- 高一數(shù)學(xué)必修一教案 推薦度:
- 高一數(shù)學(xué)必修一教案 推薦度:
- 相關(guān)推薦
高一數(shù)學(xué)必修一教案
作為一名教師,就不得不需要編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。如何把教案做到重點(diǎn)突出呢?下面是小編收集整理的高一數(shù)學(xué)必修一教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
高一數(shù)學(xué)必修一教案1
1.點(diǎn)的位置表示:
。1)先取一個(gè)點(diǎn)O作為基準(zhǔn)點(diǎn),稱為原點(diǎn)。取定這個(gè)基準(zhǔn)點(diǎn)之后,任何一個(gè)點(diǎn)P的位置就由O到P的向量唯一表示。稱為點(diǎn)P的位置向量,它表示的是點(diǎn)P相對(duì)于點(diǎn)O的位置。
。2)在平面上取定兩個(gè)相互垂直的單位向量e1,e2作為基,則可唯一地分解為=xe1+ye2的形式,其中x,y是一對(duì)實(shí)數(shù)。(x,y)就是向量的坐標(biāo),坐標(biāo)唯一地表示了向量,從而也唯一地表示了點(diǎn)P.
2.向量的坐標(biāo):
向量的坐標(biāo)等于它的終點(diǎn)坐標(biāo)減去起點(diǎn)坐標(biāo)。
3.基本公式:
。1)前提條件:A(x1,y1),B(x2,y2)為平面直角坐標(biāo)系中的兩點(diǎn),M(x,y)為線段AB的中點(diǎn)。
。2)公式:
、賰牲c(diǎn)之間的距離公式|AB|=(x2-x1)2+(y2-y1)2.
②中點(diǎn)坐標(biāo)公式
4.定比分點(diǎn)坐標(biāo)
設(shè)A,B是兩個(gè)不同的點(diǎn),如果點(diǎn)P在直線AB上且=λ,則稱λ為點(diǎn)P分有向線段所成的比。
注意:當(dāng)P在線段AB之間時(shí),,方向相同,比值λ>0.我們也允許點(diǎn)P在線段AB之外,此時(shí),方向相反,比值λ<0且λ≠-1.當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)λ=0.而點(diǎn)P與點(diǎn)B重合時(shí)不可能寫成=0的實(shí)數(shù)倍。
定比分點(diǎn)坐標(biāo)公式:已知兩點(diǎn)A(x1,y1),B(x2,y2),點(diǎn)P(x,y)分所成的比為λ。則x=x1+λx21+λ,y=y1+λy21+λ。
重心的坐標(biāo):三角形重心的坐標(biāo)等于三個(gè)頂點(diǎn)相應(yīng)坐標(biāo)的算術(shù)平均值,即x1+x2+x33,y1+y2+y33.
一、中點(diǎn)坐標(biāo)公式的運(yùn)用
【例1】已知ABCD的兩個(gè)頂點(diǎn)坐標(biāo)分別為A(4,2),B(5,7),對(duì)角線的交點(diǎn)為E(-3,4),求另外兩個(gè)頂點(diǎn)C,D的坐標(biāo)。
平行四邊形的對(duì)角線互相平分,交點(diǎn)為兩個(gè)相對(duì)頂點(diǎn)的中點(diǎn),利用中點(diǎn)公式求。
解:設(shè)C(x1,y1),D(x2,y2)。
∵E為AC的中點(diǎn),
∴-3=x1+42,4=y1+22.
解得x1=-10,y1=6.
又∵E為BD的中點(diǎn),
∴-3=5+x22,4=7+y22.
解得x2=-11,y2=1.
∴C的坐標(biāo)為(-10,6),D點(diǎn)的.坐標(biāo)為(-11,1)。
若M(x,y)是A(a,b)與B(c,d)的中點(diǎn),則x=a+c2,y=b+d2.也可理解為A關(guān)于M的對(duì)稱點(diǎn)為B,若求B,則可用變形公式c=2x-a,d=2y-b.
1-1已知矩形ABCD的兩個(gè)頂點(diǎn)坐標(biāo)是A(-1,3),B(-2,4),若它的對(duì)角線交點(diǎn)M在x軸上,求另外兩個(gè)頂點(diǎn)C,D的坐標(biāo)。
解:如圖,設(shè)點(diǎn)M,C,D的坐標(biāo)分別為(x0,0),(x1,y1),(x2,y2),依題意得
0=y1+32 y1=-3;
0=y2+42 y2=-4;
x0=x1-12 x1=2x0+1;
x0=x2-22 x2=2x0+2.
又∵|AB|2+|BC|2=|AC|2,
∴(-1+2)2+(3-4)2+(-2-2x0-1)2+(4+3)2=(-1-2x0-1)2+(3+3)2.
整理得x0=-5,∴x1=-9,x2=-8
∴點(diǎn)C,D的坐標(biāo)分別為(-9,-3),(-8,-4)。
二、距離公式的運(yùn)用
【例2】已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(4,1),B(-3,2),C(0,5),則△ABC的周長(zhǎng)為()。
A.42 B.82 C.122 D.162
利用兩點(diǎn)間的距離公式直接求解,然后求和。
解析:∵ A(4,1),B(-3,2),C(0,5),
∴|AB|=(-3-4)2+(2-1)2=50=52,
|BC|=[0-(-3)]2+(5-2)2=18=32,
| AC|=(0-4)2+(5-1)2=32=42.
∴△ABC的周長(zhǎng)為|AB|+|BC|+|AC|
=52+32+42
=122.
答案:C
。1)熟練掌握兩點(diǎn)間的距離公式,并能靈活運(yùn)用。
。2)注意公式的結(jié)構(gòu)特征。若y2=y1,|AB|=(x2-x1)2=|x2-x1|就是數(shù)軸上的兩點(diǎn)間距離公式。
高一數(shù)學(xué)必修一教案2
【教學(xué)目標(biāo)與解析】
1、教學(xué)目標(biāo)
(1)理解函數(shù)的概念;
(2)了解區(qū)間的概念;
2、目標(biāo)解析
(1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語言刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;
【問題診斷分析】在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來說一個(gè)難點(diǎn)。要解決這一問題,就要在通過從實(shí)際問題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。
【教學(xué)過程】
問題1:一枚炮彈發(fā)射后,經(jīng)過26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.
1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?
1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?
設(shè)計(jì)意圖:通過以上問題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫兩個(gè)變量之間的依賴關(guān)系,從問題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有的一個(gè)高度h與之對(duì)應(yīng)。
問題2:分析教科書中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。
問題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的.關(guān)系。
設(shè)計(jì)意圖:通過這些問題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。
問題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?
4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?
4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?
4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎?兩個(gè)函數(shù)相等的條件是什么?
高一數(shù)學(xué)必修一教案3
一、教學(xué)目標(biāo)
掌握用向量方法建立兩角差的余弦公式.通過簡(jiǎn)單運(yùn)用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ).
二、教學(xué)重、難點(diǎn)
1.教學(xué)重點(diǎn):通過探索得到兩角差的余弦公式;
2.教學(xué)難點(diǎn):探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識(shí)是否已經(jīng)具備的問題,運(yùn)用已學(xué)知識(shí)和方法的能力問題,等等.
三、學(xué)法與教學(xué)用具
1.學(xué)法:?jiǎn)l(fā)式教學(xué)
2.教學(xué)用具:多媒體
四、教學(xué)設(shè)想:
(一)導(dǎo)入:我們?cè)诔踔袝r(shí)就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
根據(jù)我們?cè)诘谝徽滤鶎W(xué)的知識(shí)可知我們的猜想是錯(cuò)誤的!下面我們就一起探討兩角差的余弦公式
(二)探討過程:
在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點(diǎn)為,等于角與單位圓交點(diǎn)的'橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來.)
展示多媒體動(dòng)畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認(rèn)識(shí)兩角差余弦公式的結(jié)構(gòu).
思考:我們?cè)诘诙聦W(xué)習(xí)用向量的知識(shí)解決相關(guān)的幾何問題,兩角差余弦公式我們能否用向量的知識(shí)來證明?
提示:
1、結(jié)合圖形,明確應(yīng)該選擇哪幾個(gè)向量,它們是怎樣表示的?
2、怎樣利用向量的數(shù)量積的概念的計(jì)算公式得到探索結(jié)果?
展示多媒體課件
比較用幾何知識(shí)和向量知識(shí)解決問題的不同之處,體會(huì)向量方法的作用與便利之處.
思考:再利用兩角差的余弦公式得出
。ㄈ├}講解
例1、利用和、差角余弦公式求、的值.
解:分析:把、構(gòu)造成兩個(gè)特殊角的和、差.
點(diǎn)評(píng):把一個(gè)具體角構(gòu)造成兩個(gè)角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會(huì)靈活運(yùn)用.
例2、已知,是第三象限角,求的值.
解:因?yàn),由此?/p>
又因?yàn)槭堑谌笙藿,所?/p>
所以
點(diǎn)評(píng):注意角、的象限,也就是符號(hào)問題.
。ㄋ模┬〗Y(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識(shí)公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式.在解題過程中注意角、的象限,也就是符號(hào)問題,學(xué)會(huì)靈活運(yùn)用.
高一數(shù)學(xué)必修一教案4
一、教學(xué)目標(biāo)
1.知識(shí)與技能:(1)通過實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。
。3)會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。
。4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。
2.過程與方法:
(1)讓學(xué)生通過直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。
3.情感態(tài)度與價(jià)值觀:
。1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周圍,增強(qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。
。2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。
難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具
。1)學(xué)法:觀察、思考、交流、討論、概括。
。2)實(shí)物模型、投影儀。
四、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1、由六根火柴最多可搭成幾個(gè)三角形?(空間:4個(gè))
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?
3、展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體。
問題:請(qǐng)根據(jù)某種標(biāo)準(zhǔn)對(duì)以上空間物體進(jìn)行分類。
。ǘ、研探新知
空間幾何體:多面體(面、棱、頂點(diǎn)):棱柱、棱錐、棱臺(tái);
旋轉(zhuǎn)體(軸):圓柱、圓錐、圓臺(tái)、球。
1、棱柱的結(jié)構(gòu)特征:
。1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點(diǎn)是什么?共同特點(diǎn)是什么?
。▽W(xué)生討論)
。2)棱柱的主要結(jié)構(gòu)特征(棱柱的'概念):
①有兩個(gè)面互相平行;②其余各面都是平行四邊形;③每相鄰兩上四邊形的公共邊互相平行。
。3)棱柱的表示法及分類:
(4)相關(guān)概念:底面(底)、側(cè)面、側(cè)棱、頂點(diǎn)。
2、棱錐、棱臺(tái)的結(jié)構(gòu)特征:
。1)實(shí)物模型演示,投影圖片;
。2)以類似的方法,根據(jù)出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念、分類以及表示。
棱錐:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形。
棱臺(tái):且一個(gè)平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結(jié)構(gòu)特征:
。1)實(shí)物模型演示,投影圖片——如何得到圓柱?
(2)根據(jù)圓柱的概念、相關(guān)概念及圓柱的表示。
4、圓錐、圓臺(tái)、球的結(jié)構(gòu)特征:
(1)實(shí)物模型演示,投影圖片
——如何得到圓錐、圓臺(tái)、球?
。2)以類似的方法,根據(jù)圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示。
5、柱體、錐體、臺(tái)體的概念及關(guān)系:
探究:棱柱、棱錐、棱臺(tái)都是多面體,它們?cè)诮Y(jié)構(gòu)上有哪些相同點(diǎn)和不同點(diǎn)?三者的關(guān)系如何?當(dāng)?shù)酌姘l(fā)生變化時(shí),它們能否互相轉(zhuǎn)化?
圓柱、圓錐、圓臺(tái)呢?
6、簡(jiǎn)單組合體的結(jié)構(gòu)特征:
。1)簡(jiǎn)單組合體的構(gòu)成:由簡(jiǎn)單幾何體拼接或截去或挖去一部分而成。
(2)實(shí)物模型演示,投影圖片——說出組成這些物體的幾何結(jié)構(gòu)特征。
。3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
。ㄈ┡烹y解惑,發(fā)展思維
1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
。ㄋ模╈柟躺罨
練習(xí):課本P7 練習(xí)1、2; 課本P8 習(xí)題1.1 第1、2、3、4、5題
。ㄎ澹w納整理:由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容
高一數(shù)學(xué)必修一教案5
教學(xué)目標(biāo)
1.使學(xué)生掌握的概念,圖象和性質(zhì).
(1)能根據(jù)定義判斷形如什么樣的函數(shù)是,了解對(duì)底數(shù)的限制條件的合理性,明確的定義域.
(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出的圖象,能從數(shù)形兩方面認(rèn)識(shí)的性質(zhì).
(3)能利用的性質(zhì)比較某些冪形數(shù)的大小,會(huì)利用的圖象畫出形如的圖象.
2.通過對(duì)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法.
3.通過對(duì)的研究,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.教學(xué)建議
教材分析
(1)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對(duì)數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以應(yīng)重點(diǎn)研究.
(2)本節(jié)的教學(xué)重點(diǎn)是在理解定義的基礎(chǔ)上掌握的圖象和性質(zhì).難點(diǎn)是對(duì)底數(shù)在和時(shí),函數(shù)值變化情況的區(qū)分.
(3)是學(xué)生完全陌生的一類函數(shù),對(duì)于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會(huì)研究的方法,以便能將其遷移到其他函數(shù)的研究.
教法建議
(1)關(guān)于的定義按照課本上說法它是一種形式定義即解析式的.特征必須是的樣子,不能有一點(diǎn)差異,諸如,等都不是.
(2)對(duì)底數(shù)的限制條件的理解與認(rèn)識(shí)也是認(rèn)識(shí)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對(duì)底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷?duì)這個(gè)條件的認(rèn)識(shí)不僅關(guān)系到對(duì)的認(rèn)識(shí)及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對(duì)數(shù)函數(shù)中底數(shù)的認(rèn)識(shí),所以一定要真正了解它的由來.
關(guān)于圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡(jiǎn)單的討論,取得對(duì)要畫圖象的存在范圍,大致特征,變化趨勢(shì)的大概認(rèn)識(shí)后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.
高一數(shù)學(xué)必修一教案6
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
o了解向量的實(shí)際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會(huì)區(qū)分平行向量、相等向量和共線向量·
o通過對(duì)向量的學(xué)習(xí),使學(xué)生初步認(rèn)識(shí)現(xiàn)實(shí)生活中的向量和數(shù)量的本質(zhì)區(qū)別·
o通過學(xué)生對(duì)向量與數(shù)量的識(shí)別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識(shí)客觀事物的數(shù)學(xué)本質(zhì)的能力·
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會(huì)表示向量·
教學(xué)難點(diǎn):平行向量、相等向量和共線向量的區(qū)別和聯(lián)系·
教學(xué)過程
。ㄒ唬┫蛄康母拍睿何覀儼鸭扔写笮∮钟蟹较虻牧拷邢蛄。
(二)(教材P74面的四個(gè)圖制作成幻燈片)請(qǐng)同學(xué)閱讀課本后回答:(7個(gè)問題一次出現(xiàn))
1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)
2、如何表示向量?
3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?
4、長(zhǎng)度為零的向量叫什么向量?長(zhǎng)度為1的向量叫什么向量?
5、滿足什么條件的兩個(gè)向量是相等向量?單位向量是相等向量嗎?
6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?
7、如果把一組平行向量的`起點(diǎn)全部移到一點(diǎn)O,這是它們是不是平行向量?
這時(shí)各向量的終點(diǎn)之間有什么關(guān)系?
課后小結(jié)
1、描述向量的兩個(gè)指標(biāo):模和方向·
2、平面向量的概念和向量的幾何表示;
3、向量的模、零向量、單位向量、平行向量等概念。
高一數(shù)學(xué)必修一教案7
一、教材分析
函數(shù)作為初等數(shù)學(xué)的核心內(nèi)容,貫穿于整個(gè)初等數(shù)學(xué)體系之中。函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,它是對(duì)初中函數(shù)概念的承接與深化。在初中,只停留在具體的幾個(gè)簡(jiǎn)單類型的函數(shù)上,把函數(shù)看成變量之間的依賴關(guān)系,而高中階段不僅把函數(shù)看成變量之間的依賴關(guān)系,更是從“變量說”到“對(duì)應(yīng)說”,這是對(duì)函數(shù)本質(zhì)特征的進(jìn)一步認(rèn)識(shí),也是學(xué)生認(rèn)識(shí)上的一次飛躍。這一章內(nèi)容滲透了函數(shù)的思想,集合的思想以及數(shù)學(xué)建模的思想等內(nèi)容,這些內(nèi)容的學(xué)習(xí),無疑對(duì)學(xué)生今后的學(xué)習(xí)起著深刻的影響。
本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對(duì)概念做到深刻理解,才能正確靈活地加以應(yīng)用。本課從集合間的對(duì)應(yīng)來描繪函數(shù)概念,起到了上承集合,下引函數(shù)的作用。也為進(jìn)一步學(xué)習(xí)函數(shù)這一章的其它內(nèi)容提供了方法和依據(jù)。
二、重難點(diǎn)分析
根據(jù)對(duì)上述對(duì)教材的分析及新課程標(biāo)準(zhǔn)的要求,確定函數(shù)的概念既是本節(jié)課的重點(diǎn),也應(yīng)該是本章的難點(diǎn)。
三、學(xué)情分析
1、有利因素:一方面學(xué)生在初中已經(jīng)學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)已經(jīng)有了一定的感性認(rèn)識(shí);另一方面在本書第一章學(xué)生已經(jīng)學(xué)習(xí)了集合的概念,這為學(xué)習(xí)函數(shù)的現(xiàn)代定義打下了基礎(chǔ)。
2、不利因素:函數(shù)在初中雖已講過,不過較為膚淺,本課主要是從兩個(gè)集合間對(duì)應(yīng)來描繪函數(shù)概念,是一個(gè)抽象過程,要求學(xué)生的抽象、分析、概括的能力比較高,學(xué)生學(xué)起來有一定的難度。
四、目標(biāo)分析
1、理解函數(shù)的概念,會(huì)用函數(shù)的定義判斷函數(shù),會(huì)求一些最基本的函數(shù)的定義域、值域。
2、通過對(duì)實(shí)際問題分析、抽象與概括,培養(yǎng)學(xué)生抽象、概括、歸納知識(shí)以及邏輯思維、建模等方面的能力。
3、通過對(duì)函數(shù)概念形成的探究過程,培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)。
五、教法學(xué)法
本節(jié)課的教學(xué)以學(xué)生為主體、教師是數(shù)學(xué)課堂活動(dòng)的組織者、引導(dǎo)者和參與者,我一方面精心設(shè)計(jì)問題情景,引導(dǎo)學(xué)生主動(dòng)探索。另一方面,依據(jù)本節(jié)為概念學(xué)習(xí)的特點(diǎn),以問題的提出、問題的解決為主線,始終在學(xué)生知識(shí)的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動(dòng)參與,通過不斷探究、發(fā)現(xiàn),在師生互動(dòng)、生生互動(dòng)中,讓學(xué)習(xí)過程成為學(xué)生心靈愉悅的主動(dòng)認(rèn)知過程。
學(xué)法方面,學(xué)生通過對(duì)新舊兩種函數(shù)定義的對(duì)比,在集合論的觀點(diǎn)下初步建構(gòu)出函數(shù)的概念。在理解函數(shù)概念的基礎(chǔ)上,建構(gòu)出函數(shù)的定義域、值域的概念,并初步掌握它們的求法。
高一必修二數(shù)學(xué)教案41、教材(教學(xué)內(nèi)容)
本課時(shí)主要研究任意角三角函數(shù)的定義。三角函數(shù)是一類重要的基本初等函數(shù),是描述周期性現(xiàn)象的重要數(shù)學(xué)模型,本課時(shí)的內(nèi)容具有承前啟后的重要作用:承前是因?yàn)榭梢杂煤瘮?shù)的定義來抽象和規(guī)范三角函數(shù)的定義,同時(shí)也可以類比研究函數(shù)的模式和方法來研究三角函數(shù);啟后是指定義了三角函數(shù)之后,就可以進(jìn)一步研究三角函數(shù)的.性質(zhì)及圖象特征,并體會(huì)三角函數(shù)在解決具有周期性變化規(guī)律問題中的作用,從而更深入地領(lǐng)會(huì)數(shù)學(xué)在其它領(lǐng)域中的重要應(yīng)用、
2、設(shè)計(jì)理念
本堂課采用“問題解決”教學(xué)模式,在課堂上既充分發(fā)揮學(xué)生的主體作用,又體現(xiàn)了教師的引導(dǎo)作用。整堂課先通過問題引導(dǎo)學(xué)生梳理已有的知識(shí)結(jié)構(gòu),展開合理的聯(lián)想,提出整堂課要解決的中心問題:圓周運(yùn)動(dòng)等具周期性規(guī)律運(yùn)動(dòng)可以建立函數(shù)模型來刻畫嗎?從而引導(dǎo)學(xué)生帶著問題閱讀和鉆研教材,引發(fā)認(rèn)知沖突,再通過問題引導(dǎo)學(xué)生改造或重構(gòu)已有的認(rèn)知結(jié)構(gòu),并運(yùn)用類比方法,形成“任意角三角函數(shù)的定義”這一新的概念,最后通過例題與練習(xí),將任意角三角函數(shù)的定義,內(nèi)化為學(xué)生新的認(rèn)識(shí)結(jié)構(gòu),從而達(dá)成教學(xué)目標(biāo)、
3、教學(xué)目標(biāo)
知識(shí)與技能目標(biāo):形成并掌握任意角三角函數(shù)的定義,并學(xué)會(huì)運(yùn)用這一定義,解決相關(guān)問題、
過程與方法目標(biāo):體會(huì)數(shù)學(xué)建模思想、類比思想和化歸思想在數(shù)學(xué)新概念形成中的重要作用、
情感態(tài)度與價(jià)值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會(huì)閱讀數(shù)學(xué)教材,學(xué)會(huì)發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點(diǎn)難點(diǎn)
重點(diǎn):任意角三角函數(shù)的定義、
難點(diǎn):任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析
學(xué)生已有的認(rèn)知結(jié)構(gòu):函數(shù)的概念、平面直角坐標(biāo)系的概念、任意角和弧度制的相關(guān)概念、以直角三角形為載體的銳角三角函數(shù)的概念、在教學(xué)過程中,需要先將學(xué)生的以直角三角形為載體的銳角三角函數(shù)的概念改造為以象限角為載體的銳角三角函數(shù),并形成以角的終邊與單位園的交點(diǎn)的坐標(biāo)來表示的銳角三角函數(shù)的概念,再拓展到任意角的三角函數(shù)的定義,從而使學(xué)生形成新的認(rèn)知結(jié)構(gòu)、
6、教法分析
“問題解決”教學(xué)法,是以問題為主線,引導(dǎo)和驅(qū)動(dòng)學(xué)生的思維和學(xué)習(xí)活動(dòng),并通過問題,引導(dǎo)學(xué)生的質(zhì)疑和討論,充分展示學(xué)生的思維過程,最后在解決問題的過程中形成新的認(rèn)知結(jié)構(gòu)、這種教學(xué)模式能較好地體現(xiàn)課堂上老師的主導(dǎo)作用,也能充分發(fā)揮課堂上學(xué)生的主體作用、
7、學(xué)法分析
本課時(shí)先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認(rèn)知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運(yùn)用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號(hào)問題,從而使學(xué)生形成新的認(rèn)識(shí)結(jié)構(gòu),達(dá)成教學(xué)目標(biāo)。
高一數(shù)學(xué)必修一教案8
教學(xué)目的:
(1)理解兩個(gè)集合的并集與交集的的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集與交集;
(2)能用Venn圖表達(dá)集合的關(guān)系及運(yùn)算,體會(huì)直觀圖示對(duì)理解抽象概念的作用。
課型:
新授課
教學(xué)重點(diǎn):
集合的交集與并集的概念;
教學(xué)難點(diǎn):
集合的交集與并集“是什么”,“為什么”,“怎樣做”;
教學(xué)過程:
一、引入課題
我們兩個(gè)實(shí)數(shù)除了可以比較大小外,還可以進(jìn)行加法運(yùn)算,類比實(shí)數(shù)的加法運(yùn)算,兩個(gè)集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
二、新課教學(xué)
1、并集
一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B讀作:“A并B”
即:A∪B={x|x∈A,或x∈B}
Venn圖表示:
說明:兩個(gè)集合求并集,結(jié)果還是一個(gè)集合,是由集合A與B的所有元素組成的.集合(重復(fù)元素只看成一個(gè)元素)。
例題1求集合A與B的并集
① A={6,8,10,12} B={3,6,9,12}
、 A={x|-1≤x≤2} B={x|0≤x≤3}
(過度)問題:在上圖中我們除了研究集合A與B的并集外,它們的公共部分(即問號(hào)部分)還應(yīng)是我們所關(guān)心的,我們稱其為集合A與B的交集。
2、交集
一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。
記作:A∩B讀作:“A交B”
即:A∩B={x|∈A,且x∈B}
交集的Venn圖表示
說明:兩個(gè)集合求交集,結(jié)果還是一個(gè)集合,是由集合A與B的公共元素組成的集合。
例題2求集合A與B的交集
、 A={6,8,10,12} B={3,6,9,12}
、 A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)
說明:當(dāng)兩個(gè)集合沒有公共元素時(shí),兩個(gè)集合的交集是空集,而不能說兩個(gè)集合沒有交集
3、例題講解
例3(P12例1):理解所給集合的含義,可借助venn圖分析
例4 P12例2):先“化簡(jiǎn)”所給集合,搞清楚各自所含元素后,再進(jìn)行運(yùn)算。
4、集合基本運(yùn)算的一些結(jié)論:
A∩B A,A∩B B,A∩A=A,A∩ =,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,則A B,反之也成立
若A∪B=B,則A B,反之也成立
若x∈(A∩B),則x∈A且x∈B
若x∈(A∪B),則x∈A,或x∈B
高一數(shù)學(xué)必修一教案9
一、學(xué)習(xí)目標(biāo)
1)理解對(duì)數(shù)的概念;
2)能熟練地進(jìn)行對(duì)數(shù)式與指數(shù)式的轉(zhuǎn)化.
二、教學(xué)重點(diǎn)和教學(xué)難點(diǎn)
重點(diǎn):對(duì)數(shù)的`概念
難點(diǎn):對(duì)對(duì)數(shù)概念的理解
三、知識(shí)鏈接
1.指數(shù)函數(shù):
2.運(yùn)算性質(zhì):
四.學(xué)習(xí)過程:
閱讀課本,解答下面問題:
1、對(duì)數(shù)的定義:一般地,如果x的b次冪等于N,即,那么
數(shù)叫做以為底的對(duì)數(shù),記作:.
其中叫做對(duì)數(shù)的,叫做.
2、把下列指數(shù)式寫成對(duì)數(shù)式
、佟ⅱ、③、
3、把下列對(duì)數(shù)式寫成指數(shù)式
、、;②;③;
閱讀課本,解答下面問題:
4、特殊對(duì)數(shù)
通常以為底的對(duì)數(shù)叫常用對(duì)數(shù),并把簡(jiǎn)記作
在科學(xué)技術(shù)中常使用以無理數(shù)為底的對(duì)數(shù),以為底的對(duì)數(shù)稱為自然對(duì)數(shù),并把簡(jiǎn)記作.
如:;.
5、根據(jù)對(duì)數(shù)式與指數(shù)式的關(guān)系,填寫下表中空白處的名稱.
式子名稱
指數(shù)式
對(duì)數(shù)式
6、思考交流
高一數(shù)學(xué)必修一教案10
教學(xué)目的:
。1)理解函數(shù)的奇偶性及其幾何意義;
。2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);
(3)學(xué)會(huì)判斷函數(shù)的奇偶性.
教學(xué)重點(diǎn):
函數(shù)的奇偶性及其幾何意義.
教學(xué)難點(diǎn):
判斷函數(shù)的奇偶性的方法與格式.
教學(xué)過程:
1、引入課題
1.實(shí)踐操作:(也可借助計(jì)算機(jī)演示)
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形;
問題:將第一象限和第二象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特殊的關(guān)系?
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;
。2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.
以y軸為折痕將紙對(duì)折,然后以x軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形:
問題:將第一象限和第三象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的`坐標(biāo)有什么特殊的關(guān)系?
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于原點(diǎn)對(duì)稱;
。2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,-f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)也一定互為相反數(shù).
2.觀察思考(教材P39、P40觀察思考)
2、新課教學(xué)
(一)函數(shù)的奇偶性定義
象上面實(shí)踐操作中的圖象關(guān)于y軸對(duì)稱的函數(shù)即是偶函數(shù),操作中的圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)即是奇函數(shù).
1.偶函數(shù)(evenfunction)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
。▽W(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義
2.奇函數(shù)(oddfunction)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).
(二)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
(三)典型例題
1.判斷函數(shù)的奇偶性
例1.(教材P36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)
解:(略)
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;
確定f(-x)與f(x)的關(guān)系;
作出相應(yīng)結(jié)論:
若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);
若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
高一數(shù)學(xué)必修一教案11
一、教學(xué)目標(biāo)
1、知識(shí)與技能
(1)理解直線與圓的位置關(guān)系的幾何性質(zhì);
(2)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;
。3)會(huì)用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題、
2、過程與方法
用坐標(biāo)法解決幾何問題的步驟:
第一步:建 立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;
第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;
第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論、
3、情態(tài)與價(jià)值觀
讓學(xué)生通過觀察圖形,理解并掌握直線與圓的方程的應(yīng)用,培養(yǎng)學(xué)生分 析問題與解決問題的能力、
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn)與難點(diǎn):直線與圓的方程的應(yīng)用、
三、教學(xué)設(shè)想
問 題設(shè)計(jì)意圖師生活動(dòng)
1、你能說出直線與圓的位置關(guān)系嗎?啟發(fā)并引導(dǎo)學(xué)生回顧直線與圓的位置關(guān)系,從而引入新課、師: 啟發(fā)學(xué)生回顧直線與圓的位置關(guān)系,導(dǎo)入新課、
生:回顧,說出自己的看法、
2、解決直線與圓的位置關(guān)系,你將采用什么方法?
理解并掌握直線與圓的位置關(guān)系的解決辦法與數(shù)學(xué)思想、師:引導(dǎo)學(xué)生通過觀察圖形,回顧所學(xué)過的知識(shí),說出解決問題的方法、
生:回顧、思考、討論、交流,得到解決問題的`方法、
問 題設(shè)計(jì)意圖師生活動(dòng)
3、閱讀并思考教科書上的例4,你將選擇什么方 法解決例4的問題
指導(dǎo)學(xué)生從直觀認(rèn)識(shí)過渡到數(shù)學(xué)思想方法的選擇、師:指導(dǎo)學(xué)生觀察教科書上的圖形特征,利用平面直角坐標(biāo)系求解、
生:自 學(xué)例4,并完成練習(xí)題1、2、
師:分析例4并展示解題過程,啟發(fā)學(xué)生利用坐標(biāo)法求 ,注意給學(xué)生留有總結(jié)思考的時(shí)間、
4、你能分析一下確定一個(gè)圓的方程的要點(diǎn)嗎?使學(xué)生加深對(duì)圓的方程的認(rèn)識(shí)、教師引導(dǎo)學(xué)生分析圓的方程中,若橫坐標(biāo)確定,如何求出縱坐標(biāo)的值、
5 、你能利用“坐標(biāo)法”解決例5嗎?鞏 固“坐標(biāo)法”,培養(yǎng)學(xué)生分析問題與解決問 題的能力、師:引導(dǎo)學(xué)生建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示相應(yīng)的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題、
生:建立適當(dāng)?shù)闹苯亲鴺?biāo)系, 探求解決問題的方法、
6、完成教科書第140頁的練習(xí)題2、3、4、使學(xué)生熟悉平面幾何問題與代數(shù)問題的轉(zhuǎn)化,加深“坐標(biāo)法”的解題步驟、 教師指導(dǎo)學(xué)生閱讀教材,并解決課本第140頁的練習(xí)題2、3、4、教師要注意引導(dǎo)學(xué)生思考平面幾何問題與代數(shù)問題相互轉(zhuǎn)化的依據(jù)、
7、你能說出練習(xí)題蘊(yùn)含了什么思想方法嗎?反饋學(xué)生掌握“坐標(biāo)法”解決問題的情況,鞏固所學(xué)知識(shí)、學(xué)生獨(dú)立解決第141頁習(xí)題4、2A第8題,教師組織學(xué)生討論交流、
8、小結(jié):
。1)利用“坐標(biāo)法”解決問對(duì)知識(shí)進(jìn)行歸納概括,體會(huì)利 師:指導(dǎo) 學(xué)生完成練習(xí)題、
生:閱讀教科書的例3,并完成第
問 題設(shè)計(jì)意圖師生活動(dòng)
題的需要準(zhǔn)備什么工作?
(2)如何建立直角坐標(biāo)系,才能易于解決平面幾何問題?
。3)你認(rèn)為學(xué)好“坐標(biāo)法”解決問題的關(guān)鍵是什么?
。4)建立不同的平面直角坐標(biāo)系,對(duì)解決問題有什么直接的影響呢?用“坐標(biāo)法”解決實(shí)際問題的作用、 教師引導(dǎo)學(xué)生自己歸納總結(jié)所學(xué)過的知識(shí),組織學(xué)生討論、交流、探究、
高一數(shù)學(xué)必修一教案12
教學(xué)目標(biāo):
1、知識(shí)目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過定義的引入,圖像特征的觀察。發(fā)現(xiàn)過程使學(xué)生懂得理論與實(shí)踐的辯證關(guān)系,適時(shí)滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題。解決問題的能力。
3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用。多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索。鍥而不舍的治學(xué)精神。
教學(xué)重點(diǎn)。難點(diǎn):
1、重點(diǎn):指數(shù)函數(shù)的圖像和性質(zhì)
2、難點(diǎn):底數(shù)a的變化對(duì)函數(shù)性質(zhì)的影響,突破難點(diǎn)的關(guān)鍵是利用多媒體
動(dòng)感顯示,通過顏色的區(qū)別,加深其感性認(rèn)識(shí)。
教學(xué)方法:
引導(dǎo)——發(fā)現(xiàn)教學(xué)法。比較法。討論法
教學(xué)過程:
一、事例引入
T:上節(jié)課我們學(xué)習(xí)了指數(shù)的運(yùn)算性質(zhì),今天我們來學(xué)習(xí)與指數(shù)有關(guān)的.函數(shù)。什么是函數(shù)?
S:————————
T:主要是體現(xiàn)兩個(gè)變量的關(guān)系。我們來考慮一個(gè)與醫(yī)學(xué)有關(guān)的例子:大家對(duì)“非典”應(yīng)該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時(shí)間里病原體在機(jī)體內(nèi)不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:
C:動(dòng)畫演示(某種球菌分裂時(shí),由1分裂成2個(gè),2個(gè)分裂成4個(gè),——————。一個(gè)這樣的球菌分裂x次后,得到的球菌的個(gè)數(shù)y與x的函數(shù)關(guān)系式是:y = 2 x)
S,T:(討論)這是球菌個(gè)數(shù)y關(guān)于分裂次數(shù)x的函數(shù),該函數(shù)是什么樣的形式(指數(shù)形式),
從函數(shù)特征分析:底數(shù)2是一個(gè)不等于1的正數(shù),是常量,而指數(shù)x卻是變量,我們稱這種函數(shù)為指數(shù)函數(shù)——點(diǎn)題。
二、指數(shù)函數(shù)的定義
C:定義:函數(shù)y = a x(a>0且a≠1)叫做指數(shù)函數(shù),x∈R。
問題1:為何要規(guī)定a > 0且a ≠1?
S:(討論)
C:(1)當(dāng)a<0時(shí),a x有時(shí)會(huì)沒有意義,如a=﹣3時(shí),當(dāng)x=
就沒有意義;
。2)當(dāng)a=0時(shí),a x有時(shí)會(huì)沒有意義,如x= — 2時(shí),
。3)當(dāng)a = 1時(shí),函數(shù)值y恒等于1,沒有研究的必要。
鞏固練習(xí)1:
下列函數(shù)哪一項(xiàng)是指數(shù)函數(shù)
A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= —2 x
高一數(shù)學(xué)必修一教案13
一、教學(xué)目標(biāo)
1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。
2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。
3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。
二、教學(xué)重點(diǎn):畫出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;
難點(diǎn):識(shí)別三視圖所表示的空間幾何體。
三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。
四、教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情景,揭開課題
展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。
。ǘ┲v授新課
1、中心投影與平行投影:
中心投影:光由一點(diǎn)向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對(duì)著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的'三視圖。
三視圖的畫法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。
長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;
高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;
寬相等:俯視圖與側(cè)視圖的寬度相等。
3、畫長(zhǎng)方體的三視圖:
正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。
。ㄈ╈柟叹毩(xí)
課本P15 練習(xí)1、2; P20習(xí)題1.2 [A組] 2。
。ㄋ模w納整理
請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖
。ㄎ澹┎贾米鳂I(yè)
課本P20習(xí)題1.2 [A組] 1。
高一數(shù)學(xué)必修一教案14
【學(xué)習(xí)引導(dǎo)】
一、自主學(xué)習(xí)
1. 閱讀課本 練習(xí)止.
2. 回答問題
(1)課本內(nèi)容分成幾個(gè)層次?每個(gè)層次的中心內(nèi)容是什么?
(2)層次間的聯(lián)系是什么?
(3)對(duì)數(shù)函數(shù)的定義是什么?
(4)對(duì)數(shù)函數(shù)與指數(shù)函數(shù)有什么關(guān)系?
3. 完成 練習(xí)
4. 小結(jié).
二、方法指導(dǎo)
1. 在學(xué)習(xí)對(duì)數(shù)函數(shù)時(shí),同學(xué)們應(yīng)從熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
2. 本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.同學(xué)們?cè)趯W(xué)習(xí)時(shí)應(yīng)該把兩個(gè)函數(shù)進(jìn)行類比,通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì)
【思考引導(dǎo)】
一、提問題
1. 對(duì)數(shù)函數(shù)的自變量和函數(shù)分別在指數(shù)函數(shù)中是什么?
2.兩個(gè)函數(shù)如果互為反函數(shù),則他們的'值域,定義域有什么關(guān)系?
3.是否所有的函數(shù)都有反函數(shù)?試舉例說明.
二、變題目
1. 試求下列函數(shù)的反函數(shù):
(1) ; (2) ;
(3) ; (4) .
2. 求下列函數(shù)的定義域:
(1) ; (2) ; (3) .
3. 已知 則 = ; 的定義域?yàn)?.
【總結(jié)引導(dǎo)】
1.對(duì)數(shù)函數(shù)的有關(guān)概念
(1)把函數(shù) 叫做對(duì)數(shù)函數(shù), 叫做對(duì)數(shù)函數(shù)的底數(shù);
(2)以10為底數(shù)的對(duì)數(shù)函數(shù) 為常用對(duì)數(shù)函數(shù);
(3)以無理數(shù) 為底數(shù)的對(duì)數(shù)函數(shù) 為自然對(duì)數(shù)函數(shù).
2. 反函數(shù)的概念
在指數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ;在對(duì)數(shù)函數(shù) 中, 是自變量, 是 的函數(shù),其定義域是 ,值域是 ,像這樣的兩個(gè)函數(shù)叫做互為反函數(shù).
3. 與對(duì)數(shù)函數(shù)有關(guān)的定義域的求法:
4. 舉例說明如何求反函數(shù).
【拓展引導(dǎo)】
一、課外作業(yè): 習(xí)題3-5 A組 1,2,3, B組1,
二、課外思考:
1. 求定義域: .
2. 求使函數(shù) 的函數(shù)值恒為負(fù)值的 的取值范圍.
高一數(shù)學(xué)必修一教案15
一、說課內(nèi)容:
蘇教版九年級(jí)數(shù)學(xué)下冊(cè)第六章第一節(jié)的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個(gè)具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時(shí),二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進(jìn)一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解“數(shù)形結(jié)合”的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個(gè)教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識(shí)與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實(shí)際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實(shí)際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實(shí)際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價(jià)值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動(dòng)加深對(duì)二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點(diǎn):對(duì)二次函數(shù)概念的理解。
4、教學(xué)難點(diǎn):由實(shí)際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計(jì):
1、從創(chuàng)設(shè)情境入手,通過知識(shí)再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢(shì)教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k≠0的條件? k值對(duì)函數(shù)性質(zhì)有什么影響?
【設(shè)計(jì)意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對(duì)函數(shù)定義的理解.強(qiáng)調(diào)k≠0的條件,以備與二次函數(shù)中的a進(jìn)行比較.
(二)引入新課
函數(shù)是研究?jī)蓚(gè)變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)?聪旅嫒齻(gè)例子中兩個(gè)變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時(shí),面積s (cm)與半徑之間的關(guān)系是什么?
解:s=πr(r>0)
例2、用周長(zhǎng)為20m的籬笆圍成矩形場(chǎng)地,場(chǎng)地面積y(m)與矩形一邊長(zhǎng)x(m)之間的關(guān)系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設(shè)人民幣一年定期儲(chǔ)蓄的年利率是x,一年到期后,銀行將本金和利息自動(dòng)按一年定期儲(chǔ)蓄轉(zhuǎn)存。如果存款額是100元,那么請(qǐng)問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問:以上三個(gè)例子所列出的函數(shù)與一次函數(shù)有何相同點(diǎn)與不同點(diǎn)?
【設(shè)計(jì)意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系: (1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數(shù)) 的函數(shù)叫做二次函數(shù)。
鞏固對(duì)二次函數(shù)概念的理解:
1、強(qiáng)調(diào)“形如”,即由形來定義函數(shù)名稱。二次函數(shù)即y 是關(guān)于x的二次多項(xiàng)式(關(guān)于的x代數(shù)式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實(shí)數(shù)。但在實(shí)際問題中,自變量的取值范圍是使實(shí)際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數(shù)定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項(xiàng)式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的.特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
【設(shè)計(jì)意圖】這里強(qiáng)調(diào)對(duì)二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
【設(shè)計(jì)意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實(shí)踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識(shí)應(yīng)用到實(shí)踐操作中。
(四)鞏固練習(xí)
1.已知一個(gè)直角三角形的兩條直角邊長(zhǎng)的和是10cm。
(1)當(dāng)它的一條直角邊的長(zhǎng)為4.5cm時(shí),求這個(gè)直角三角形的面積;
(2)設(shè)這個(gè)直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長(zhǎng)為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個(gè)函數(shù)中,那個(gè)是x的二次函數(shù)?
【設(shè)計(jì)意圖】簡(jiǎn)單的實(shí)際問題,學(xué)生會(huì)很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個(gè)是二次函數(shù)。通過簡(jiǎn)單題目的練習(xí),讓學(xué)生體驗(yàn)到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長(zhǎng)為Ccm,圓柱的體積為Vcm3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個(gè)函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計(jì)意圖】此題要求學(xué)生熟記圓柱體積和底面周長(zhǎng)公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識(shí)聯(lián)系起來。
4. 籬笆墻長(zhǎng)30m,靠墻圍成一個(gè)矩形花壇,寫出花壇面積y(m2)與長(zhǎng)x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
【設(shè)計(jì)意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。
(五)拓展延伸
1. 已知二次函數(shù)y=ax2+bx+c,當(dāng) x=0時(shí),y=0;x=1時(shí),y=2;x= -1時(shí),y=1.求a、b、c,并寫出函數(shù)解析式.
【設(shè)計(jì)意圖】在此稍微滲透簡(jiǎn)單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個(gè)鋪墊。
2.確定下列函數(shù)中k的值
(1)如果函數(shù)y= xk^2-3k+2 +kx+1是二次函數(shù),則k的值一定是______
(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
【設(shè)計(jì)意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項(xiàng)系數(shù)不為0.
(六) 小結(jié)思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計(jì)意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。
(七) 作業(yè)布置:
必做題:
1. 正方形的邊長(zhǎng)為4,如果邊長(zhǎng)增加x,則面積增加y,求y關(guān)于x 的函數(shù)關(guān)系式。這個(gè)函數(shù)是二次函數(shù)嗎?
2. 在長(zhǎng)20cm,寬15cm的矩形木板的四角上各鋸掉一個(gè)邊長(zhǎng)為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長(zhǎng)x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1.已知函數(shù) 是二次函數(shù),求m的值。
2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計(jì)意圖】作業(yè)中分為必做題與選做題,實(shí)施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價(jià)值的數(shù)學(xué),不同的人得到不同的發(fā)展。另外補(bǔ)充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
五、教學(xué)設(shè)計(jì)思考
以實(shí)現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個(gè)原則——以學(xué)生為主體的原則
突出一個(gè)特色——充分鼓勵(lì)表揚(yáng)的特色
滲透一個(gè)意識(shí)——應(yīng)用數(shù)學(xué)的意識(shí)
【高一數(shù)學(xué)必修一教案】相關(guān)文章:
高一數(shù)學(xué)必修四必修五教學(xué)計(jì)劃06-16
高一語文必修一教案模板06-22
高一必修三語文教案03-26
高一數(shù)學(xué)必修五教學(xué)計(jì)劃06-25
高一數(shù)學(xué)上學(xué)期必修一教學(xué)計(jì)劃06-22
高一人教版化學(xué)必修一教案12-05
高一語文必修1語文教案范文01-03