng)上的數(shù)值,b是點(diǎn)在上對應(yīng)的數(shù)值。

  (二)如何在平面直角坐標(biāo)系中表示一個(gè)點(diǎn)

  1、以A(2,3)為例,表示方法為:

  A點(diǎn)在x軸上的坐標(biāo)為,A點(diǎn)在y軸上的坐標(biāo)為,

  A點(diǎn)在平面直角坐標(biāo)系中的坐標(biāo)為(2,3),記作:A(2,3)

  2、方法歸納:由點(diǎn)A分別向X軸和作垂線。

  3、強(qiáng)調(diào):X軸上的坐標(biāo)寫在前面。

  4、活動:你能說出點(diǎn)B、C、D的坐標(biāo)嗎?

  注意:橫坐標(biāo)和縱坐標(biāo)不要寫反。

  5、思考?xì)w納:原點(diǎn)O的坐標(biāo)是(,),x軸上的點(diǎn)縱坐標(biāo)都是,y軸上的橫坐標(biāo)都是。即橫軸上的點(diǎn)坐標(biāo)為(x,0),縱軸上的`點(diǎn)坐標(biāo)為(0,y)

  【自我檢測】

  1、下列語句,其中正確的是()

 、冱c(diǎn)(3,2)與(2,3)是同一個(gè)點(diǎn);②點(diǎn)(0,-2)在X軸上;③點(diǎn)(0,0)是坐標(biāo)原點(diǎn).

  A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

  2、寫出圖中的多邊形ABCDEF各個(gè)頂點(diǎn)的坐標(biāo).

  (1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?

  (2)線段CE的位置有什么特點(diǎn)?

  (3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?

  【鞏固訓(xùn)練】

  在下圖中,分別寫出八邊形各個(gè)頂點(diǎn)的坐標(biāo).

  【拓展延伸】

  1.在平面直角坐標(biāo)系中,點(diǎn)P(-3,4)到x軸的距離為,到y(tǒng)軸的距離為。

  2.點(diǎn)P位于x軸的下方,y軸的左側(cè),距離x軸4個(gè)單位長度,距離y軸2個(gè)單位長度,那么點(diǎn)P的坐標(biāo)是

平面直角坐標(biāo)系教案10

  1、教材分析:

  ⑴知識結(jié)構(gòu):

  日常生活及其它學(xué)科需要一種確定平面內(nèi)點(diǎn)的位置的方法。在數(shù)學(xué)上,可以類比數(shù)軸,引出平面直角坐標(biāo)系的概念。完成了坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對的一一對應(yīng),也把數(shù)與形統(tǒng)一了起來。

  ⑵重點(diǎn)、難點(diǎn)分析:

  本節(jié)的重點(diǎn)是能正確畫出直角坐標(biāo)系,并能在直角坐標(biāo)系中,根據(jù)坐標(biāo)找出點(diǎn),由點(diǎn)求出坐標(biāo)。直角坐標(biāo)系的基本知識是學(xué)習(xí)全章的基礎(chǔ),在后面學(xué)習(xí)函數(shù)的圖象以及一些具體函數(shù)的圖象時(shí)都要應(yīng)用這些知識。通過對這部分知識的反復(fù)而深入的練習(xí)、應(yīng)用,滲透坐標(biāo)的思想,進(jìn)而形成數(shù)形結(jié)合的的數(shù)學(xué)思想。

  本節(jié)的難點(diǎn)是平面直角坐標(biāo)系中的點(diǎn)與有序?qū)崝?shù)對間的一一對應(yīng)。限于初中的學(xué)習(xí)范圍與學(xué)生的接受能力,學(xué)生理解起來有一定的困難,如:不理解有序?qū)崝?shù)對,或不能很好地理解一一對應(yīng),有的只限于機(jī)械地記憶,這樣會影響對數(shù)形結(jié)合思想的形成。教材上只給出了比較簡單的描述。教師可以通過課堂練習(xí),讓學(xué)生從一點(diǎn)一滴處理解橫、縱坐標(biāo)的值不同,即實(shí)數(shù)對不同,則在直角平面上的點(diǎn)的位置也不同,反之,亦然。

  2、教學(xué)建議:

  數(shù)學(xué)是世界的一部分,同時(shí)又隱藏在世界中。這樣,數(shù)學(xué)教學(xué)的目的之一就是使學(xué)生通過數(shù)學(xué)的學(xué)習(xí),認(rèn)識數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,數(shù)學(xué)與人類生活的密切聯(lián)系,以及數(shù)學(xué)對人類歷史發(fā)展的影響與作用。因此,數(shù)學(xué)概念的產(chǎn)生有其必然性與合理性。

  (1)概念的引入

  組織學(xué)生看本章引言中的氣溫圖,說明確定平面內(nèi)點(diǎn)的'位置是實(shí)際需要的。可以讓學(xué)生進(jìn)行討論,他們的生活中還有什么類似的例子。如電影院中的座位,到圖書館找書,學(xué)生的課程表等。從豐富的背景材料中,體會數(shù)學(xué)的廣泛應(yīng)用性。

  (2)講授概念:

  現(xiàn)實(shí)生活和其它學(xué)科向數(shù)學(xué)提出了問題,如何建立數(shù)學(xué)模型以解決這個(gè)問題呢?以前,我們學(xué)習(xí)過數(shù)軸。數(shù)軸上每一個(gè)點(diǎn)都對應(yīng)一個(gè)實(shí)數(shù),這個(gè)實(shí)數(shù)叫做這個(gè)點(diǎn)在數(shù)軸上的坐標(biāo),數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對應(yīng)的。這樣利用數(shù)軸可以研究一些數(shù)量關(guān)系的問題。確定平面內(nèi)點(diǎn)的位置的方法也可以與此類似,類比出平面直角坐標(biāo)系的概念,并結(jié)合圖形講述平面直角坐標(biāo)系的有關(guān)概念。

  (3)練習(xí),深入地理解概念:

  平面直角這節(jié)課的概念較多,又都是新的,開始的時(shí)候不適合太快,給學(xué)生一個(gè)適應(yīng)的過程,一個(gè)思維的空間。如:x軸、y軸不在任何象限內(nèi),原點(diǎn)是x軸、y軸的交點(diǎn)等。然后,就可以多練習(xí)一些簡單題,如給出坐標(biāo),在平面直角坐標(biāo)系中標(biāo)點(diǎn),或反之,給出平面直角坐標(biāo)系中點(diǎn)的位置,找出其坐標(biāo)。通過小題的練習(xí),使學(xué)生能逐步理解坐標(biāo)平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對之間的一一對應(yīng)關(guān)系。

  總之,形成初步的數(shù)學(xué)概念后,學(xué)生可以通過變式,逐步加深對概念的理解。在解題過程中,教師的任務(wù)是創(chuàng)設(shè)環(huán)境,激勵(lì)學(xué)生憑借自己的原有認(rèn)知水平,完成對數(shù)學(xué)知識的建構(gòu)。在相互討論評價(jià)的過程中,培養(yǎng)學(xué)生的責(zé)任心。

  這節(jié)課可以分兩課時(shí)完成,第一節(jié)課由實(shí)際引入,類比數(shù)軸定義,給出平面直角坐標(biāo)系的概念,并通過練習(xí)達(dá)到熟練的程度。第二節(jié)課,可視第一節(jié)課的掌握情況,適當(dāng)增加一些有探索性的題目。如求一已知點(diǎn)關(guān)于x軸、y軸、原點(diǎn)的對稱點(diǎn)的坐標(biāo);一三象限角平分線上的點(diǎn)的坐標(biāo)特點(diǎn)等。

  教學(xué)目標(biāo):

  1、使學(xué)生進(jìn)一步熟悉由坐標(biāo)確定點(diǎn)和由點(diǎn)求坐標(biāo)的方法。理解平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對之間的一一對應(yīng)關(guān)系。

  2、會用象限和坐標(biāo)軸說明直角坐標(biāo)系內(nèi)點(diǎn)的位置,并會根據(jù)點(diǎn)的位置,確定點(diǎn)的橫坐標(biāo)、縱坐標(biāo)的符號。

  3、掌握確定已知點(diǎn)關(guān)于坐標(biāo)軸(或原點(diǎn))的對稱點(diǎn)的方法。培養(yǎng)學(xué)生觀察,歸納總結(jié)的能力。

  4、培養(yǎng)學(xué)生發(fā)現(xiàn)問題,主動探索的能力。在與同伴的合作交流中,培養(yǎng)學(xué)生的責(zé)任心。

  5、滲透數(shù)形結(jié)合的思想,培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性和深刻性。

  教學(xué)重點(diǎn):

  1、掌握象限或坐標(biāo)軸上的點(diǎn)的坐標(biāo)的特點(diǎn)。

  2、會求已知點(diǎn)關(guān)于坐標(biāo)軸或原點(diǎn)的對稱點(diǎn)的坐標(biāo)。

  教學(xué)難點(diǎn):

  理解平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對之間的一一對應(yīng)關(guān)系。

  教學(xué)用具:

  直尺、計(jì)算機(jī)

  教學(xué)方法:

  合作學(xué)習(xí),討論,探究。

平面直角坐標(biāo)系教案11

  一:教學(xué)目標(biāo)

  1:認(rèn)識并能畫出平面直角坐標(biāo)系;能在方格紙上建立適當(dāng)?shù)闹苯亲鴺?biāo)系,描述物體的位置;在給定的直角坐標(biāo)系中,會根據(jù)坐標(biāo)描出點(diǎn)的位置,由點(diǎn)的位置寫出它的坐標(biāo)。

  2:經(jīng)歷畫坐標(biāo)系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合意識、合作交流意識。

  二:教學(xué)重點(diǎn)

  能畫出平面直角坐標(biāo)系;會根據(jù)坐標(biāo)描出點(diǎn)的位置,由點(diǎn)的位置寫出它的坐標(biāo)。

  三:教學(xué)難點(diǎn)

  能能建立平面直角坐標(biāo)系;求出點(diǎn)的坐標(biāo),由點(diǎn)的位置寫出它的坐標(biāo)。

  四:教學(xué)時(shí)間

  三課時(shí)

  五:教學(xué)過程

  第一課時(shí)

  一)引入新課

  1:要在平面內(nèi)確定一個(gè)地點(diǎn)的位置需要幾個(gè)數(shù)據(jù)?

  2:練習(xí)如圖 你能確定各個(gè)景點(diǎn)的位置嗎?“大成殿”在“中心廣場”西、南各多少個(gè)格?“碑林” 在“中心廣場”東、北各多少個(gè)格?

  二)新課

  1:我們可以以“中心廣場”為原點(diǎn)作兩條互相垂直的數(shù)軸,分別取向右和向上的'方向?yàn)閿?shù)軸的正方向,一個(gè)方格的邊長看做一個(gè)單位長度,你能表示出“碑林”的位置嗎?“大成殿”的位置嗎?(學(xué)生回答,老師小結(jié))

  2:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。(通常兩條數(shù)軸成水平位置與鉛直位置,取向上或向右為正方向,水平位置的數(shù)軸叫橫軸,鉛直位置的數(shù)軸叫縱軸,它們的公共原點(diǎn)叫直角坐標(biāo)系的原點(diǎn)。)

【平面直角坐標(biāo)系教案】相關(guān)文章:

平面直角坐標(biāo)系教案15篇03-08

《平面直角坐標(biāo)系》說課稿11-09

平面直角坐標(biāo)系教學(xué)反思02-24

《平面直角坐標(biāo)系》說課稿10篇12-29

《平面直角坐標(biāo)系》說課稿(10篇)12-29

平面直角坐標(biāo)系教學(xué)反思(精選6篇)02-20

平面直角坐標(biāo)系的教學(xué)反思(精選6篇)02-04

平面直角坐標(biāo)系教學(xué)反思15篇03-28

平面直角坐標(biāo)系教學(xué)反思(通用6篇)02-17

初中數(shù)學(xué)平面直角坐標(biāo)系知識點(diǎn)04-07