當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 《抽屜原理》教案

《抽屜原理》教案

時間:2022-07-28 19:14:05 教案 我要投稿

《抽屜原理》教案

  作為一位優(yōu)秀的人民教師,時常會需要準(zhǔn)備好教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。教案應(yīng)該怎么寫呢?下面是小編為大家收集的《抽屜原理》教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

《抽屜原理》教案

《抽屜原理》教案1

  【教學(xué)內(nèi)容】

  《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》六年級下冊第68頁。

  【教學(xué)目標(biāo)】

  1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

  3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。

  【教學(xué)重點】

  經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  【教學(xué)難點】

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  【教具、學(xué)具準(zhǔn)備】

  每組都有相應(yīng)數(shù)量的盒子、鉛筆、書。

  【教學(xué)過程】

  一、課前游戲引入。

  師:同學(xué)們在我們上課之前,先做個小游戲:老師這里準(zhǔn)備了4把椅子,請5個同學(xué)上來,誰愿來?(學(xué)生上來后)

  師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

  師:開始。

  師:都坐下了嗎?

  生:坐下了。

  師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”我說得對嗎?

  生:對!

  師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。下面我們開始上課,可以嗎?

  點評:教師從學(xué)生熟悉的“搶椅子”游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象,激發(fā)了學(xué)生的學(xué)習(xí)興趣,為后面開展教與學(xué)的活動做了鋪墊。

  二、通過操作,探究新知

  (一)教學(xué)例1

  1.出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進(jìn)2個盒子里,怎么放?有幾種不同的放法?

  師:請同學(xué)們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0) (2,1)

  點評:此處設(shè)計教師注意了從最簡單的數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動所有的學(xué)生積極參與進(jìn)來。

  師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學(xué)。3支筆放進(jìn)2個盒子里呢?

  生:不管怎么放,總有一個盒子里至少有2枝筆?

  是:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。

  師:那么,把4枝鉛筆放進(jìn)3個盒子里,怎么放?有幾種不同的放法?請同學(xué)們實際放放看。(師巡視,了解情況,個別指導(dǎo))

  師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。

  (4,0,0)

  (3,1,0)

  (2,2,0)

  (2,1,1),

  師:還有不同的放法嗎?

  生:沒有了。

  師:你能發(fā)現(xiàn)什么?

  生:不管怎么放,總有一個盒子里至少有2枝鉛筆。

  師:“總有”是什么意思?

  生:一定有

  師:“至少”有2枝什么意思?

  生:不少于兩只,可能是2枝,也可能是多于2枝?

  師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗感受)

  師:把3枝筆放進(jìn)2個盒子里,和把4枝筆飯放進(jìn)3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結(jié)論呢?

  學(xué)生思考——組內(nèi)交流——匯報

  師:哪一組同學(xué)能把你們的想法匯報一下?

  組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。

  師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)

  師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?

  師:這種分法,實際就是先怎么分的?

  生眾:平均分

  師:為什么要先平均分?(組織學(xué)生討論)

  生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。

  生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?

  師:同意嗎?那么把5枝筆放進(jìn)4個盒子里呢?(可以結(jié)合操作,說一說)

  師:哪位同學(xué)能把你的`想法匯報一下,

  生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

  師:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?

  生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

  師:把7枝筆放進(jìn)6個盒子里呢?

  把8枝筆放進(jìn)7個盒子里呢?

  把9枝筆放進(jìn)8個盒子里呢?……

  師:你發(fā)現(xiàn)什么?

  生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。

  師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

  點評:教師關(guān)注了“抽屜原理”的最基本原理,物體個數(shù)必須要多于抽屜個數(shù),化繁為簡,此處確實有必要提領(lǐng)出來進(jìn)行教學(xué)。在學(xué)生自主探索的基礎(chǔ)上,教師注意引導(dǎo)學(xué)生得出一般性的結(jié)論:只要放的鉛筆數(shù)盒數(shù)多1,總有一個盒里至少放進(jìn)2支。通過教師組織開展的扎實有效的教學(xué)活動,學(xué)生學(xué)的有興趣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。

《抽屜原理》教案2

  教學(xué)目標(biāo):

  1.通過練習(xí)讓學(xué)生理解抽屜原理,學(xué)會簡單的原理分析方法。

  2.在主動參與數(shù)學(xué)活動的過程中,讓學(xué)生切實體會到探索的樂趣,讓學(xué)生切實體會到數(shù)學(xué)與生活的緊密結(jié)合。

  教學(xué)重點:

  理解抽屜原理,掌握先平均分,再調(diào)整的方法。

  教學(xué)難點:

  理解總有至少的意義,理解至少數(shù)=商數(shù)+1。

  教學(xué)過程:

  一、教師出示練習(xí)題,學(xué)生完成。

  二、學(xué)生完成后,集體訂正。

  1.木箱里裝有紅色球3個、黃色球5個、藍(lán)色球7個,若蒙眼去摸,為保證取出的球中有兩個球的顏色相同,則最少要取出多少個球?

  2.一幅撲克牌有54張,最少要抽取幾張牌,方能保證其中至少有3張牌有相同的點數(shù)?

  3.有11名學(xué)生到老師家借書,老師的書房中有A、B、C、D四類書,每名學(xué)生最多可借兩本不同類的書,最少借一本。試證明:必有兩個學(xué)生所借的書的類型相同

  4.有50名運動員進(jìn)行某個項目的.單循環(huán)賽,如果沒有平局,也沒有全勝。試證明:一定有兩個運動員積分相同。

  5.體育用品倉庫里有許多足球、排球和籃球,某班50名同學(xué)來倉庫拿球,規(guī)定每個人至少拿1個球,至多拿2個球,問至少有幾名同學(xué)所拿的球種類是一致的?

  6.某校有55個同學(xué)參加數(shù)學(xué)競賽,已知將參賽人任意分成四組,則必有一組的女生多于2人,又知參賽者中任何10人中必有男生,則參賽男生的人數(shù)為多少人?

  7.有黑色、白色、藍(lán)色手套各5只(不分左右手),至少要拿出多少只(拿的時候不許看顏色),才能使拿出的手套中一定有兩雙是同顏色的。

  8.一些蘋果和梨混放在一個筐里,小明把這筐水果分成了若干堆,后來發(fā)現(xiàn)無論怎么分,總能從這若干堆里找到兩堆,把這兩堆水果合并在一起后,蘋果和梨的個數(shù)是偶數(shù),那么小明至少把這些水果分成了多少堆?

  9.從1,3,5,,99中,至少選出多少個數(shù),其中必有兩個數(shù)的和是100。

  10.某旅游車上有47名乘客,每位乘客都只帶有一種水果。如果乘客中有人帶梨,并且其中任何兩位乘客中至少有一個人帶蘋果,那么乘客中有多少人帶蘋果。

  11.某個年級有202人參加考試,滿分為100分,且得分都為整數(shù),總得分為10101分,則至少有多少人得分相同?

  12.20xx名營員去游覽長城,頤和園,天壇。規(guī)定每人最少去一處,最多去兩處游覽,至少有幾個人游覽的地方完全相同?

  13.某校派出學(xué)生204人上山植樹15301株,其中最少一人植樹50株,最多一人植樹100株,則至少有多少人植樹的株數(shù)相同?

《抽屜原理》教案3

  說課稿

  一、說教材

  1、教學(xué)內(nèi)容:我說課的內(nèi)容是人教版六年級數(shù)學(xué)下冊數(shù)學(xué)廣角《抽屜原理》第一課時,也就是教材70-71頁的例1和例2.

  2、教材地位及作用及學(xué)情分析

  本單元用直觀的方法,介紹了“抽屜原理”的兩種形式,并安排了很多具體問題和變式,幫助學(xué)生通過“說理”的方式來理解“抽屜原理”,有助于提高學(xué)生的邏輯思維能力,為以后學(xué)習(xí)較嚴(yán)密的數(shù)學(xué)證明做準(zhǔn)備。

  教材中,有三處孩子們不好理解的地方:1)“總有一個”、“至少”這兩個關(guān)鍵詞的解讀;2)為了達(dá)到“至少”而進(jìn)行“平均分”的思路,3)把什么看做物體,把什么看做抽屜,這樣一個數(shù)學(xué)模型的建立。六年級的學(xué)生對于總結(jié)規(guī)律的方法接觸比較少,尤其對于“數(shù)學(xué)證明”。于是我安排通過例1的直觀操作教學(xué),及例2的適當(dāng)抽象建模,讓全體學(xué)生真實地經(jīng)歷“抽屜原理”的探究過程,把他們在學(xué)習(xí)中可能會遇到的幾個困難,弄懂、弄通,建立清晰的基本概念、思路、方法。

  3、本節(jié)課的教學(xué)目標(biāo)

  根據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》和教材內(nèi)容,我確定本節(jié)課學(xué)習(xí)目標(biāo)如下:

  知識性目標(biāo):初步了解抽屜原理,會用抽屜原理解決簡單的實際問題。

  能力性目標(biāo):經(jīng)歷抽屜原理的探究過程,通過實踐操作,發(fā)現(xiàn)、歸納、總結(jié)原理。

  情感性目標(biāo):通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)的魅力。

  4、教學(xué)重、難點的確定

  教學(xué)重點:經(jīng)歷抽屜原理的探究過程,發(fā)現(xiàn)、總結(jié)并理解抽屜原理。

  教學(xué)難點:理解抽屜原理中“至少”的含義,并會用抽屜原理解決實際問題。

  二、說教法、學(xué)法

  六年級學(xué)生既好動又內(nèi)斂,于是教法上本節(jié)課主要采用了設(shè)疑激趣法、講授法、實踐操作法。課堂始終以設(shè)疑及觀察思考討論貫穿于整個教學(xué)環(huán)節(jié)中,采用師生互動的教學(xué)模式進(jìn)行啟發(fā)式教學(xué)。學(xué)法上主要采用了自主合作、探究交流的學(xué)習(xí)方式。體現(xiàn)數(shù)學(xué)知識的形成過程,感受數(shù)學(xué)學(xué)習(xí)的樂趣。

  三、說教學(xué)過程:

  一、游戲激趣,初步體驗。

  師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了2把椅子,請3個同學(xué)上來,誰愿來?

  1.游戲要求:你們3位同學(xué)圍著椅子走動,等音樂定下來后請你們3個都坐在椅子上,每個人必須都坐下。

  2.師:老師不用看就知道總有一把椅子上至少坐著兩名同學(xué),是這樣的嗎?如果不相信咱們再做一次,好不好?

  引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊含著一個有趣的`數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理!驹O(shè)計意圖:第一次與學(xué)生接觸,在課前進(jìn)行的游戲激趣,一使教師和學(xué)生進(jìn)行自然的溝通交流;二激發(fā)學(xué)生的興趣,引起探究的愿望;三為今天的探究埋下伏筆!

  二、操作探究,發(fā)現(xiàn)規(guī)律。

  1、提出問題:把4支鉛筆放進(jìn)3個文具盒中,不管怎么放,總有一個文具盒至少放進(jìn) 支鉛筆。讓學(xué)生猜測“至少會是”幾支?

  2、驗證結(jié)論:不管學(xué)生猜測的結(jié)論是什么,都要求學(xué)生借助實物進(jìn)行操作,來驗證結(jié)論。學(xué)生以小組為單位進(jìn)行操作和交流時,教師深入了解學(xué)生操作情況,找出列舉所有情況的學(xué)生。

  (1)先請列舉所有情況的學(xué)生進(jìn)行匯報,一說明列舉的不同情況,二結(jié)合操作說明自己的結(jié)論。(教師根據(jù)學(xué)生的回答板書所有的情況)

  學(xué)生匯報完后,教師再利用枚舉法的示意圖,指出每種情況中都有幾支鉛筆被放進(jìn)了同一個文具盒。

  【設(shè)計意圖:抽屜原理對于學(xué)生來說,比較抽象,特別是“總有一個文具盒中至少放進(jìn)2支鉛筆”這句話的理解。所以通過具體的操作,列舉所有的情況后,引導(dǎo)學(xué)生直接關(guān)注到每種分法中數(shù)量最多的文具盒,理解“總有一個文具盒”以及“至少2支”。讓學(xué)生初步經(jīng)歷“數(shù)學(xué)證明”的過程,訓(xùn)練學(xué)生的邏輯思維能力。】

 。2)提出問題:不用一一列舉,想一想還有其它的方法來證明這個結(jié)論嗎?

  學(xué)生匯報了自己的方法后,教師圍繞假設(shè)法,組織學(xué)生展開討論:為什么每個文具盒里都要放1支鉛筆呢?請相互之間討論一下。

  在討論的基礎(chǔ)上,教師小結(jié):假如每個文具盒放入一支鉛筆,剩下的一支還要放進(jìn)一個文具盒,無論放在哪個文具盒里,一定能找到一個文具里至少有2支鉛筆。只有平均分才能將鉛筆盡可能的分散,保證“至少”的情況。

  【設(shè)計意圖:鼓勵學(xué)生積極的自主探索,尋找不同的證明方法,在枚舉法的基礎(chǔ)上,學(xué)生意識到了要考慮最少的情況,從而引出假設(shè)法滲透平均分的思想!

  (3)初步觀察規(guī)律。

  教師繼續(xù)提問:6支鉛筆放進(jìn)5個文具盒里呢?你還用一一列舉所有的擺法嗎?7支鉛筆放進(jìn)6個文具盒里呢?100支鉛筆放進(jìn)99個文具盒呢?你發(fā)現(xiàn)了什么?

  【設(shè)計意圖:讓學(xué)生在這個連續(xù)的過程中初步感知方法的優(yōu)劣,發(fā)展了學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維!

  3、運用抽屜原理解決問題。

  出示第70頁做一做,讓學(xué)生運用簡單的抽屜原理解決問題。在說理的過程中重點關(guān)注“余下的2只鴿子”如何分配?

  【設(shè)計意圖:從余數(shù)1到余數(shù)2,讓學(xué)生再次體會要保證“至少”必須盡量平均分,余下的數(shù)也要進(jìn)行二次平均分。】

  4、發(fā)現(xiàn)規(guī)律,初步建模。

  我們將鉛筆、鴿子看做物體,文具盒、鴿舍看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學(xué)生用自己的語言描述,只要大概意思正確即可)

  小結(jié):只要物體數(shù)量比抽屜的數(shù)量多,總有一個抽屜至少放進(jìn)2個物體。這就叫做抽屜原理,F(xiàn)在你能解釋為什么老師肯定前兩排的同學(xué)中至少有2人的生日是同一個月份嗎?

  【設(shè)計意圖:通過對不同具體情況的判斷,初步建立“物體”“抽屜”的模型,發(fā)現(xiàn)簡單的抽屜原理。研究的問題來源于生活,還要還原到生活中去,所以請學(xué)生對課前的游戲的解釋,也是一個建模的過程,讓學(xué)生體會“抽屜”不一定是看得見,摸得著!

  5、用有余數(shù)的除法算式表示假設(shè)法的思維過程。

  (1)教學(xué)例2,可以出示問題后,讓學(xué)生說理,然后問:這個思考過程可以用算式表示出來嗎?

  (2)做一做:8只鴿子飛回3個鴿舍,至少有3支鴿子飛進(jìn)同一個鴿舍。為什么?

  【設(shè)計意圖:在例1和做一做的基礎(chǔ)上,相信學(xué)生會用平均分的方法解決“至少”的問題,將證明過程用有余數(shù)的除法算式表示,為下一步,學(xué)生發(fā)現(xiàn)結(jié)論與商和余數(shù)的關(guān)系做好鋪墊!

  三、鞏固練習(xí)。

  撲克牌游戲

 、賻熍c生配合做

  教師洗牌學(xué)生抽其中的任意5張,教師猜其中至少有2張是同花色的。

 、趯W(xué)生做游戲

  要求探尋規(guī)律并說明理由。

  【設(shè)計意圖:用游戲的形式激發(fā)學(xué)生的興趣,用抽屜原理解決具體問題進(jìn)行建模,讓學(xué)生體會抽屜的形式是多種多樣的!

  四、小結(jié)全課,激發(fā)熱情

  1、今天的你有什么收獲?

  我們將鉛筆、鴿子、撲克看做物體數(shù),文具盒、鴿舍、四種花色看做抽屜,觀察物體數(shù)和抽屜數(shù),你發(fā)現(xiàn)了什么規(guī)律?(學(xué)生用自己的語言描述,只要大概意思正確即可)

  小結(jié):只要物體數(shù)量比抽屜的數(shù)量多,總有一個抽屜至少放進(jìn)2個物體。這就叫做抽屜原理。

  2、介紹課外知識。

  介紹抽屜原理的發(fā)現(xiàn)者——數(shù)學(xué)家狄里克雷。

  【設(shè)計意圖:讓學(xué)生體會平常事中也有數(shù)學(xué)原理,有探究的成就感,激發(fā)對數(shù)學(xué)的熱情!

《抽屜原理》教案4

  【知識技能】

  1.理解最簡單的抽屜原理及抽屜原理的一般形式。

  2.引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究。

  【過程方法】

  經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。

  【情感態(tài)度價值觀】

  體會數(shù)學(xué)知識在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識和能力。

  【教學(xué)重、難點】經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  【教學(xué)過程】

  一、問題引入。

  師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請4個同學(xué)上來,誰愿來?

  1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

  2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”這句話說得對嗎?

  游戲開始,讓學(xué)生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實生活中存在著的一種現(xiàn)象。

  引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。

  二、探究新知

 。ㄒ唬┙虒W(xué)例1

  1.出示題目:有4枝鉛筆,3個盒子,把4枝鉛筆放進(jìn)3個盒子里,怎么放?有幾種不同的放法?

  師:請同學(xué)們實際放放看,誰來展示一下你擺放的`情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。

  板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),

  問題:4個人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學(xué)。4支筆放進(jìn)3個盒子里呢?

  引導(dǎo)學(xué)生得出:不管怎么放,總有一個盒子里至少有2枝筆。

  問題:

  (1)“總有”是什么意思?(一定有)

 。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)

  教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現(xiàn)了這個結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個結(jié)論呢?

  學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。

  問題:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個盒子里呢?把8枝筆放進(jìn)7個盒子里呢?把9枝筆放進(jìn)8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)

【《抽屜原理》教案】相關(guān)文章:

抽屜原理教案04-07

抽屜原理說課稿11-06

《抽屜原理》教學(xué)反思02-19

抽屜原理教學(xué)反思02-05

抽屜原理的教學(xué)反思04-06

抽屜原理教學(xué)反思(15篇)02-19

抽屜原理教學(xué)反思15篇02-05

《抽屜原理》教學(xué)反思15篇04-06

《抽屜原理》教學(xué)反思(15篇)04-06