- 初中數(shù)學教案 推薦度:
- 初中數(shù)學教案 推薦度:
- 初中數(shù)學教案 推薦度:
- 相關(guān)推薦
【熱】初中數(shù)學教案
作為一位杰出的教職工,很有必要精心設(shè)計一份教案,教案是教材及大綱與課堂教學的紐帶和橋梁。那么大家知道正規(guī)的教案是怎么寫的嗎?下面是小編為大家整理的初中數(shù)學教案,歡迎大家分享。
初中數(shù)學教案1
一、教學任務分析
1、教學目標定位
根據(jù)《數(shù)學課程標準》和素質(zhì)教育的要求,結(jié)合學生的認知規(guī)律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結(jié)表達的能力。因此,確定如下教學目標:
。1).知識技能目標
讓學生掌握多邊形的內(nèi)角和的公式并熟練應用。
。2).過程和方法目標
讓學生經(jīng)歷知識的形成過程,認識數(shù)學特征,獲得數(shù)學經(jīng)驗,進一步發(fā)展學生的說理意識和簡單推理,合情推理能力。
(3).情感目標
激勵學生的學習熱情,調(diào)動他們的學習積極性,使他們有自信心,激發(fā)學生樂于合作交流意識和獨立思考的習慣。。
2、教學重、難點定位
教學重點是多邊形的內(nèi)角和的得出和應用。
教學難點是探索和歸納多邊形內(nèi)角和的過程。
二、教學內(nèi)容分析
1、教材的地位與作用
本課選自人教版數(shù)學七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的內(nèi)角和,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。
2、聯(lián)系及應用
本節(jié)課是以三角形的知識為基礎(chǔ),仿照三角形建立多邊形的有關(guān)概念。因此
多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的`學習,可以培養(yǎng)學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉(zhuǎn)化等重要的思想方法。而多邊形在工程技術(shù)和實用圖案等方面有許多的實際應用,下一節(jié)平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質(zhì)的理解。
三、教學診斷分析
學生對三角形的知識都已經(jīng)掌握。讓學生由三角形的內(nèi)角和等于180°,是一個定值,猜想四邊形的內(nèi)角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個定值,這個定值是360°。要得到四邊形的內(nèi)角和等于360°這個結(jié)論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導學生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導,學習將新問題化歸為已有結(jié)論的思想方法,這里學生都容易理解。課堂教學設(shè)計中,在探究五邊形,六邊形和七邊形的內(nèi)角和時,讓學生動手實踐,設(shè)置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據(jù)自己本身的特點來加以補充和完善。在教學設(shè)計中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內(nèi)各個成員需要分工協(xié)作,才能夠順利的把任務完成;最后,學生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學生合情推理的意識。
四、教法特點及預期效果分析本節(jié)課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:
1、教學方法的設(shè)計
我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。
2、活動的開展
利用學生的好奇心設(shè)疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
3、現(xiàn)代教育技術(shù)的應用
我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設(shè)計中占了非常大的比例,探究活動一設(shè)置目的讓學生動手實踐,并把新知識與學過的三角形的相關(guān)知識聯(lián)系起來;探究活動二設(shè)置目的讓學生拓寬思路,為放開書本的束縛打下基礎(chǔ);培養(yǎng)學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神;使學生懂得數(shù)學內(nèi)容普遍存在相互聯(lián)系,相互轉(zhuǎn)化的特點。練習活動的設(shè)計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學生情感交流。
以上是我對《多邊形的內(nèi)角和》的教學設(shè)計說明。
初中數(shù)學教案2
一、學生起點分析
學生已經(jīng)了勾股定理,并在先前其他內(nèi)容學習中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學生應該已經(jīng)具備這樣的意識,但具體研究中
可能要用到反證等思路,對現(xiàn)階段學生而言可能還具有一定困難,需要教師適時的引導。
二、學習任務分析
本節(jié)課是北師大版數(shù)學八年級(上)第一章《勾股定理》第2節(jié)。教學任務有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學目標:
● 知識與技能目標
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力;
2.經(jīng)歷從實驗到驗證的過程,發(fā)展學生的數(shù)學歸納能力。
● 情感與態(tài)度目標
1.體驗生活中的數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣;
2.在探索過程中體驗成功的喜悅,樹立學習的自信心。
教學重點
理解勾股定理逆定理的具體內(nèi)容。
三、教法學法
1.教學方法:實驗猜想歸納論證
本節(jié)課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學結(jié)論已有一定的體驗
但數(shù)學思維嚴謹?shù)耐瑢W總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學目標,我力求從以下三個方面對學生進行引導:
(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學過程;
(2)從學生活動出發(fā),通過以舊引新,順勢教學過程;
(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學過程。
2.課前準備
教具:教材、電腦、多媒體課件。
學具:教材、筆記本、課堂練習本、文具。
四、教學過程設(shè)計
本節(jié)課設(shè)計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?
2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設(shè)引入新課,激發(fā)學生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數(shù)。
意圖:
通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結(jié)論;在活動中體驗出數(shù)學結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過學生充分討論后,匯總各小組實驗結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。
從上面的分組實驗很容易得出如下結(jié)論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
內(nèi)容2:說理
提問:有同學認為測量結(jié)果可能有誤差,不同意這個發(fā)現(xiàn)。你認為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?
意圖:讓學生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進一步通過說理等方式使學生確信結(jié)論的可靠性,同時明晰結(jié)論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
滿足 的三個正整數(shù),稱為勾股數(shù)。
注意事項:為了讓學生確認該結(jié)論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。
活動3:反思總結(jié)
提問:
1.同學們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學習勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?
4.通過今天同學們合作探究,你能體驗出一個數(shù)學結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進一步讓學生認識該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的.三邊長?請說明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習,加強對勾股定理及勾股定理逆定理認識及應用
效果
每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節(jié):登高望遠
內(nèi)容:
1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實際問題,進一步鞏固該定理。
效果:
學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形( ),以便于計算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網(wǎng)格進行計算,從而解決問題。
效果:
學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學內(nèi)容①會利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);
2.從今天所學內(nèi)容及所作練習中總結(jié)出的經(jīng)驗與方法:①數(shù)學是源于生活又服務于生活的;②數(shù)學結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形, 便于計算。
意圖:
鼓勵學生結(jié)合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識。
效果:
學生暢所欲言自己的切身感受與實際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。
第七環(huán)節(jié):布置作業(yè)
課本習題1.4第1,2,4題。
五、教學反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習。
2.注重引導學生積極參與實驗活動,從中體驗任何一個數(shù)學結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。
4.注重對學習新知理解應用偏困難的學生的進一步關(guān)注。
5.對于勾股定理的逆定理的論證可根據(jù)學生的實際情況做適當調(diào)整,不做要求。
由于本班學生整體水平較高,因而本設(shè)計教學容量相對較大,教學中,應注意根據(jù)自己班級學生的狀況進行適當?shù)膭h減或調(diào)整。
附:板書設(shè)計
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠
初中數(shù)學教案3
教學目標:
1、引導同學們領(lǐng)略數(shù)學隱藏在生活中的迷人之處;
2、培養(yǎng)同學們對數(shù)學的興趣。
教學內(nèi)容:
生活中的數(shù)學。
教學方法:
啟發(fā)探索、小游戲
教具安排:
多媒體、剪紙、小剪刀三把
教學過程:
師:同學們,從小學到現(xiàn)在我們都在跟數(shù)學打交道,能說說大家對數(shù)學的感受嗎?
學生討論。
師:同學們,不管以前你們喜不喜歡數(shù)學,但老師要告訴大家,其實數(shù)學很有趣,它不僅出現(xiàn)在我們的課本,更隱藏在生活的每個角落,只要我們仔細探究,就會發(fā)現(xiàn)它在我們的周圍閃著迷人的光,希望大家從今天開始,喜歡數(shù)學,與數(shù)學成為好朋友,好好領(lǐng)略好朋友帶給我們的美的享受。事不宜遲,現(xiàn)在我們馬上開始我們的數(shù)學探究之旅。首先,我們來玩?zhèn)小游戲:
請大家拿出筆和紙,根據(jù)下面的步驟來操作,你會有驚人的發(fā)現(xiàn)。(PPT演示)
[1]首先,隨意挑一個數(shù)字(0、1、2、3、4、5、6、7)
[2]把這個數(shù)字乘上2
[3]然后加上5
[4]再乘以50
[5]如果你今年的生日已經(jīng)過了,把得到的數(shù)目加上1759;如果還沒過,加1758
[6]最后一個步驟,用這個數(shù)目減去你出生的那一年(公元的)
師:發(fā)現(xiàn)了什么?第一個數(shù)字是不是你一開始選擇的數(shù)字呢?那接下來的兩個呢?如無意外,就是你的年齡了。是不是很有趣呢?至于為什么會這樣課后大家仔細想想自然就明白啦,這就是數(shù)學的魅力所在了。接下來我們來嘗試幫助格尼斯堡的居民解決下面的問題(PPT演示):格尼斯堡建造在普蕾爾河岸上。7座橋連接著兩個島和河岸,如圖所示:
網(wǎng)路圖
居民們的一項普遍愛好是嘗試在一次行走中跨過所有的7座橋而不
重復經(jīng)過任何一座橋。同學們,你們能幫助他們實現(xiàn)這個想法嗎?拿出紙和筆設(shè)計的路線。
學生思考設(shè)計。
師:同學們行嗎?事實上,著名數(shù)學家歐拉已經(jīng)證明不能解決這個問題了,可是這是為什么呢?別急,我們繼續(xù)看下去。
1944年的空襲,毀壞了大多數(shù)的舊橋,格尼斯堡在河上重新建了5座橋,如圖:
B
現(xiàn)在請同學們再嘗試一下,在一次行走中跨過所有的5座橋而不重復經(jīng)過任何一座橋。
學生思考。
師:同學們,這次行得通了吧?那么為什么呢?有沒有同學可以說一下他的想法?
其實,我們的歐拉大師經(jīng)過研究大量類似的網(wǎng)絡(luò),證明了這樣的事實(PPT演示):要走完一條路線而其中每一段行程只許經(jīng)過一次,只有當奇數(shù)結(jié)點的數(shù)目是0或2時才是有可能的,在其他情況下,如果不走回頭路,就不能歷遍整個網(wǎng)絡(luò)。
他還發(fā)現(xiàn):如果有兩個奇結(jié)點,那么經(jīng)過整個路線的形成必須從一個
奇結(jié)點開始,到另一個奇結(jié)點結(jié)束。
師:我們來看一下是不是這樣的?第一個圖奇結(jié)點的個數(shù)為3,第二個圖奇結(jié)點的個數(shù)減少到2個了,看來真的是這樣的。
現(xiàn)在請同學們自己在練習本上解決這個問題:(PPT演示)
下面是一幅農(nóng)場的大門的圖。如果筆不離紙,又不重復經(jīng)過任一條線,有沒有可能畫成它?
學生思考討論。
師:我們看到它的奇結(jié)點個數(shù)為4,由歐拉的證明我們知道不能一筆畫成。
那如果農(nóng)場主將門的形狀做成這樣呢?(PPT演示)
學生嘗試。
師:是不是可以啦,為什么呢?
生:奇結(jié)點個數(shù)為2.
師:這種不用走回頭路而歷遍整條線路的情況,不僅僅具有趣味性,在現(xiàn)實生活中具有很重要的實用性,比如,我們的郵遞員和煤氣抄表員,不走回頭路意味著可以節(jié)省很多寶貴的時間。看來,數(shù)學并不像
某些時候想的那樣沒什么用處了吧?
下面我們繼續(xù)我們的奧秘之類吧。
今天我們班有同學生日嗎?如果你生日,爸爸媽媽給你買了一個正方形的蛋糕,你要把它切成不同形狀的`平均大小的7塊,怎么切?能行嗎?嘗試一下。
其實很簡單,你只需要把正方形的周邊(即周長)分成7個等長,定出蛋糕的中心,從周邊劃分等長的標記切向中電,(如圖所示)即可。
為什么呢?這里我們用到三角形等高等底面積相等的性質(zhì)。
吃完了蛋糕,我們來觀賞一下百合花。(PPT演示):
一個鄉(xiāng)村的池塘里種了美麗的百合花,百合花生長得很快,使它們覆蓋的面積每天增加一倍。30天后,長滿了整個池塘,那么池塘只被百合花覆蓋一半時是多少天呢?同學們,你知道嗎?
學生討論。
師:答案是29天,多么神奇,是吧?潛意識里我們很難接受答案就是29天,只與30天差一天。但用數(shù)學我們很容易很清楚地知道是29天,奧秘就在“它們覆蓋的面積每天增加一倍”這句話里面。你看,數(shù)學是多么聰慧、多么神奇的家伙!
其實,除了以上我們看到的一些有趣的數(shù)學影子外,我們的日常生
初中數(shù)學教案4
一年級學生認知水平處于啟蒙階段,尚未形成完整的知識結(jié)構(gòu)體系。由于學生所特有的年齡特點,學生有意注意力占主要地位,以形象思維為主。從整體上看一年級學生都比較活躍,大多數(shù)學生上課基本上能夠跟上教師講課的思路,教師上課組織課堂紀律并不難,而且學生的學習積極性也很容易調(diào)動。但每個班都有個別的學生上課不注意聽講,我行我素。
對于他們數(shù)學知識和能力掌握情況的分析:
1、對于一年級的數(shù)學學習,新生無論在數(shù)學知識上還是數(shù)學能力上都有所準備。就數(shù)的認識來看,新生二十以內(nèi)的數(shù)數(shù)非常流利和連貫,可以正數(shù)倒數(shù)。學生在這方面具有良好的知識準備的原因之一是學生受過這方面的訓練,在幼兒園中大部分學生學習過十以內(nèi)的加減法,同時在一些家長在家中也進行過輔導,另一方面,數(shù)數(shù)和十以內(nèi)數(shù)的分解組合學生在生活中有機會使用,因此這方面的準備比較好。
2、在數(shù)的計算中,學生對于十以內(nèi)數(shù)的計算較為熟練,這和學生的生活需要、學習需要有關(guān)。
3、新生在數(shù)感方面的發(fā)展是不平衡的數(shù)感——學生對數(shù)的意義理解有一定困難。通過個別訪談,了解到學生對于蘊涵在實際生活中的數(shù)的意義的理解較為準確,例如對于“你的小組中有幾個小朋友,從前往后數(shù),你是第幾個,從后往前數(shù),你是第幾個,第幾個小朋友是誰”這樣的問題,學生的解答沒有問題,都能根據(jù)實際情況作出正確的回答,但是對于圖形,學生的理解有一定的困難。這可能是學生對圖形的認識造成了對數(shù)的基數(shù)序數(shù)意義理解的干擾。
4、概括能力和推理能力——普遍學生關(guān)注的范圍比較小,角度單一。全冊教材分析
本冊教材一共分為八個單元,本冊教材主要是通過各種各樣的活動對學生進行數(shù)感及觀察能力、思維能力、口頭表達能力、學習習慣、合作與交流的能力等方面的培養(yǎng),讓學生對數(shù)學產(chǎn)生濃厚的學習興趣,同時鼓勵學生用自己喜歡的方式去學習自己有用的知識,對學生進行有效地思想品德教育,初步了解一定的學習方法、思考方式。
全冊教學目標
1、熟練地數(shù)出數(shù)量在20以內(nèi)的物體的個數(shù),會區(qū)分幾個和第幾個,掌握數(shù)的順序和大小,掌握10以內(nèi)各數(shù)的組成,會讀、寫0――20各數(shù)。
2、初步知道加、減法的含義和加減法算式中各部分部分名稱,初步知道加法和減法的關(guān)系,比較熟練地計算一位數(shù)的加法和10以內(nèi)的減法。
3、初步學會根據(jù)加、減法的含義和算法解決一些簡單的實際問題。
4、認識符號“=”“<”“>”,會使用這些符號表示數(shù)的大小。
5、直觀認識長方體、正方體、圓柱、球、長方形、正方形、三角形和圓。
6、初步了解分類的.方法,會進行簡單的分類。
7、初步了解鐘表,會認識整時和半時。
8、體會學習數(shù)學的樂趣,提高學習數(shù)學的興趣,建立學好數(shù)學的信心。
9、認真作業(yè)、書寫整潔的良好習慣。
10、通過實踐活動體驗數(shù)學與日常生活的密切聯(lián)系。
全冊重、難點:
教材重點:在具體的情境中能熟練的認讀、寫、20以內(nèi)的數(shù),能用數(shù)表示物體的個數(shù)或事物的位置與順序;建立初步的空間觀念;能按照給定的標準或選擇某個標準對物體進行比較和分類。
教材難點:體會20以內(nèi)加減法的意義,能熟練的口算20以內(nèi)的數(shù)的加減法;初步形成空間觀念;經(jīng)歷簡單的數(shù)據(jù)收集過程,形成初步的統(tǒng)計觀念。教學準備
畫有田字格的小黑板掛圖小棒圓片
多媒體課件視頻展示臺部分實物模型
智能培養(yǎng)
1、培養(yǎng)學生應用數(shù)學知識解決問題的能力。
2、培養(yǎng)學生獨立思考與合作交流的能力。
3、培養(yǎng)學生學習數(shù)學的良好情感。
4、培養(yǎng)學生學習數(shù)學的興趣和良好的學習習慣。
教學思路及措施
1.一年級學生的計算學習要和意義理解與思維訓練相結(jié)合。在小學數(shù)學課堂教學中要重視計算策略的優(yōu)化和算理的滲透,同時在計算教學過程中要滲透思維的訓練。
2.數(shù)學教學中加強學生的生活經(jīng)驗的積累和對學習對象的直接感知。學生的生活經(jīng)驗和已有的知識能力對學生解決問題有著很大的幫助,甚至很多學生都是建立在生活經(jīng)驗的基礎(chǔ)上進行學習的。因此,一年級的數(shù)學教學應該加強學生的實際感知,豐富學生的生活經(jīng)驗,讓學生在現(xiàn)實情景中把握數(shù)的意義和運算的意義,發(fā)展數(shù)感和符號感。擴大學生的信息貯備,提供有利于學生理解數(shù)學、探究數(shù)學的生活情景,給學生機會在實際情景中感知、操作、認識數(shù)學知識,理解數(shù)學,學習數(shù)學。
3.空間觀念的培養(yǎng)要把握好度,在具體和抽象的空間觀念的建立,在低段
要緊密和學生的動手操作相聯(lián)系,可以通過觀察、接觸(摸、折、剪、拼等)等各種手段來讓學生認識幾何形體,建立空間觀念。同時,要將生活材料數(shù)學化,在具體、半抽象、抽象之間建立一座橋梁,發(fā)展學生的空間想象能力。
4.在教學中要逐步滲透重要的數(shù)學概念和數(shù)學思想方法。數(shù)學思想方法已經(jīng)作為數(shù)學知識的一部分,教師在教學中要逐步隨著數(shù)學知識的學習進行滲透。例如一年級教材中有很多地方可以滲透一一對應思想、函數(shù)思想、符號化思想的,要在平時的教學中加以落實。
初中數(shù)學教案5
一、目的要求
1、使學生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
二、內(nèi)容分析
1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學習函數(shù)的,前面三小節(jié),先學習函數(shù)的概念與表示法,這是為學習后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學習一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學習,學生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結(jié)合這些內(nèi)容,學生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學思想方法在解決實際問題中的應用。
2、舊教材在講幾個具體的`函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當照顧了學生在小學數(shù)學中學了正反比例關(guān)系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學習反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學習反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學習效益,又便于學生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。
3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進行學習,因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學習,學生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數(shù)、反比例函數(shù)的學習方法。
三、教學過程
復習提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個函數(shù)的例子。
新課講解:
可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:
(1)這些式子表示的是什么關(guān)系?(在學生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對這個定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時,首先,要注意適當復習小學學過的正比例關(guān)系,小學數(shù)學是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是(一定)
需指出,小學因為沒有學過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。
其次,要注意引導學生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。
課堂練習:
教科書13、4節(jié)練習第1題.
初中數(shù)學教案6
教學內(nèi)容:在學生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關(guān)系。
教學目標:1、通過對"撲克"有趣的研究,培養(yǎng)起學生對生活中平常小事的關(guān)注。
2、調(diào)動學生豐富的聯(lián)想,養(yǎng)成一種思考的習慣。
教學重難點:"撲克"與年月日、季度的聯(lián)系。
教學過程:
一、談話引入
師:同學們,這個你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?
生:......
。ń處熝a充,引發(fā)學生的`好奇心。)
師: "撲克"還有一種作用,而且與數(shù)學有關(guān)!
生:......
二、新課
1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬
2、大王=太陽 小王=月亮 紅=白天 黑=夜晚
3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1
4、所有牌的和+小王=平年的天數(shù)
所有牌的和+小王+大王=閏年的天數(shù)
5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個月
6、365÷7≈52一年有52個星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個星期。
7、一種花色的和=一個季度的天數(shù)
一種花色有13張牌=一個季度有13個星期
三、小結(jié)
生活中有很多的數(shù)學,他每時每刻都在我們的身邊出現(xiàn),只是我們大家沒有注意到。請大家都要學會留心觀察,做生活的有心人。
初中數(shù)學教案7
①結(jié)合你對一元一次方程中的一次的理解,說一說你對一次函數(shù)中的“一次”的理解. ②k可以是怎樣的數(shù)?
、勰阍鯓诱J識一次函數(shù)和正比例函數(shù)的關(guān)系?
一個常數(shù)b的和即 Y=kx+b 定義:一般地,形
如
Y=kx+b( k,b 是常數(shù),k≠0 )的函數(shù),叫做一次函數(shù), 當
b=0時,
Y=kx+b即Y=kx,所以說正比例函數(shù)是一種特殊的一次函數(shù)。
例1、下列函數(shù)中,Y是X的一次函數(shù)的`是( )①Y=X-6②Y=3X③Y=X2④Y=7-X
學生獨立
A①②③B①③④C①②④D①②③④
例2、寫出下列各題中x與y之間的關(guān)系式,并判
解釋與應用
斷,y是否為x的一次函數(shù)?是否為正比例函數(shù)?①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間(時)之間的關(guān)系式;②圓的面積y(厘米2)與他的半徑x(厘米)之間的關(guān)系:③一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度y(厘米)之間的關(guān)系式
初中數(shù)學教案8
一學期的工作結(jié)束了,可以說緊張忙碌卻收獲多多;仡欉@學期的工作,我教九(4)班的數(shù)學,我總是在不斷地摸索和學習中進行教學,工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結(jié)經(jīng)驗,吸取教訓,使以后的工作能夠有效、有序地進行,現(xiàn)將教學所得總結(jié)如下:
一、在備課方面
在上課前我總是查閱很多教參、教輔,力求深入理解教材,準確把握難重點,總是要經(jīng)過深思熟慮之后才寫教案,力爭做到熟知知識要點,心中有數(shù)。
二、在教學過程方面
在課堂教學中我一直注重學生的參與。讓學生參與到課堂教學中來,讓他們自主的去探究問題,發(fā)現(xiàn)知識。波利亞說:“學習任何知識的最佳途徑都是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系。”只有充分發(fā)揮學生的主體作用,讓學生人人參與,才能最大限度地促進學生的發(fā)展。但還是難免受傳統(tǒng)教學觀念的影響,加之經(jīng)驗不足,不太敢放手,怕完成不了當趟課的教學任務。后來在學!啊钡'教學模式下,才開始進一步嘗試,并在不斷的嘗試中總結(jié)經(jīng)驗。
三、工作中存在的問題
1)、教材挖掘不深入。
2)、教法不靈活,不能吸引學生學習,對學生的引導、啟發(fā)不足。
3)、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導
4)、差生末抓在手。由于對學生的了解不夠,對學生的學習態(tài)度、思維能力不太清楚。上課和復習時該講的都講了,學生掌握的情況怎樣,教師心中無數(shù)。導致了教學中的盲目性。
四、今后努力的方向
1)、加強學習,學習新教學模式下新的教學思想。
2)、熟讀初一到初三的數(shù)學教材,深入挖掘教材,進一步把握知識點和考點。
3)、多聽課,學習老教師對知識點的處理和對教材的把握,以及他們處理突發(fā)事件方法。
4)、加強轉(zhuǎn)差培優(yōu)力度。
5)、加強教學反思,加大教學投入。
一學期的教學工作即將結(jié)束,這半年的教學工作很苦,很累,但在不斷的摸索中,自己學到了很多東西。今后我會更加努力提高自己的業(yè)務水平。
初中數(shù)學教案9
教學目標:
利用數(shù)形結(jié)合的數(shù)學思想分析問題解決問題。
利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學習,解決情境中的數(shù)學問題,初步形成數(shù)學建模能力,解決一些簡單的實際問題。
在探索中體驗數(shù)學來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結(jié)合的美,激發(fā)學生學習數(shù)學的興趣,通過合作學習獲得成功,樹立自信心。
教學重點和難點:
運用數(shù)形結(jié)合的思想方法進行解二次函數(shù),這是重點也是難點。
教學過程:
(一)引入:
分組復習舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
可引導學生從幾個方面進行討論:
。1)如何畫圖
。2)頂點、圖象與坐標軸的交點
。3)所形成的三角形以及四邊形的面積
。4)對稱軸
從上面的'問題導入今天的課題二次函數(shù)中的圖象與性質(zhì)。
。ǘ┬率冢
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數(shù)量關(guān)系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE= SABC。
再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。
2、讓同學討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。
(三)提高練習
根據(jù)我們學校人人皆知的船模特色項目設(shè)計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學生在練習中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。
。ㄋ模┳寣W生討論小結(jié)(略)
。ㄎ澹┳鳂I(yè)布置
1、在直角坐標平面內(nèi),點O為坐標原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
。1)求二次函數(shù)的解析式;
。2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設(shè)平移后的圖象與y軸的交點為C,頂點為P,求 POC的面積。
2、如圖,一個二次函數(shù)的圖象與直線y= x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖2。
(1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;
。2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實際橋長(備用數(shù)據(jù): ,計算結(jié)果精確到1米)
初中數(shù)學教案10
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標:
、,在實踐操作過程中,逐步探索圖形之間的平移關(guān)系;
、,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續(xù)變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結(jié)合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設(shè)計:
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結(jié),老師給予適當?shù)闹笇Вγ糠N答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調(diào)動學生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補充。
課堂小結(jié):
在教師的.引導下學生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節(jié)的內(nèi)容并不是很復雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質(zhì)的提高。
初中數(shù)學教案11
教學目標
1.經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。
2.通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。
4.通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學學習的信心。通過豐富有趣拼的圖活動增強對數(shù)學學習的興趣。
重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。
2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經(jīng)驗。
難點利用數(shù)形結(jié)合的'方法驗證公式
教學方法動手操作,合作探究課型新授課教具投影儀
教師活動學生活動
情景設(shè)置:
你已知道的關(guān)于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常?梢缘玫揭恍┯杏玫氖阶。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式
提問:還能通過怎樣拼圖來解決以下問題
。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應的等式;
。2)任意寫出一個關(guān)于a、b的二次三項式,如a2+4ab+3b2
試用拼一個長方形的方法,把這個二次三項式因式分解。
這個問題要給予學生充足的時間和空間進行討論和拼圖,教師在這要引導適度,不要限制學生思維,同時鼓勵學生在拼圖過程中進行交流合作
了解學生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據(jù)不同學生的不同狀況給予適當?shù)囊龑,引導學生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
。ń處煈o予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結(jié)。)
學生回答
a(b+c+d)=ab+ac+ad
。╝+b)(c+d)=ac+ad+bc+bd
。╝+b)2=a2+2ab+b2
學生拿出準備好的硬紙板制作
給學生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學生教師要給予適當引導。
作業(yè)第95頁第3題
板書設(shè)計
復習例1板演
………………
………………
……例2……
………………
………………
教學后記
初中數(shù)學教案12
教學目標:
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數(shù)學與日常生活密切相關(guān),認識到許多實際問題可以用數(shù)學方法解決。
教學重點:歸納一元次方程的概念
教學難點:感受方程作為刻畫現(xiàn)實世界有效模型的意義.
教學過程:
一、情景導入:
我能猜出你們的年齡,相信嗎?
只要任何一個同學回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學生說出結(jié)果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學生討論并回答
二、知識探究:
1、方程的教學(投影演示)
小彬和小明也在進行猜年齡游戲,我們來看一看。
找出這道題中的等量關(guān)系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、 判斷下列式子是不是方程?
。1)X+2=3(是)(2)X+3Y=6(是)
。3)3M-6(不是)(4)1+2=3(不是)
(5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?
你能找出題中的.等量關(guān)系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統(tǒng)計數(shù)據(jù)(20xx年3月28日新華社公布)
截至20xx年11月1日0時,全國每10萬人中具有大學文化程度的人數(shù)為3611人,比1990年7月1日0時增長了153.94%
1990年6月底每10萬人中約有多少人具有大學文化程度?情景三:西湖中學的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?
下面是剛才根據(jù)幾道情景題所列的方程,分析下列方程有何共同點?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個方程中,只含有一個未知數(shù)X(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。
問:大家剛才都已經(jīng)自己列出了方程,那個同學能夠說一下你是怎樣列出方程的,列方程應該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關(guān)系(2)設(shè)未知數(shù)(3)列方程
四、隨堂練習
1、投影趣味習題,
2、做一做
下面有兩道題,請選做一題。
(1)、請根據(jù)方程2X+3=21自己設(shè)計一道有實際背景的應用題。
。2)、發(fā)揮你的想象,用自己的年齡編一道應用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
數(shù)學教案-你今年幾歲了搜集整理
初中數(shù)學教案13
知識技能目標
1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問題。
過程性目標
1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學問題。
教學過程
一、創(chuàng)設(shè)情境
上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。
學生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。
1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
。2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
注
1、雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關(guān)于原點成中心對稱。
以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實踐應用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的.圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(1,—2)。
。1)求這個函數(shù)的解析式,并畫出圖象;
。2)若點A(—5,m)在圖象上,則點A關(guān)于兩坐標軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;
。2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關(guān)于兩坐標軸和原點的對稱點是否在圖象上。
解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
。2)點A(—5,m)在反比例函數(shù)圖象上,所以,
點A的坐標為。
點A關(guān)于x軸的對稱點不在這個圖象上;
點A關(guān)于y軸的對稱點不在這個圖象上;
點A關(guān)于原點的對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù)。
。1)求m的值;
。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
。3)當—3≤x≤時,求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
。2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
。3)因為在第個象限內(nèi),y隨x的增大而增大,
所以當x=時,y最大值=;
當x=—3時,y最小值=。
所以當—3≤x≤時,此函數(shù)的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
。1)寫出用高表示長的函數(shù)關(guān)系式;
。2)寫出自變量x的取值范圍;
。3)畫出函數(shù)的圖象。
解(1)因為100=5xy,所以。
(2)x>0。
(3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。
四、交流反思
本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
。1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
。2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
五、檢測反饋
1、在同一直角坐標系中畫出下列函數(shù)的圖象:
。1);(2)。
2、已知y是x的反比例函數(shù),且當x=3時,y=8,求:
。1)y和x的函數(shù)關(guān)系式;
。2)當時,y的值;
(3)當x取何值時,?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點A(2,—m)和B(n,2n),求:
。1)m和n的值;
。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0
初中數(shù)學教案14
教學目標
1.知識與技能
能運用運算律探究去括號法則,并且利用去括號法則將整式化簡.
2.過程與方法
經(jīng)歷類比帶有括號的有理數(shù)的運算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學生觀察、分析、歸納能力.
3.情感態(tài)度與價值觀
培養(yǎng)學生主動探究、合作交流的意識,嚴謹治學的學習態(tài)度.
重、難點與關(guān)鍵
1.重點:去括號法則,準確應用法則將整式化簡.
2.難點:括號前面是“-”號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤.
3.關(guān)鍵:準確理解去括號法則.
教具準備
投影儀.
教學過程
一、新授
利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號,它們應如何化簡?
思路點撥:教師引導,啟發(fā)學生類比數(shù)的運算,利用分配律.學生練習、交流后,教師歸納:
利用分配律,可以去括號,合并同類項,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡帶有括號的整式,首先應先去括號.
上面兩式去括號部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發(fā)現(xiàn)去括號時符號變化的規(guī)律嗎?
思路點撥:鼓勵學生通過觀察,試用自己的語言敘述去括號法則,然后教師板書(或用屏幕)展示:
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;
如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號去掉,得:
+(x-3)=x-3(括號沒了,括號內(nèi)的每一項都沒有變號)
-(x-3)=-x+3(括號沒了,括號內(nèi)的每一項都改變了符號)
去括號規(guī)律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內(nèi)原有幾項去掉括號后仍有幾項.
二、范例學習
例1.化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點撥:講解時,先讓學生判定是哪種類型的`去括號,去括號后,要不要變號,括號內(nèi)的每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內(nèi),然后再去括號.
解答過程按課本,可由學生口述,教師板書.
例2.兩船從同一港口同時出發(fā)反向而行,甲船順水,乙船逆水,兩船在靜水中的速度都是50千米/時,水流速度是a千米/時.
(1)2小時后兩船相距多遠?
(2)2小時后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學生思考、小組交流,尋求解答思路.
思路點撥:根據(jù)船順水航行的速度=船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過程按課本.
去括號時強調(diào):括號內(nèi)每一項都要乘以2,括號前是負因數(shù)時,去掉括號后,括號內(nèi)每一項都要變號.為了防止出錯,可以先用分配律將數(shù)字2與括號內(nèi)的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號.
三、鞏固練習
1.課本第68頁練習1、2題.
2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點撥:一般地,先去小括號,再去中括號.
四、課堂小結(jié)
去括號是代數(shù)式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規(guī)律可以簡單記為“-”變“+”不變,要變?nèi)甲?當括號前帶有數(shù)字因數(shù)時,這個數(shù)字要乘以括號內(nèi)的每一項,切勿漏乘某些項.
五、作業(yè)布置
1.課本第71頁習題2.2第2、3、5、8題.
2.選用課時作業(yè)設(shè)計.
初中數(shù)學教案15
【學習目標】
1.了解圓周角的概念.
2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90的圓周角所對的`弦是直徑.
4.熟練掌握圓周角的定理及其推理的靈活運用.
設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運用數(shù)學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題
【學習過程】
一、 溫故知新:
(學生活動)同學們口答下面兩個問題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?
二、 自主學習:
自學教材P90---P93,思考下列問題:
1、 什么叫圓周角?圓周角的兩個特征: 。
2、 在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.
(1)一個弧上所對的圓周角的個數(shù)有多少個?
(2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?
(3).同弧上的圓周角與圓心角有什么關(guān)系?
3、默寫圓周角定理及推論并證明。
4、能去掉同圓或等圓嗎?若把同弧或等弧改成同弦或等弦性質(zhì)成立嗎?
5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?
三、 典型例題:
例1、(教材93頁例2)如圖, ⊙O的直徑AB為10cm,弦AC為6cm,,ACB的平分線交⊙O于D,求BC、AD、BD的長。
例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關(guān)系?為什么?
四、 鞏固練習:
1、(教材P93練習1)
解:
2、(教材P93練習2)
3、(教材P93練習3)
證明:
4、(教材P95習題24.1第9題)
五、 總結(jié)反思:
【達標檢測】
1.如圖1,A、B、C三點在⊙O上,AOC=100,則ABC等于( ).
A.140 B.110 C.120 D.130
(1) (2) (3)
2.如圖2,1、2、3、4的大小關(guān)系是( )
A.3 B.32
C.2 D.2
3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則BCD等于( )
A.100 B.110 C.120 D.130
4.半徑為2a的⊙O中,弦AB的長為2 a,則弦AB所對的圓周角的度數(shù)是________.
5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則2=_______.
(4) (5)
6.(中考題)如圖5, 于 ,若 ,則
7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.
【拓展創(chuàng)新】
1.如圖,已知AB=AC,APC=60
(1)求證:△ABC是等邊三角形.
(2)若BC=4cm,求⊙O的面積.
3、教材P95習題24.1第12、13題。
【布置作業(yè)】教材P95習題24.1第10、11題。
【初中數(shù)學教案】相關(guān)文章:
初中數(shù)學教案05-28
初中數(shù)學教案【熱門】05-26
【薦】初中數(shù)學教案02-27
初中數(shù)學教案【精】04-02
初中數(shù)學教案【薦】03-31
人教版初中數(shù)學教案12-29
【精】初中數(shù)學教案02-24
初中數(shù)學教案模板02-06
初中趣味數(shù)學教案11-22