- 相關推薦
余弦定理教案
在教學工作者實際的教學活動中,通常需要準備好一份教案,教案是教學藍圖,可以有效提高教學效率。如何把教案做到重點突出呢?下面是小編精心整理的余弦定理教案,歡迎大家分享。
余弦定理教案 篇1
教學準備
教學目標
進一步熟悉正、余弦定理內容,能熟練運用余弦定理、正弦定理解答有關問題,如判斷三角形的形狀,證明三角形中的三角恒等式。
教學重難點
教學重點:熟練運用定理。
教學難點:應用正、余弦定理進行邊角關系的相互轉化。
教學過程
一、復習準備:
1、寫出正弦定理、余弦定理及推論等公式。
2、討論各公式所求解的三角形類型。
二、講授新課:
1、教學三角形的解的討論:
、俪鍪纠1:在△ABC中,已知下列條件,解三角形。
分兩組練習,討論:解的個數情況為何會發(fā)生變化?
、谟萌缦聢D示分析解的`情況、(A為銳角時)
②練習:在△ABC中,已知下列條件,判斷三角形的解的情況。
2、教學正弦定理與余弦定理的活用:
、俪鍪纠2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦。
分析:已知條件可以如何轉化?→引入參數k,設三邊后利用余弦定理求角。
②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型。
分析:由三角形的什么知識可以判別?→求角余弦,由符號進行判斷
、鄢鍪纠4:已知△ABC中,試判斷△ABC的形狀、
分析:如何將邊角關系中的邊化為角?→再思考:又如何將角化為邊?
3、小結:三角形解的情況的討論;判斷三角形類型;邊角關系如何互化。
三、鞏固練習:
3、作業(yè):教材P11B組1、2題。
余弦定理教案 篇2
。ㄒ唬┙滩姆治
(1)地位和重要性:正、余弦定理是學生學習了平面向量之后要掌握的兩個重要定理,運用這兩個定理可以初步解決幾何及工業(yè)測量等實際問題,是解決有關三角形問題的有力工具。
。2)重點、難點。
重點:正余弦定理的證明和應用
難點:利用向量知識證明定理
。ǘ┙虒W目標
(1)知識目標:
、僖獙W生掌握正余弦定理的推導過程和內容;
、谀軌蜻\用正余弦定理解三角形;
③了解向量知識的應用。
。2)能力目標:提高學生分析問題、解決問題的能力。
。3)情感目標:使學生領悟到數學來源于實踐而又作用于實踐,培養(yǎng)學生的學習數學的興趣。
(三)教學過程
教師的主要作用是調控課堂,適時引導,引導學生自主發(fā)現,自主探究。使學生的綜合能力得到提高。
教學過程分如下幾個環(huán)節(jié):
教學過程課堂引入
1、定理推導
2、證明定理
3、總結定理
4、歸納小結
5、反饋練習
6、課堂總結、布置作業(yè)
具體教學過程如下:
。1)課堂引入:
正余弦定理廣泛應用于生產生活的各個領域,如航海,測量天體運行,那正余弦定理解決實際問題的一般步驟是什么呢?
。2)定理的推導。
首先提出問題:RtΔABC中可建立哪些邊角關系?
目的:首先從學生熟悉的直角三角形中引導學生自己發(fā)現定理內容,猜想,再完成一般性的證明,具體環(huán)節(jié)如下:
①引導學生從SinA、SinB的表達式中發(fā)現聯系。
、诶^續(xù)引導學生觀察特點,有A邊A角,B邊B角;
、劢又龑В耗苡肅邊C角表示嗎?
、芏蠊膭畈孪耄涸谥苯侨切沃谐闪⒘,對任意三角形成立嗎?
發(fā)現問題比解決問題更重要,我便是讓學生體驗了發(fā)現的過程,從學生熟悉的知識內容入手,觀察發(fā)現,然后產生猜想,進而完成一般性證明。
這個過程采用了不斷創(chuàng)設問題,啟發(fā)誘導的教學方法,引導學生自主發(fā)現和探究。
第二步證明定理:
①用向量方法證明定理:學生不易想到,設計如下:
問題:如何出現三角函數做數量積欲轉化到正弦利用誘導公式做直角難點突破
實踐:師生共同完成銳角三角形中定理證明
獨立:學生獨立完成在鈍角三角形中的證明
總結定理:師生共同對定理進行總結,再認識。
在定理的推導過程中,我注重“重過程、重體驗”培養(yǎng)了學生的創(chuàng)新意識和實踐能力,教育學生獨立嚴謹科學的求學態(tài)度,使情感目標、能力目標得以實現。
在定理總結之后,教師布置思考題:定理還有沒有其他證法?
通過這樣的思考題,發(fā)散了學生思維,使學生的思維不僅僅禁錮在教師的.啟發(fā)誘導之下,符合素質教育的要求。
(3)例題設置。
例1△ABC中,已知c=10,A=45°,C=30°,求b、
。▽W生口答、教師板書)
設計意圖:
、偌由顚Χɡ淼恼J識;
、谔岣呓鉀Q實際問題的能力
例2△ABC中,a=20,b=28,A=40°,求B和C、
例3△ABC中,a=60,b=50,A=38°,求B和C、其中①兩組解,②一組解
例3同時給出兩道題,首先留給學生一定的思考時間,同時讓兩學生板演,以便兩題形成對照、比較。
可能出現的情況:兩個學生都做對,則繼續(xù)為學生提供展示的空間,讓學生來分析看似一樣的條件,為何①二解②一解情況,如果第二同學也做出兩組解,則讓其他學生積極參與評判,發(fā)現問題,找出對策。
設計意圖:
、僭鰪妼W生對定理靈活運用的能力
、谔岣叻治鰡栴}解決問題的能力
③激發(fā)學生的參與意識,培養(yǎng)學生合作交流、競爭的意識,使學生在相互影響中共同進步。
。4)歸納小結。
借助多媒體動態(tài)演示:圖表
使學生對于已知兩邊和其中一邊對角,三角形解的情況有一個清晰直觀的認識。之后讓學生對題型進行歸納小結。
這樣的歸納總結是通過學生實踐,在新舊知識比照之后形成的,避免了學生的被動學習,抽象記憶,讓學生形成對自我的認同和對社會的責任感。實現本節(jié)課的情感目標。
。5)反饋練習:
①△ABC中,已知a=60,b=48,A=36°
②△ABC中,已知a=19,b=29,A=4°
、邸鰽BC中,已知a=60,b=48,A=92°
判斷解的情況。
通過學生形成性的練習,鞏固了對定理的認識和應用,也便于教師掌握學情,以為教學的進行作出合理安排。
。6)課堂總結,布置作業(yè)。
余弦定理教案 篇3
一、教材分析
《余弦定理》選自人教A版高中數學必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學內容是余弦定理的內容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。
余弦定理的學習有充分的基礎,初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節(jié)課內容學習的知識基礎,同時又對本節(jié)課的學習提供了一定的方法指導。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的.常用方法,余弦定理也經常運用于空間幾何中,所以余弦定理是高中數學學習的一個十分重要的內容。
二、教學目標
知識與技能:
1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導、證明過程。
3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。
過程與方法:
1、通過從實際問題中抽象出數學問題,培養(yǎng)學生知識的遷移能力。
2、通過直角三角形到一般三角形的過渡,培養(yǎng)學生歸納總結能力。
3、通過余弦定理推導證明的過程,培養(yǎng)學生運用所學知識解決實際問題的能力。
情感態(tài)度與價值觀
1、在交流合作的過程中增強合作探究、團結協作精神,體驗 解決問題的成功喜悅。
2、感受數學一般規(guī)律的美感,培養(yǎng)數學學習的興趣。
三、教學重難點
重點:余弦定理及其推論和余弦定理的運用。
難點:余弦定理的發(fā)現和推導過程以及多解情況的判斷。
四、教學用具
普通教學工具、多媒體工具 (以上均為命題教學的準備)
【余弦定理教案】相關文章:
余弦定理說課稿07-06
余弦定理說課稿04-07
精選余弦定理說課稿3篇01-27
精選余弦定理說課稿四篇01-27
余弦定理說課稿四篇01-18
精選余弦定理說課稿三篇02-11
余弦定理說課稿(6篇)11-12
余弦定理說課稿6篇11-16
余弦定理說課稿7篇11-16