當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 初中數(shù)學(xué)教案

初中數(shù)學(xué)教案

時(shí)間:2024-05-26 10:20:48 教案 我要投稿

初中數(shù)學(xué)教案【熱門(mén)】

  作為一位兢兢業(yè)業(yè)的人民教師,通常需要用到教案來(lái)輔助教學(xué),編寫(xiě)教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。如何把教案做到重點(diǎn)突出呢?下面是小編收集整理的初中數(shù)學(xué)教案,希望能夠幫助到大家。

初中數(shù)學(xué)教案【熱門(mén)】

初中數(shù)學(xué)教案1

  一、教材分析

  本節(jié)內(nèi)容是人民教育出版社出版《義務(wù)教育課程實(shí)驗(yàn)教科書(shū)(五四學(xué)制)數(shù)學(xué)》(供天津用)八年級(jí)下冊(cè)第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。

  二、設(shè)計(jì)思想

  本節(jié)內(nèi)容是學(xué)生掌握了“整式”有關(guān)概念的延展學(xué)習(xí),為后繼學(xué)習(xí)整式運(yùn)算、因式分解、一元二次方程及函數(shù)知識(shí)奠定基礎(chǔ),是“數(shù)”向“式”的正式過(guò)度,具有十分重要地位。

  八年級(jí)學(xué)生已具有了較強(qiáng)的數(shù)的運(yùn)算技能和“合并”的意識(shí)(解一元一次方程中用)同時(shí)也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個(gè)學(xué)生都有發(fā)展的宗旨,我采用合作探究的學(xué)習(xí)方式開(kāi)展教學(xué)活動(dòng),通過(guò)設(shè)計(jì)有針對(duì)性、多樣式的問(wèn)題引導(dǎo)學(xué)生,給學(xué)生提供充足的、和諧的探索空間讓學(xué)生學(xué)習(xí)。通過(guò)學(xué)習(xí)活動(dòng)不但培養(yǎng)學(xué)生化簡(jiǎn)意識(shí),提升數(shù)學(xué)運(yùn)算技能而且讓學(xué)生深刻體會(huì)到數(shù)學(xué)是解決實(shí)際問(wèn)題的重要工具,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。

  三、教學(xué)目標(biāo):

  (一)知識(shí)技能目標(biāo):

  1、理解同類(lèi)項(xiàng)的含義,并能辨別同類(lèi)項(xiàng)。

  2、掌握合并同類(lèi)項(xiàng)的方法,熟練的合并同類(lèi)項(xiàng)。

  3、掌握整式加減運(yùn)算的方法,熟練進(jìn)行運(yùn)算。

 。ǘ┻^(guò)程方法目標(biāo):

  1、通過(guò)探究同類(lèi)項(xiàng)定義、合并同類(lèi)項(xiàng)的'方法的活動(dòng),培養(yǎng)學(xué)生觀察、歸納、探究的能力。

  2、通過(guò)合并同類(lèi)項(xiàng)、整式加減運(yùn)算的練習(xí)活動(dòng),提高學(xué)生運(yùn)算技能,提升運(yùn)算的準(zhǔn)確率培養(yǎng)學(xué)生化簡(jiǎn)意識(shí),發(fā)展學(xué)生的抽象概括能力。

  3、通過(guò)研究引例、探究例1的活動(dòng),發(fā)展學(xué)生的形象思維,初步培養(yǎng)學(xué)生的符號(hào)感。

 。ㄈ┣楦袃r(jià)值目標(biāo):

  1、通過(guò)交流協(xié)商、分組探究,培養(yǎng)學(xué)生合作交流的意識(shí)和敢于探索未知問(wèn)題的精神。

  2、通過(guò)學(xué)習(xí)活動(dòng)培養(yǎng)學(xué)生科學(xué)、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

  四、教學(xué)重、難點(diǎn):

  合并同類(lèi)項(xiàng)

  五、教學(xué)關(guān)鍵:

  同類(lèi)項(xiàng)的概念

  六、教學(xué)準(zhǔn)備:

  教師:

  1、篩選數(shù)學(xué)題目,精心設(shè)置問(wèn)題情境。

  2、制作大小不等的兩個(gè)長(zhǎng)方體紙盒實(shí)物模型,并能展開(kāi)。

  3、設(shè)計(jì)多媒體教學(xué)課件。(要凸顯①單項(xiàng)式中系數(shù)、字母、指數(shù)的特征②長(zhǎng)方體紙盒立體圖、展開(kāi)圖。)

  學(xué)生:

  1、復(fù)習(xí)有關(guān)單項(xiàng)式的概念、有理數(shù)四則運(yùn)算及去括號(hào)的法則)

  2、每小組制作大小不等的兩個(gè)長(zhǎng)方體紙盒模型。

初中數(shù)學(xué)教案2

從不同方向看

  教學(xué)目標(biāo)

  1.通過(guò)實(shí)驗(yàn),使學(xué)生相信經(jīng)過(guò)大量的重復(fù)實(shí)驗(yàn)后得到的頻率值確實(shí)可以作為隨機(jī)事件每次發(fā)生的機(jī)會(huì)的估計(jì)值,體會(huì)隨機(jī)事件中所隱含著的確定性內(nèi)涵。

  2.使學(xué)生知道,通過(guò)實(shí)驗(yàn)的方法,用頻率估計(jì)機(jī)會(huì)的大小,必須要求實(shí)驗(yàn)是在相同條件下進(jìn)行的。且在相同條件下,實(shí)驗(yàn)次數(shù)越多,就越有可能得到較好的估計(jì)值,但個(gè)人所得的值也并不一定相同。

  3.培養(yǎng)學(xué)生合作學(xué)習(xí)的能力,并學(xué)會(huì)與他人交流思維的過(guò)程和結(jié)果。

  教學(xué)重難點(diǎn)

  重點(diǎn):頻率與機(jī)會(huì)的關(guān)系。

  難點(diǎn):如何用頻率估計(jì)機(jī)會(huì)的大?教學(xué)準(zhǔn)備數(shù)枚相同的圖釘。

  教學(xué)過(guò)程

  一、提出問(wèn)題

  上一節(jié)課,通過(guò)一系列的實(shí)驗(yàn)和觀察,我們已經(jīng)知道:實(shí)驗(yàn)是估計(jì)機(jī)會(huì)大小的一種方法。我們可以通過(guò)實(shí)驗(yàn),觀察某事件出現(xiàn)的頻率,當(dāng)頻率值逐漸穩(wěn)定時(shí),這個(gè)值就可以作為我們對(duì)該事件發(fā)生機(jī)會(huì)的估計(jì)。

  實(shí)際上,在前面的問(wèn)題中,即使不做實(shí)驗(yàn),也可以設(shè)法預(yù)先推測(cè)出事件發(fā)生的機(jī)會(huì),為什么還要花大量時(shí)間去進(jìn)行實(shí)驗(yàn)?zāi)兀?/p>

  下面讓我們看另一類(lèi)問(wèn)題:

  一枚圖釘被拋起后釘尖觸地的機(jī)會(huì)有多大?

  二、分組實(shí)驗(yàn)

  1.兩個(gè)學(xué)生一個(gè)小組,一人拋擲,一人記錄

  每個(gè)小組拋擲40次,記錄出現(xiàn)釘尖觸地的頻數(shù)

  教師負(fù)責(zé)把各小組的結(jié)果登錄在黑板上

  2.然后把每小組的'結(jié)果合起來(lái),分別計(jì)算拋擲80次、 120次、 160次、 200次、 240次、 180次、 320次、 360次、 400次、 480次、 520次、 560次后出現(xiàn)釘尖觸地的頻數(shù)及頻率

  3.列出統(tǒng)計(jì)表,繪制折線圖

  4.根據(jù)實(shí)驗(yàn)結(jié)果估計(jì)一下釘尖觸地的機(jī)會(huì)是百分之幾?

  5.課本第105頁(yè)表15.2.1和圖15.2.2是一位同學(xué)在拋擲圖釘?shù)膶?shí)驗(yàn)中畫(huà)的統(tǒng)計(jì)表和折線圖。這與你實(shí)驗(yàn)的結(jié)果相同嗎?為什么?

  三、深入思考

  如果兩個(gè)小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機(jī)會(huì)相同嗎?

  能把兩個(gè)小組的實(shí)驗(yàn)數(shù)據(jù)合起來(lái)進(jìn)行實(shí)驗(yàn)嗎?

  四、概括小結(jié)

  從上面的問(wèn)題可以看出:

  1.通過(guò)實(shí)驗(yàn)的方法用頻率估計(jì)機(jī)會(huì)的大小,必須要求實(shí)驗(yàn)是在相同條件下進(jìn)行的。比如,以同樣的方式拋擲同一種圖釘。

  2.在相同的條件下,實(shí)驗(yàn)次數(shù)越多,就越有可能得到較好的估計(jì)值,但每人所得的值也并不一定相同。

  五、用心觀察

  我們已經(jīng)知道,在相同條件下,實(shí)驗(yàn)次數(shù)越多,就越有可能得到較好的估計(jì)值。那么,總共要做多少次實(shí)驗(yàn)才認(rèn)為得到的結(jié)果比較可靠呢?

  觀察課本第105頁(yè)表15.2.1和圖15.2.2 。

  當(dāng)實(shí)驗(yàn)進(jìn)行到多少次以后,所得頻率值就趨于平穩(wěn)了?

  ( 小結(jié):實(shí)驗(yàn)到頻率值較穩(wěn)定時(shí),結(jié)果比較可靠。這個(gè)頻率值也就可以作為這個(gè)事件發(fā)生機(jī)會(huì)的估計(jì)值。 )

  六、鞏固練習(xí)

  課本第107頁(yè)練習(xí)第1 、 2題。

  七、課堂小結(jié)

  這節(jié)課你有什么收獲?還有哪些問(wèn)題需要老師幫你解決的?

  注意:通過(guò)實(shí)驗(yàn)的方法用頻率估計(jì)機(jī)會(huì)大小,必須要求實(shí)驗(yàn)是在相同條件下進(jìn)行的。

  八、布置作業(yè)

  1 、課本第108頁(yè)習(xí)題15.2第2題

  2 、課本第106頁(yè)做一做

  2 、數(shù)字之積為奇數(shù)與偶數(shù)的機(jī)會(huì)

初中數(shù)學(xué)教案3

  4.1二元一次方程

  【教學(xué)目標(biāo)】

  知識(shí)與技能目標(biāo)

  1、通過(guò)與一元一次方程的比較,能說(shuō)出二元一次方程的概念,并會(huì)辨別一個(gè)方程是不是

  二元一次方程;

  2、通過(guò)探索交流,會(huì)辨別一個(gè)解是不是二元一次方程的解,能寫(xiě)出給定的二元一次方程的解,了解方程解的不唯一性;

  3、會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。過(guò)程與方法目標(biāo)經(jīng)歷觀察、比較、猜想、驗(yàn)證等數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)分析問(wèn)題的能力和數(shù)學(xué)說(shuō)理能力;

   情感與態(tài)度目標(biāo)

  1、通過(guò)與一元一次方程的類(lèi)比,探究二元一次方程及其解的概念,進(jìn)一步培養(yǎng)運(yùn)用類(lèi)比轉(zhuǎn)化的思想解決問(wèn)題的能力;

  2、通過(guò)對(duì)實(shí)際問(wèn)題的分析,培養(yǎng)關(guān)注生活,進(jìn)一步體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識(shí)。

  【重點(diǎn)、難點(diǎn)】

  重點(diǎn):二元一次方程的概念及二元一次方程的解的概念。

  難點(diǎn)1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無(wú)數(shù)個(gè),

  但不是任意的兩個(gè)數(shù)是它的解。

  2、把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程。

  【教學(xué)方法與教學(xué)手段】

  1、通過(guò)創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生在尋求問(wèn)題解決的過(guò)程中認(rèn)識(shí)二元一次方程,了解二元一

  次方程的特點(diǎn),體會(huì)到二元一次方程的引入是解決實(shí)際問(wèn)題的需要。

  2、通過(guò)觀察、思考、交流等活動(dòng),激發(fā)學(xué)習(xí)情緒,營(yíng)造學(xué)習(xí)氣氛,給學(xué)生一定的時(shí)間和

  空間,自主探討,了解二元一次方程的'解的不唯一性和相關(guān)性。

  3、通過(guò)學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時(shí)鞏固所學(xué)知識(shí)。

  【教學(xué)過(guò)程】

  一、創(chuàng)設(shè)情境導(dǎo)入新課

  1、一個(gè)數(shù)的3倍比這個(gè)數(shù)大6,這個(gè)數(shù)是多少?

  2、寫(xiě)有數(shù)字5的黃卡和寫(xiě)有數(shù)字2的藍(lán)卡若干張,問(wèn)黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?

  思考:這個(gè)問(wèn)題中,有幾個(gè)未知數(shù)?能列一元一次方程求解嗎?

  如果設(shè)黃卡取x張,藍(lán)卡取y張,你能列出方程嗎?

  3、在高速公路上,一輛轎車(chē)行駛2時(shí)的路程比一輛卡車(chē)行駛3時(shí)的路程還多20千米。如果設(shè)轎車(chē)的速度是a千米/時(shí),卡車(chē)的速度是b千米/時(shí),你能列出怎樣的方程?

  二、師生互動(dòng)探索新知

  1、推陳出新發(fā)現(xiàn)新知

  引導(dǎo)學(xué)生觀察所列的方程:5x?2y?22,2a?3b?20,這兩個(gè)方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們?nèi)(gè)名字嗎?

  (板書(shū):二元一次方程)

  根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個(gè)未知數(shù),且含有未知數(shù)的項(xiàng)的次數(shù)都是一次的方程叫做二元一次方程。)

  2、小試牛刀鞏固新知

  判斷下列各式是不是二元一次方程

  (1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

  3、師生互動(dòng)再探新知

  (1)什么是方程的解?(使方程兩邊的值相等的未知數(shù)的值,叫做方程的解。)

  (2)你能給二元一次方程的解下一個(gè)定義嗎?(使二元一次方程兩邊的值相等的一對(duì)未

  知數(shù)的值,叫做二元一次方程的一個(gè)解。)

  ?若未知數(shù)設(shè)為x,y,記做x?,若未知數(shù)設(shè)為a,b,記做

  ?y?

  4、再試牛刀檢驗(yàn)新知

  (1)檢驗(yàn)下列各組數(shù)是不是方程2a?3b?20的解:(學(xué)生感悟二元一次方程解的不唯一性)

  a?4a?5a?0a?100

  b?3b??1020b??b?6033

  (2)你能寫(xiě)出方程x-y=1的一個(gè)解嗎?(再一次讓學(xué)生感悟二元一次方程的解的不唯一性)

  5、自我挑戰(zhàn)三探新知

  有3張寫(xiě)有相同數(shù)字的藍(lán)卡和2張寫(xiě)有相同數(shù)字的黃卡,這五張卡片上的數(shù)字之和為10。設(shè)藍(lán)卡上的數(shù)字為x,黃卡上的數(shù)字為y,根據(jù)題意列方程。3x?2y?10

  請(qǐng)找出這個(gè)方程的一個(gè)解,并寫(xiě)出你得到這個(gè)解的過(guò)程。

  學(xué)生在解二元一次方程的過(guò)程中體驗(yàn)和了解二元一次方程解的不唯一性。

  6、動(dòng)動(dòng)筆頭鞏固新知

  獨(dú)立完成課本第81頁(yè)課內(nèi)練習(xí)2

  三、你說(shuō)我說(shuō)清點(diǎn)收獲

  比較一元一次方程和二元一次方程的相同點(diǎn)和不同點(diǎn)

  相同點(diǎn):方程兩邊都是整式

  含有未知數(shù)的項(xiàng)的次數(shù)都是一次

  如何求一個(gè)二元一次方程的解

  四、知識(shí)鞏固

  1、必答題

  (1)填空題:若mxy?9x?3yn?1?7是關(guān)于x,y的二元一次方程,則m?n?x?2y?5變形正確的有2

  10?xx?10①x?5?4y②x?10?4y③y?④y?44

  (3x?7是方程2x?y?15的解。()(2)多選題:方程

  y?1

  x?7

  (4)判斷題:方程2x?y?15的解是。()y?1

  2、搶答題

  是方程2x?3y?5的一個(gè)解,求a的值。(1)已知x??2

  y?a

  (2)寫(xiě)出一個(gè)解為x?3的二元一次方程。

  y?1

  3、個(gè)人魅力題

  寫(xiě)有數(shù)字5的黃卡和寫(xiě)有數(shù)字2的藍(lán)卡若干張,問(wèn)黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?設(shè)黃卡取x張,藍(lán)卡取y張,根據(jù)題意列方程:5x?2y?22你能完成這道題目嗎?

  五、布置作業(yè)

初中數(shù)學(xué)教案4

  【教學(xué)目標(biāo)】

  1、掌握多邊形的內(nèi)角和的計(jì)算方法,并能用內(nèi)角和知識(shí)解決一些簡(jiǎn)單的問(wèn)題。

  2、經(jīng)歷探索多邊形內(nèi)角和計(jì)算公式的過(guò)程,體會(huì)如何探索研究問(wèn)題。

  3、通過(guò)將多邊形"分割"為三角形的過(guò)程體驗(yàn),初步認(rèn)識(shí)"轉(zhuǎn)化"的數(shù)學(xué)思想。

  【教學(xué)重點(diǎn)與教學(xué)難點(diǎn)】

  1、重點(diǎn):多邊形的內(nèi)角和公式。

  2、難點(diǎn):多邊形內(nèi)角和的推導(dǎo)。

  3、關(guān)鍵:。多邊形"分割"為三角形。

  【教具準(zhǔn)備】

  三角板、卡紙

  【教學(xué)過(guò)程】

  一、創(chuàng)設(shè)情景,揭示問(wèn)題

  1、在一次數(shù)學(xué)基礎(chǔ)知識(shí)搶答賽中,老師出了這么一個(gè)問(wèn)題,一個(gè)五邊形的所有角相加等于多少度?一個(gè)學(xué)生馬上能回答,你們能嗎?

  2、教具演示:將一個(gè)五邊形沿對(duì)角線剪開(kāi),能分割成幾個(gè)三角形?

  你能說(shuō)出五邊形的內(nèi)角和是多少度嗎?(點(diǎn)題)意圖:利用搶答問(wèn)題和教具演示,調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣和注意力

  二、探索研究學(xué)會(huì)新知

  1、回顧舊知,引出問(wèn)題:

 。1)三角形的內(nèi)角和等于_________。外角和等于____________

 。2)長(zhǎng)方形的內(nèi)角和等于_____,正方形的內(nèi)角和等于__________。

  2、探索四邊形的內(nèi)角和:

 。1)學(xué)生思考,同學(xué)討論交流。

  (2)學(xué)生敘述對(duì)四邊形內(nèi)角和的認(rèn)識(shí)(第一二組通過(guò)測(cè)量相加,第三四組通過(guò)畫(huà)對(duì)角線分成兩個(gè)三角形。)回顧三角形,正方形,長(zhǎng)方形內(nèi)角和,使學(xué)生對(duì)新問(wèn)題進(jìn)行思考與猜想。以四邊形的內(nèi)角和作為探索多邊形的。突破口。

 。3)引導(dǎo)學(xué)生用"分割法"探索四邊形的內(nèi)角和:

  方法一:連接一條對(duì)角線,分成2個(gè)三角形:

  180°+180°=360°

  從簡(jiǎn)單的思維方式發(fā)散學(xué)生的想象力達(dá)到"分割"問(wèn)題,并讓學(xué)生發(fā)現(xiàn)問(wèn)題,解決問(wèn)題教學(xué)步驟教學(xué)內(nèi)容備注方法二:在四邊形內(nèi)部任取一點(diǎn),與頂點(diǎn)連接組成4個(gè)三角形。

  180°×4-360°=360°

  3、探索多邊形內(nèi)角和的問(wèn)題,提出階梯式的問(wèn)題:

  你能?chē)L試用上面的.方法一求出五邊形的內(nèi)角和嗎?(第一二組)

  你能?chē)L試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?完成后填表:

  n邊形3456.。.n分成三角形的個(gè)數(shù)1234.。.n—2內(nèi)角和。.。.

  4、及時(shí)運(yùn)用,掌握新知:

 。1)一個(gè)八邊形的內(nèi)角和是_____________度

  (2)一個(gè)多邊形的內(nèi)角和是720度,這個(gè)多邊形是_____邊形

 。3)一個(gè)正五邊形的每一個(gè)內(nèi)角是________,那么正六邊形的每個(gè)內(nèi)角是_________

  通過(guò)學(xué)生動(dòng)手去用分割法求五(六)邊形的內(nèi)角和,從簡(jiǎn)單到復(fù)雜,從而歸納出n邊形的內(nèi)角和。

  三、點(diǎn)例透析

  運(yùn)用新知例題:想一想:如果一個(gè)四邊形的一組對(duì)角互補(bǔ),那么另一組對(duì)角有什么關(guān)系呢?

  四、應(yīng)用訓(xùn)練強(qiáng)化理解

  4、第83頁(yè)練習(xí)1和2多邊形內(nèi)角和定理的應(yīng)用

  五、知識(shí)回放

  課堂小結(jié)提問(wèn)方式:本節(jié)課我們學(xué)習(xí)了什么?

  1、多邊形內(nèi)角和公式。

  2、多邊形內(nèi)角和計(jì)算是通過(guò)轉(zhuǎn)化為三角形。

  六、作業(yè)練習(xí)

  1、書(shū)面作業(yè):

  2、課外練習(xí):

初中數(shù)學(xué)教案5

  教學(xué)目標(biāo):

  1、進(jìn)一步理解函數(shù)的概念,能從簡(jiǎn)單的實(shí)際事例中,抽象出函數(shù)關(guān)系,列出函數(shù)解析式;

  2、使學(xué)生分清常量與變量,并能確定自變量的取值范圍.

  3、會(huì)求函數(shù)值,并體會(huì)自變量與函數(shù)值間的對(duì)應(yīng)關(guān)系.

  4、使學(xué)生掌握解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量的取值范圍的求法.

  5、通過(guò)函數(shù)的教學(xué)使學(xué)生體會(huì)到事物是相互聯(lián)系的.是有規(guī)律地運(yùn)動(dòng)變化著的.

  教學(xué)重點(diǎn):了解函數(shù)的意義,會(huì)求自變量的取值范圍及求函數(shù)值.

  教學(xué)難點(diǎn):函數(shù)概念的抽象性.

  教學(xué)過(guò)程:

  (一)引入新課:

  上一節(jié)課我們講了函數(shù)的概念:一般地,設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x、y,如果對(duì)于x的每一個(gè)值,y都有唯一的值與它對(duì)應(yīng),那么就說(shuō)x是自變量,y是x的函數(shù).

  生活中有很多實(shí)例反映了函數(shù)關(guān)系,你能舉出一個(gè),并指出式中的自變量與函數(shù)嗎?

  1、學(xué)校計(jì)劃組織一次春游,學(xué)生每人交30元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系.

  2、為迎接新年,班委會(huì)計(jì)劃購(gòu)買(mǎi)100元的小禮物送給同學(xué),求所能購(gòu)買(mǎi)的總數(shù)n(個(gè))與單價(jià)(a)元的關(guān)系.

  解:1、y=30n

  y是函數(shù),n是自變量

  2、n是函數(shù),a是自變量.

  (二)講授新課

  剛才所舉例子中的函數(shù),都是利用數(shù)學(xué)式子即解析式表示的.這種用數(shù)學(xué)式子表示函數(shù)時(shí),要考慮自變量的取值必須使解析式有意義.如第一題中的學(xué)生數(shù)n必須是正整數(shù).

  例1、求下列函數(shù)中自變量x的取值范圍.

  (1)(2)

 。3)(4)

 。5)(6)

  分析:在(1)、(2)中,x取任意實(shí)數(shù),與都有意義.

 。3)小題的是一個(gè)分式,分式成立的條件是分母不為0.這道題的`分母是,因此要求.

  同理(4)小題的也是分式,分式成立的條件是分母不為0,這道題的分母是,因此要求且.

  第(5)小題,是二次根式,二次根式成立的條件是被開(kāi)方數(shù)大于、等于零.的被開(kāi)方數(shù)是.

  同理,第(6)小題也是二次根式,是被開(kāi)方數(shù),

  小結(jié):從上面的例題中可以看出函數(shù)的解析式是整數(shù)時(shí),自變量可取全體實(shí)數(shù);函數(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母不為零;函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開(kāi)方數(shù)大于、等于零.

  注意:有些同學(xué)沒(méi)有真正理解解析式是分式時(shí),自變量的取值應(yīng)使分母不為零,片面地認(rèn)為,凡是分母,只要即可.教師可將解題步驟設(shè)計(jì)得細(xì)致一些.先提問(wèn)本題的分母是什么?然后再要求分式的分母不為零.求出使函數(shù)成立的自變量的取值范圍.二次根式的問(wèn)題也與次類(lèi)似.

  但象第(4)小題,有些同學(xué)會(huì)犯這樣的錯(cuò)誤,將答案寫(xiě)成或.在解一元二次方程時(shí),方程的兩根用“或者”聯(lián)接,在這里就直接拿過(guò)來(lái)用.限于初中學(xué)生的接受能力,教師可聯(lián)系日常生活講清“且”與“或”.說(shuō)明這里與是并且的關(guān)系.即2與-1這兩個(gè)值x都不能取.

  例2、自行車(chē)保管站在某個(gè)星期日保管的自行車(chē)共有3500輛次,其中變速車(chē)保管費(fèi)是每輛一次0.5元,一般車(chē)保管費(fèi)是每次一輛0.3元.

 。1)若設(shè)一般車(chē)停放的輛次數(shù)為x,總的保管費(fèi)收入為y元,試寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;

  (2)若估計(jì)前來(lái)停放的3500輛次自行車(chē)中,變速車(chē)的輛次不小于25%,但不大于40%,試求該保管站這個(gè)星期日收入保管費(fèi)總數(shù)的范圍.

  解:(1)

  (x是正整數(shù),

  (2)若變速車(chē)的輛次不小于25%,但不大于40%,

  則收入在1225元至1330元之間

  總結(jié):對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,應(yīng)使得實(shí)際問(wèn)題有意義.這樣,就要求聯(lián)系實(shí)際,具體問(wèn)題具體分析.

  對(duì)于函數(shù),當(dāng)自變量時(shí),相應(yīng)的函數(shù)y的值是.60叫做這個(gè)函數(shù)當(dāng)時(shí)的函數(shù)值.

  例3、求下列函數(shù)當(dāng)時(shí)的函數(shù)值:

 。1)————(2)—————

 。3)————(4)——————

  注:本例既鍛煉了學(xué)生的計(jì)算能力,又創(chuàng)設(shè)了情境,讓學(xué)生體會(huì)對(duì)于x的每一個(gè)值,y都有唯一確定的值與之對(duì)應(yīng).以此加深對(duì)函數(shù)的理解.

 。ǘ┬〗Y(jié):

  這節(jié)課,我們進(jìn)一步地研究了有關(guān)函數(shù)的概念.在研究函數(shù)關(guān)系時(shí)首先要考慮自變量的取值范圍.因此,要求大家能掌握解析式含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并能求出其相應(yīng)的函數(shù)值.另外,對(duì)于反映實(shí)際問(wèn)題的函數(shù)關(guān)系,要具體問(wèn)題具體分析.

  作業(yè):習(xí)題13.2A組2、3、5

  今天的內(nèi)容就介紹到這里了。

初中數(shù)學(xué)教案6

  一、學(xué)生起點(diǎn)分析

  學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?

  反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識(shí),但具體研究中

  可能要用到反證等思路,對(duì)現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。

  二、學(xué)習(xí)任務(wù)分析

  本節(jié)課是北師大版數(shù)學(xué)八年級(jí)(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長(zhǎng)判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;通過(guò)具體的數(shù),增加對(duì)勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):

  ● 知識(shí)與技能目標(biāo)

  1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過(guò)程與方法目標(biāo)

  1.經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力;

  2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

  ● 情感與態(tài)度目標(biāo)

  1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類(lèi)生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

  2.在探索過(guò)程中體驗(yàn)成功的喜悅,樹(shù)立學(xué)習(xí)的自信心。

  教學(xué)重點(diǎn)

  理解勾股定理逆定理的具體內(nèi)容。

  三、教法學(xué)法

  1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證

  本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)較強(qiáng),思維活躍,對(duì)通過(guò)實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)

  但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

  (1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;

  (2)從學(xué)生活動(dòng)出發(fā),通過(guò)以舊引新,順勢(shì)教學(xué)過(guò)程;

  (3)利用探索,研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程。

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件。

  學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

  四、教學(xué)過(guò)程設(shè)計(jì)

  本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內(nèi)容:

  情境:1.直角三角形中,三邊長(zhǎng)度之間滿足什么樣的關(guān)系?

  2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?

  意圖:

  通過(guò)情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問(wèn)題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

  第二環(huán)節(jié):合作探究

  內(nèi)容1:探究

  下面有三組數(shù),分別是一個(gè)三角形的三邊長(zhǎng) ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問(wèn)題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。

  意圖:

  通過(guò)學(xué)生的合作探究,得出若一個(gè)三角形的三邊長(zhǎng) ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過(guò)學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

  從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:

  如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形

  內(nèi)容2:說(shuō)理

  提問(wèn):有同學(xué)認(rèn)為測(cè)量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說(shuō)服力的理由嗎?

  意圖:讓學(xué)生明確,僅僅基于測(cè)量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過(guò)說(shuō)理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:

  如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,那么這個(gè)三角形是直角三角形

  滿足 的三個(gè)正整數(shù),稱(chēng)為勾股數(shù)。

  注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說(shuō)理,有條件的班級(jí),還可利用幾何畫(huà)板動(dòng)畫(huà)演示,讓同學(xué)有一個(gè)直觀的認(rèn)識(shí)。

  活動(dòng)3:反思總結(jié)

  提問(wèn):

  1.同學(xué)們還能找出哪些勾股數(shù)呢?

  2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?

  4.通過(guò)今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過(guò)程呢?

  意圖:進(jìn)一步讓學(xué)生認(rèn)識(shí)該定理與勾股定理之間的關(guān)系

  第三環(huán)節(jié):小試牛刀

  內(nèi)容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長(zhǎng)?請(qǐng)說(shuō)明理由。

  ①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個(gè)三角形的三邊長(zhǎng)分別是 ,則這個(gè)三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過(guò)練習(xí),加強(qiáng)對(duì)勾股定理及勾股定理逆定理認(rèn)識(shí)及應(yīng)用

  效果

  每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識(shí)。

  第四環(huán)節(jié):登高望遠(yuǎn)

  內(nèi)容:

  1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長(zhǎng)指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

  解答:由題意畫(huà)出相應(yīng)的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉(zhuǎn)彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實(shí)際問(wèn)題,進(jìn)一步鞏固該定理。

  效果:

  學(xué)生能用自己的語(yǔ)言表達(dá)清楚解決問(wèn)題的過(guò)程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。

  第五環(huán)節(jié):鞏固提高

  內(nèi)容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說(shuō)說(shuō)你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學(xué)生充分利用所學(xué)知識(shí)解決問(wèn)題時(shí),考慮問(wèn)題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問(wèn)題。

  效果:

  學(xué)生在對(duì)所學(xué)知識(shí)有一定的熟悉度后,能夠快速做答并能簡(jiǎn)要說(shuō)明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

  第六環(huán)節(jié):交流小結(jié)

  內(nèi)容:

  師生相互交流總結(jié)出:

  1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的`三個(gè)正整數(shù),稱(chēng)為勾股數(shù);

  2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見(jiàn)數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。

  意圖:

  鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對(duì)數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識(shí)。

  效果:

  學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。

  第七環(huán)節(jié):布置作業(yè)

  課本習(xí)題1.4第1,2,4題。

  五、教學(xué)反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長(zhǎng) ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問(wèn)題;充分引用教材中出現(xiàn)的例題和練習(xí)。

  2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過(guò)程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學(xué)知識(shí)解決實(shí)際問(wèn)題時(shí),引導(dǎo)學(xué)生善于對(duì)公式變形,便于簡(jiǎn)便計(jì)算。

  4.注重對(duì)學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。

  5.對(duì)于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。

  由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對(duì)較大,教學(xué)中,應(yīng)注意根據(jù)自己班級(jí)學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。

  附:板書(shū)設(shè)計(jì)

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠(yuǎn)

初中數(shù)學(xué)教案7

  教學(xué)目標(biāo)

  1、理解有理數(shù)加法的意義,掌握有理數(shù)加法法則中的符號(hào)法則和絕對(duì)值運(yùn)算法則;

  2、能根據(jù)有理數(shù)加法法則熟練地進(jìn)行有理數(shù)加法運(yùn)算,弄清有理數(shù)加法與非負(fù)數(shù)加法的區(qū)別;

  3、三個(gè)或三個(gè)以上有理數(shù)相加時(shí),能正確應(yīng)用加法交換律和結(jié)合律簡(jiǎn)化運(yùn)算過(guò)程;

  4、通過(guò)有理數(shù)加法法則及運(yùn)算律在加法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;

  5、本節(jié)課通過(guò)行程問(wèn)題說(shuō)明有理數(shù)的加法法則的合理性,然后又通過(guò)實(shí)例說(shuō)明如何運(yùn)用法則和運(yùn)算律,讓學(xué)生感知到數(shù)學(xué)知識(shí)來(lái)源于生活,并應(yīng)用于生活。

  教學(xué)建議

 。ㄒ唬┲攸c(diǎn)、難點(diǎn)分析

  本節(jié)教學(xué)的重點(diǎn)是依據(jù)有理數(shù)的加法法則熟練進(jìn)行有理數(shù)的加法運(yùn)算。難點(diǎn)是有理數(shù)的加法法則的理解。

 。1)加法法則本身是一種規(guī)定,教材通過(guò)行程問(wèn)題讓學(xué)生了解法則的合理性。

  (2)具體運(yùn)算時(shí),應(yīng)先判別題目屬于運(yùn)算法則中的哪個(gè)類(lèi)型,是同號(hào)相加、異號(hào)相加、還是與0相加。

 。3)如果是同號(hào)相加,取相同的符號(hào),并把絕對(duì)值相加。如果是異號(hào)兩數(shù)相加,應(yīng)先判別絕對(duì)值的大小關(guān)系,如果絕對(duì)值相等,則和為0;如果絕對(duì)值不相等,則和的符號(hào)取絕對(duì)值較大的加數(shù)的符號(hào),和的絕對(duì)值就是較大的絕對(duì)值與較小的絕對(duì)值的差。一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

 。ǘ┲R(shí)結(jié)構(gòu)

  (三)教法建議

  1、對(duì)于基礎(chǔ)比較差的同學(xué),在學(xué)習(xí)新課以前可以適當(dāng)復(fù)習(xí)小學(xué)中算術(shù)運(yùn)算以及正負(fù)數(shù)、相反數(shù)、絕對(duì)值等知識(shí)。

  2、有理數(shù)的加法法則是規(guī)定的,而教材開(kāi)始部分的'行程問(wèn)題是為了說(shuō)明加法法則的合理性。

  3、應(yīng)強(qiáng)調(diào)加法交換律“a+b=b+a”中字母a、b的任意性。

  4、計(jì)算三個(gè)或三個(gè)以上的加法算式,應(yīng)建議學(xué)生養(yǎng)成良好的運(yùn)算習(xí)慣。不要盲目動(dòng)手,應(yīng)該先仔細(xì)觀察式子的特點(diǎn),深刻認(rèn)識(shí)加數(shù)間的相互關(guān)系,找到合理的運(yùn)算步驟,再適當(dāng)運(yùn)用加法交換律和結(jié)合律可以使加法運(yùn)算更為簡(jiǎn)化。

  5、可以給出一些類(lèi)似“兩數(shù)之和必大于任何一個(gè)加數(shù)”的判斷題,以明確由于負(fù)數(shù)參與加法運(yùn)算,一些算術(shù)加法中的正確結(jié)論在有理數(shù)加法運(yùn)算中未必也成立。

  6、在探討導(dǎo)出有理數(shù)的加法法則的行程問(wèn)題時(shí),可以嘗試發(fā)揮多媒體教學(xué)的作用。用動(dòng)畫(huà)演示人或物體在同一直線上兩次運(yùn)動(dòng)的過(guò)程,讓學(xué)生更好的理解有理數(shù)運(yùn)算法則。

初中數(shù)學(xué)教案8

從不同方向看

  教學(xué)目標(biāo)

  本節(jié)在介紹不等式的基礎(chǔ)上,介紹了不等式的解集并用數(shù)軸表示,介紹了解簡(jiǎn)單不等式的方法,讓學(xué)生進(jìn)一步體會(huì)數(shù)形結(jié)合的作用。

  知識(shí)與能力

  1.使學(xué)生掌握不等式的解集的概念,以及什么是解不等式。

  2.使學(xué)生育能夠借助數(shù)軸將不等式的解集直觀地表示出來(lái),初步理解數(shù)形結(jié)合的思想。

  過(guò)程與方法

  1.通過(guò)回憶給學(xué)生介紹不等式的解集的概念。

  2.教會(huì)學(xué)生怎樣在數(shù)軸上表示不等式的解集。

  情感、態(tài)度與價(jià)值觀

  1.通過(guò)反復(fù)的訓(xùn)練使學(xué)生認(rèn)識(shí)到數(shù)軸的重要性,培養(yǎng)其數(shù)形結(jié)合的思想。

  2.通過(guò)觀察、歸納、類(lèi)比、推斷而獲得不等式的解集與數(shù)軸上的點(diǎn)之間的關(guān)系,體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索性與創(chuàng)造性。

  教學(xué)重、難點(diǎn)及教學(xué)突破

  重點(diǎn)

  1.認(rèn)識(shí)不等式的解集的概念。

  2.將不等式的解集表示在數(shù)軸上。

  難點(diǎn)

  學(xué)生對(duì)不等式的解是一個(gè)集合可能會(huì)不太理解。

  教學(xué)突破

  由于受方程思想的影響,學(xué)生對(duì)不等式的解集的接受和理解可能會(huì)有一定的困難,建議教師能結(jié)合簡(jiǎn)單的不等式和實(shí)際問(wèn)題讓學(xué)生體會(huì)不等式的解可以是一個(gè)集合,并組織學(xué)生討論舉例,加深理解。

  另外,應(yīng)在本節(jié)的過(guò)程中讓學(xué)生能理解在數(shù)軸上表示不等式的解集,讓他們熟悉數(shù)形結(jié)合的思想。

  教學(xué)步驟

  一、新課導(dǎo)入

  1.回顧提問(wèn):同學(xué)們,我們已經(jīng)學(xué)習(xí)了不等式,F(xiàn)在我們一起回顧一下什么是不等式,以及有關(guān)數(shù)軸的知識(shí)。

  學(xué)生用自己的語(yǔ)言描述不等式的.定義,并基本說(shuō)出數(shù)軸的三要素是:原點(diǎn)、正方向、單位長(zhǎng)度。能將有理數(shù)在數(shù)軸上表示出來(lái)。

  2.創(chuàng)設(shè)情景:我們現(xiàn)在知道了不等式的解不唯一,那么我們?nèi)绾螌⒉坏仁降慕馊勘硎境鰜?lái)呢?這就是我們這節(jié)課要解決的問(wèn)題。

  二、不等式的解集

  1.講述不等式的解集的定義,引導(dǎo)學(xué)生觀察不等式x+2>5,并說(shuō)出-3 、-2 、 3.5 、 7中哪些是不等式的解,哪些不是?-3 、-2不是不等式x+2>5的解,3.5 、 7是不等式的解。

  2.給出“解不等式”的概念,并就上述例題由不完全歸納法給出不等式x+2>5的解集是x>3 。

  3.將x>3在數(shù)軸上表示出來(lái),并以此圖為例講述在數(shù)軸上表示基本不等式的方法:(1)在數(shù)軸上找到3;(2)向右表示比3大的點(diǎn);(3)空心點(diǎn)表示不含有3,所以有下圖。

  讓學(xué)生自己動(dòng)手畫(huà)出x ≤ 3,并找學(xué)生上臺(tái)板演。

  4.就學(xué)生在黑板上的板演,指出畫(huà)圖應(yīng)注意的事項(xiàng),并讓學(xué)生觀察前后兩圖的區(qū)別。

  通過(guò)對(duì)比兩圖的不同,發(fā)現(xiàn)區(qū)別是大于和小于導(dǎo)致圖上所取的方向不同,有等號(hào)和沒(méi)等號(hào)導(dǎo)致空心和實(shí)心的區(qū)別。

  5.給出適當(dāng)?shù)睦},鞏固本節(jié)內(nèi)容。

  本課總結(jié)

  這節(jié)課主要學(xué)習(xí)了什么是不等式的解集,并教學(xué)生在數(shù)軸上表示不等式的解集,體會(huì)數(shù)形結(jié)合的思想。

  教學(xué)探討與反思

  為了提高數(shù)學(xué)課的教學(xué)效果,教師必須使課堂教學(xué)過(guò)程符合學(xué)生的認(rèn)知規(guī)律,并讓學(xué)生參與到課堂教學(xué)活動(dòng)中來(lái),使他們真正成為課堂教學(xué)的主體。教師對(duì)課堂教學(xué)的設(shè)計(jì),應(yīng)著眼在為學(xué)生個(gè)性品質(zhì)的優(yōu)化創(chuàng)設(shè)最佳課堂教學(xué)環(huán)境。教師引導(dǎo)學(xué)生參與的是數(shù)學(xué)思維活動(dòng)。

初中數(shù)學(xué)教案9

  教學(xué) 建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)、難點(diǎn)分析

  本節(jié) 教學(xué) 的重點(diǎn)是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點(diǎn)為不等式的解集的概念.

  1.不等式的解與方程的解的意義的異同點(diǎn)

  相同點(diǎn):定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.

  不同點(diǎn):解的個(gè)數(shù)不同,一般地,一個(gè)不等式有無(wú)數(shù)多個(gè)解,而一個(gè)方程只有一個(gè)或幾個(gè)解,例如, 能使不等式 成立,那么 是不等式的一個(gè)解,類(lèi)似地 等也能使不等式 成立,它們都是不等式 的解,事實(shí)上,當(dāng) 取大于 的數(shù)時(shí),不等式 都成立,所以不等式 有無(wú)數(shù)多個(gè)解.

  2.不等式的解與解集的區(qū)別與聯(lián)系

  不等式的解與不等式的解集是兩個(gè)不同的概念,不等式的解是指滿足這個(gè)不等式的未知數(shù)的某個(gè)值,而不等式的解集,是指滿足這個(gè)不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個(gè)解.

  注意:不等式的解集必須滿足兩個(gè)條件:第一,解集中的任何一個(gè)數(shù)值,都能使不等式成立;第二,解集外的任何一個(gè)數(shù)值,都不能使不等式成立.

  3.不等式解集的表示方法

 。1)用不等式表示

  一般地,一個(gè)含未知數(shù)的不等式有無(wú)數(shù)多個(gè)解,其解集是某個(gè)范圍,這個(gè)范圍可用一個(gè)最簡(jiǎn)單的不等式表示出來(lái),例如,不等式 的解集是 .

 。2)用數(shù)軸表示

  如不等式 的解集 ,可以用數(shù)軸上表示4的點(diǎn)的左邊部分表示,因?yàn)?包含 ,所以在表示4的點(diǎn)上畫(huà)實(shí)心圓.

  如不等式 的解集 ,可以用數(shù)軸上表示4的點(diǎn)的左邊部分表示,因?yàn)?包含 ,所以在表示4的點(diǎn)上畫(huà)實(shí)心圈.

  注意:在數(shù)軸上,右邊的點(diǎn)表示的數(shù)總比左邊的點(diǎn)表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時(shí)應(yīng)牢記:大于向右畫(huà),小于向左畫(huà);有等號(hào)的畫(huà)實(shí)心圓點(diǎn),無(wú)等號(hào)的畫(huà)空心圓圈.

  一、素質(zhì) 教育 目標(biāo)

 。ㄒ唬┲R(shí) 教學(xué) 點(diǎn)

  1.使學(xué)生了解不等式的解集、解不等式的概念,會(huì)在數(shù)軸上表示出不等式的解集.

  2.知道不等式的“解集”與方程“解”的不同點(diǎn).

 。ǘ┠芰τ(xùn)練點(diǎn)

  通過(guò) 教學(xué) ,使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.

  (三)德育滲透點(diǎn)

  通過(guò)講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對(duì)立統(tǒng)一的辯證觀點(diǎn).

  (四)美育滲透點(diǎn)

  通過(guò)本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來(lái)表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.

  二、學(xué)法引導(dǎo)

  1. 教學(xué) 方法:類(lèi)比法、引導(dǎo)發(fā)現(xiàn)法、實(shí)踐法.

  2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的.解集,在數(shù)軸上表示不等式的解集時(shí),要特別注意:大于向右畫(huà),小于向左畫(huà);有等號(hào)的畫(huà)實(shí)心圓點(diǎn),無(wú)等號(hào)的畫(huà)空心圓圈.

  三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

 。ㄒ唬┲攸c(diǎn)

  1.不等式解集的概念.

  2.利用數(shù)軸表示不等式的解集.

 。ǘ╇y點(diǎn)

  正確理解不等式解集的概念.

  (三)疑點(diǎn)

  弄不清不等式的解集與方程的解的區(qū)別、聯(lián)系.

 。ㄋ模┙鉀Q辦法

  弄清楚不等式的解與解集的概念.

  四、課時(shí)安排

  一課時(shí).

  五、教具學(xué)具準(zhǔn)備

  投影儀或電腦、自制膠片、直尺.

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  (一)明確目標(biāo)

  本節(jié)課重點(diǎn)學(xué)習(xí)不等式的解集,解不等式的概念并會(huì)用數(shù)軸表示不等式的解集.

 。ǘ┱w感知

  通過(guò)枚舉法來(lái)形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準(zhǔn)確地讓學(xué)生掌握該概念.再通過(guò)師生的互動(dòng)學(xué)習(xí)用數(shù)軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎(chǔ).

 。ㄈ 教學(xué) 過(guò)程

  1.創(chuàng)設(shè)情境,復(fù)習(xí)引入

 。1)根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.

 、  、

 。2)當(dāng) 取下列數(shù)值時(shí),不等式 是否成立?

  l,0,2,-2.5,-4,3.5,4,4.5,3.

  學(xué)生活動(dòng):獨(dú)立思考并說(shuō)出答案:(1)① ② .(2)當(dāng) 取1,0,2,-2.5,-4時(shí),不等式 成立;當(dāng) 取3.5,4,4.5,3時(shí),不等式 不成立.

  大家知道,當(dāng) 取1,2,0,-2.5,-4時(shí),不等式 成立.同方程類(lèi)似,我們就說(shuō)1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式 不成立的數(shù)就不是不等式 的解.

  對(duì)于不等式 ,除了上述解外,還有沒(méi)有解?解的個(gè)數(shù)是多少?將它們?cè)跀?shù)軸上表示出來(lái),觀察它們的分布有什么規(guī)律?

  學(xué)生活動(dòng):思考討論,嘗試得出答案,指名板演如下:

  【教法說(shuō)明】啟發(fā)學(xué)生用試驗(yàn)方法,結(jié)合數(shù)軸直觀研究,把已說(shuō)出的不等式 的解2,0,1,-2.5,-4用“實(shí)心圓點(diǎn)”表示,把不是 的解的數(shù)值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.

  師生歸納:觀察數(shù)軸可知,用“實(shí)心圓點(diǎn)”表示的數(shù)都落在3的左側(cè),3和3右側(cè)的數(shù)都用空心圓圈表示,從而我們推斷,小于3的每一個(gè)數(shù)都是不等式 的解,而大于或等于3的任何一個(gè)數(shù)都不是 的解.可以看出,不等式 有無(wú)限多個(gè)解,這無(wú)限多個(gè)解既包括小于3的正整數(shù)、正小數(shù)、又包括0、負(fù)整數(shù)、負(fù)小數(shù);把不等式 的無(wú)限多個(gè)解集中起來(lái),就得到 的解的集會(huì),簡(jiǎn)稱(chēng)不等式 的解集.

  2.探索新知,講授新課

 。1)不等式的解集

  一般地,一個(gè)含有未知數(shù)的不等式的所有的解,組成這個(gè)不等式的解的集合,簡(jiǎn)稱(chēng)這個(gè)不等式的解集.

 、僖苑匠 為例,說(shuō)出一元一次方程的解的情況.

 、诓坏仁 的解的個(gè)數(shù)是多少?能一一說(shuō)出嗎?

 。2)解不等式

  求不等式的解集的過(guò)程,叫做解不等式.

  解方程 求出的是方程的解,而解不等式 求出的則是不等式的解集,為什么?

  學(xué)生活動(dòng):觀察思考,指名回答.

  教師 歸納:正是因?yàn)橐辉淮畏匠讨挥形┮唤,所以可以直接求出.例?的解就是 ,而不等式 的解有無(wú)限多個(gè),無(wú)法一一列舉出來(lái),因而只能用不等式 或 揭示這些解的共同屬性,也就是求出不等式的解集.實(shí)際上,求某個(gè)不等式的解集就是運(yùn)用不等式的基本性質(zhì),把原不等式變形為 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .

  【教法說(shuō)明】學(xué)生對(duì)一元一次方程的解印象較深,而不等式與方程的相同點(diǎn)較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設(shè)置上述問(wèn)題,目的是使學(xué)生弄清“不等式的解集”與“方程的解”的關(guān)系.

 。3)在數(shù)軸上表示不等式的解集

 、俦硎静坏仁 的解集:( )

  分析:因?yàn)槲粗獢?shù)的取值小于3,而數(shù)軸上小于3的數(shù)都在3的左邊,所以就用數(shù)軸上表示3的點(diǎn)的左邊部分來(lái)表示解集 .注意未知數(shù) 的取值不能為3,所以在數(shù)軸上表示3的點(diǎn)的位置上畫(huà)空心圓圈,表示不包括3這一點(diǎn),表示如下:

 、诒硎 的解集:( )

  學(xué)生活動(dòng):獨(dú)立思考,指名板演并說(shuō)出分析過(guò)程.

  分析:因?yàn)槲粗獢?shù)的取值可以為-2或大于-2的數(shù),而數(shù)軸上大于-2的數(shù)都在-2右邊,所以就用數(shù)鋼上表示-2的點(diǎn)和它的右邊部分來(lái)表示.如下圖所示:

  注意問(wèn)題:在數(shù)軸上表示-2的點(diǎn)的位置上,應(yīng)畫(huà)實(shí)心圓心,表示包括這一點(diǎn).

  【教法說(shuō)明】利用數(shù)軸表示不等式解的解集,增強(qiáng)了解集的直觀性,使學(xué)生形象地看到不等式的解有無(wú)限多個(gè),這是數(shù)形結(jié)合的具體體現(xiàn). 教學(xué) 時(shí),要特別講清“實(shí)心圓點(diǎn)”與“空心圓圈”的不同用法,還要反復(fù)提醒學(xué)生弄清到底是“左邊部分”還是“右邊部分”,這也是學(xué)好本節(jié)內(nèi)容的關(guān)鍵.

  3.嘗試反饋,鞏固知識(shí)

  (1)不等式的解集 與 有什么不同?在數(shù)軸上表示它們時(shí)怎樣區(qū)別?分別在數(shù)軸上把這兩個(gè)解集表示出來(lái).

  (2)在數(shù)軸上表示下列不等式的解集.

 、 、 、 、

 。3)指出不等式 的解集,并在數(shù)軸上表示出來(lái).

  師生活動(dòng):首先學(xué)生在練習(xí)本上完成,然后 教師 抽查,最后與出示投影的正確答案進(jìn)行對(duì)比.

  【教法說(shuō)明】 教學(xué) 時(shí),應(yīng)強(qiáng)調(diào)2.(4)題的正確表示為:

  我們已經(jīng)能夠在數(shù)軸上準(zhǔn)確地表示出不等式的解集,反之若給出數(shù)軸上的某部分?jǐn)?shù)集,還要會(huì)寫(xiě)出與之對(duì)應(yīng)的不等式的解集來(lái).

  4.變式訓(xùn)練,培養(yǎng)能力

 。1)用不等式表示圖中所示的解集.

  【教法說(shuō)明】強(qiáng)調(diào)“· ”“ °”在使用、表示上的區(qū)別.

 。2)單項(xiàng)選擇:

 、俨坏仁 的解集是(。

  A.   B.   C.   D.

 、诓坏仁 的正整數(shù)解為(。

  A.1,2  B.1,2,3  C.1  D.2

 、塾貌坏仁奖硎緢D中的解集,正確的是( )

  A.   B.   C.   D.

 、苡脭(shù)軸表示不等式的解集 正確的是(。

  學(xué)生活動(dòng):分析思考,說(shuō)出答案.( 教師 給予糾正或肯定)

  【教法說(shuō)明】此題以搶答形式茁現(xiàn),更能激發(fā)學(xué)生探索知識(shí)的熱情.

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  學(xué)生小結(jié), 教師 完善:

  1.? 本節(jié)重點(diǎn):

  (1)了解不等式的解集的概念.

 。2)會(huì)在數(shù)軸上表示不等式的解集.

  2.注意事項(xiàng):

  弄清“ · ”還是“ °”,是“左邊部分”還是“右邊部分”.

  七、布置作業(yè)

初中數(shù)學(xué)教案10

  教學(xué)建議

  一、知識(shí)結(jié)構(gòu)

  二、重點(diǎn)難點(diǎn)分析

  本節(jié)教學(xué)的重點(diǎn)是同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念、難點(diǎn)為在較復(fù)雜的圖形中辨認(rèn)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角、掌握同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的相關(guān)概念是進(jìn)一步學(xué)習(xí)平行線、四邊形等后續(xù)知識(shí)的基礎(chǔ)、

 。1)兩條直線被第三條直線所截,構(gòu)成八個(gè)角(簡(jiǎn)稱(chēng)“三線八角”),其中同位角4對(duì),內(nèi)錯(cuò)角2對(duì),同旁內(nèi)角2對(duì)、

 。2)準(zhǔn)確識(shí)別同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的關(guān)鍵,是弄清哪兩條直線被哪一條線所截、也就是說(shuō),在辨別這些角之前,要弄清哪一條直線是截線,哪兩條直線是被截線、

  (3)在截線的同旁找同位角和同旁內(nèi)角,在截線的兩旁找內(nèi)錯(cuò)角、要結(jié)合圖形,熟記同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的位置特點(diǎn),比較它們的區(qū)別與聯(lián)系、

 。4)在復(fù)雜的圖形中識(shí)別同位角、內(nèi)錯(cuò)角、同旁內(nèi)角時(shí),應(yīng)當(dāng)沿著角的邊將圖形補(bǔ)全,或者把多余的線暫時(shí)略去,找到三線八角的基本圖形,進(jìn)而確定這兩個(gè)角的位置關(guān)系、

  三、教法建議

  1、上節(jié)課討論了兩條直線相交以后所形成的四個(gè)角,這一節(jié)課是進(jìn)一步討論三條直線相交后所形成的八個(gè)角,所以在教課過(guò)程,要運(yùn)用基本圖形結(jié)構(gòu)將所學(xué)的知識(shí)及其內(nèi)在聯(lián)系向?qū)W生展示、

  2、在講三線八角概念時(shí),一定要細(xì)致地分析、顧名思義,把握住兩個(gè)關(guān)鍵的環(huán)節(jié),“三條線與一條線”,盡量給出變式的圖形,讓學(xué)生分辨清楚、

  3、這節(jié)課雖然不涉及兩條直線平行后被第三條直線所截的問(wèn)題,但在可能的情況下,將平行線的圖形讓學(xué)生見(jiàn)到,對(duì)下一步的學(xué)習(xí)很有好處,例如,平行四形中的內(nèi)錯(cuò)角,學(xué)生開(kāi)始接受起來(lái)有一定困難,在這一課時(shí)中,出現(xiàn)這個(gè)基本圖形,為以后學(xué)習(xí)打下基礎(chǔ)、

  教學(xué)設(shè)計(jì)示例

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1、理解同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念、

  2、結(jié)合圖形識(shí)別同位角、內(nèi)錯(cuò)角、同旁內(nèi)角、

 。ǘ┠芰τ(xùn)練點(diǎn)

  1、通過(guò)變式圖形的識(shí)圖訓(xùn)練,培養(yǎng)學(xué)生的識(shí)圖能力、

  2、通過(guò)例題口答“為什么”,培養(yǎng)學(xué)生的推理能力、

 。ㄈ┑掠凉B透點(diǎn)

  從復(fù)雜圖形分解為基本圖形的過(guò)程中,滲透化繁為簡(jiǎn),化難為易的化歸思想;從圖形變化過(guò)程中,培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)、

 。ㄋ模┟烙凉B透點(diǎn)

  通過(guò)“三線八角”基本圖形,使學(xué)生認(rèn)識(shí)幾何圖形的位置美、

  二、學(xué)法引導(dǎo)

  1、教師教法:嘗試指導(dǎo),討論評(píng)價(jià)、變式練習(xí)、回授、

  2、學(xué)生學(xué)法:主動(dòng)思考,相互研討,自我歸納、

  三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

 。ㄒ唬┥c(diǎn)

  同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的概念、

  (二)難點(diǎn)

  在較復(fù)雜的圖形中辨認(rèn)同位角、內(nèi)錯(cuò)角、同旁內(nèi)角、

 。ㄈ┮牲c(diǎn)

  正確理解新概念、

 。ㄋ模┙鉀Q辦法

  引導(dǎo)學(xué)生討論歸納三類(lèi)角的特征,并以練習(xí)加以鞏固、

  四、課時(shí)安排

  1課時(shí)

  一、教具學(xué)具準(zhǔn)備

  投影儀、三角板、自制膠片、

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  1、通過(guò)一組練習(xí)創(chuàng)設(shè)情境,復(fù)習(xí)基礎(chǔ)知識(shí),引入新課、

  2、通過(guò)學(xué)生閱讀書(shū)本,教師設(shè)問(wèn)引導(dǎo),練習(xí)鞏固講授新課、

  3、通過(guò)師生互答完成課堂小結(jié)、

  七、教學(xué)步驟

  (一)明確目標(biāo)

  使學(xué)生掌握“三線八角”,并能在圖形中進(jìn)行辨識(shí)、

  (二)整體感知

  以復(fù)習(xí)舊知?jiǎng)?chuàng)設(shè)情境引入課題,以指導(dǎo)閱讀、設(shè)計(jì)問(wèn)題、小組討論學(xué)習(xí)新知,以變式練習(xí)鞏固新知、

  (三)教學(xué)過(guò)程

  創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入

  回答下列問(wèn)題:

  1、如圖,∠1與∠3,∠2與∠4是什么角?它們的大小有什么關(guān)系?

  2、如圖,∠1與∠2,∠l與∠4是什么角?它們有什么關(guān)系?

  3、如圖,三條直線 AB 、CD 、EF 交于一點(diǎn) O ,則圖中有幾對(duì)對(duì)頂角,有幾對(duì)鄰補(bǔ)角?

  4、如圖,三條直線 AB 、CD 、EF 兩兩相交,則圖中有幾對(duì)對(duì)項(xiàng)角,有幾對(duì)鄰補(bǔ)角?

  5、三條直線相交除上述兩種情況外,還有其他相交的情形嗎?

  學(xué)生答后,教師出示復(fù)合投影片1,在(1、2題的)圖上添加一條直線 CD ,使 CD 與EF相交于某一點(diǎn)(如圖),直線 AB 、CD 都與EF相交或者說(shuō)兩條直線 AB 、CD 被第三條直線EF所截,這樣圖中就構(gòu)成八個(gè)角,在這八個(gè)角中,有公共頂點(diǎn)的兩個(gè)角的關(guān)系前面已經(jīng)學(xué)過(guò),今天,我們來(lái)研究那些沒(méi)有公共頂點(diǎn)的兩個(gè)角的關(guān)系、

  【板書(shū)】 2.3同位角、內(nèi)錯(cuò)角、同旁內(nèi)角

  【教法說(shuō)明】通過(guò)復(fù)合投影片演示了同位角、內(nèi)錯(cuò)角、同旁內(nèi)角的產(chǎn)生過(guò)程,并從演示過(guò)程中看到,這些角也是與相交線有關(guān)系的角,兩條直線被第三條直線所截,是相交線的又一種情況、認(rèn)識(shí)事物間是發(fā)展變化的辯證關(guān)系、

  嘗試指導(dǎo),學(xué)習(xí)新知

  1、學(xué)生自己嘗試學(xué)習(xí),閱讀課本第67頁(yè)例題前的內(nèi)容、

  2、設(shè)計(jì)以下問(wèn)題,幫助學(xué)生正確理解概念、

 。1)同位角:∠4和∠8與截線及兩條被截直線在位置上有什么特點(diǎn)?圖中還有其他同位角嗎?

 。2)內(nèi)錯(cuò)角:∠3和∠5與截線及兩條被截直線在位置上有什么特點(diǎn)?圖中還有其他內(nèi)錯(cuò)角嗎?

  (3)同旁內(nèi)角:∠4和∠5與截線及兩條被截直線在位置上有什么特點(diǎn)?圖中還有其他同分內(nèi)角嗎?

 。4)同位角和同分內(nèi)角在位置上有什么相同點(diǎn)和不同點(diǎn)?

  內(nèi)錯(cuò)角和同旁內(nèi)角在位置上有什么相同點(diǎn)和不同點(diǎn)?

 。5)這三類(lèi)角的共同特征是什么?

  3、對(duì)上述問(wèn)題以小組為單位展開(kāi)討論,然后學(xué)生間互相評(píng)議、

  4、教師對(duì)學(xué)生討論過(guò)程中所發(fā)表的意見(jiàn)進(jìn)行評(píng)判,歸納總結(jié)、

  在截線的同旁找同位角和同旁內(nèi)角,在截線的不同旁找內(nèi)錯(cuò)角,因此在“三線八角”的圖形中的主線是截線,抓住了截線,再利用圖形結(jié)構(gòu)特征( F 、Z 、U )判斷問(wèn)題就迎刃而解、

  【教法說(shuō)明】讓學(xué)生自己嘗試學(xué)習(xí),可以充分發(fā)揮學(xué)生的積極性、主動(dòng)性和創(chuàng)造性,幾個(gè)問(wèn)題的設(shè)計(jì)目的是深化教學(xué)重點(diǎn),使學(xué)生看書(shū)更具有針對(duì)性,避免盲目性、學(xué)生互相評(píng)價(jià)可以增加討論的深度,教師最后評(píng)價(jià)可以統(tǒng)一學(xué)生的觀點(diǎn),學(xué)生在議議評(píng)評(píng)的'過(guò)程中明理、增智,培養(yǎng)了能力、

  投影顯示(投影片2)

  例題?如圖,直線DE、BC被直線AB所截,(1)∠l與∠2,∠1與∠3,∠1與∠4各是什么關(guān)系的角?

 。2)如果∠1=∠4,那么∠1和∠2相等嗎?∠1和∠3互補(bǔ)嗎?為什么?

 。劢谭ㄕf(shuō)明]例題較簡(jiǎn)單,讓學(xué)生口答,回答“為什么”只要求學(xué)生能用文字語(yǔ)言把主要根據(jù)說(shuō)出來(lái),講明道理即可,不必太規(guī)范,等學(xué)習(xí)證明時(shí)再?lài)?yán)格訓(xùn)練、

  變式訓(xùn)練,鞏固新知

  投影顯示(投影片3)

  【教法說(shuō)明】本題是對(duì)簡(jiǎn)單變式圖形的訓(xùn)練,以培養(yǎng)學(xué)生的識(shí)圖能力,第2題指明第三條直線是 c ,即 a b c 所截,如 c a 被占所截,則結(jié)果截然不同,因此遇到題目先分清哪兩條直線被哪一條直線所栽,這是解題的關(guān)鍵和前提、

  投影顯示(投影片4)

  【教法說(shuō)明】本組練習(xí)是由同位角、內(nèi)錯(cuò)角和同旁內(nèi)角找出構(gòu)成它們的“三線”,或是由“三線八角”圖形判斷同位角、內(nèi)錯(cuò)角、同旁內(nèi)角、這兩者都需要進(jìn)行這樣的三個(gè)步驟,一看角的頂點(diǎn);二看角的邊;三看角的方位、這“三看”又離不開(kāi)主線——截線的確定,讓學(xué)生知道:無(wú)論圖形的位置怎樣變動(dòng),圖形多么復(fù)雜,都要以截線為主線(不變),去解決萬(wàn)變的圖形,另外遇到較復(fù)雜的圖形,也可以從分解圖形入手,把復(fù)雜圖形化為若干個(gè)基本圖形、如第2題由已知條件結(jié)合所求部分,對(duì)各個(gè)小題分別分解圖形如下:

  投影顯示(投影片5)

  【教法說(shuō)明】學(xué)生在較復(fù)雜的圖形中,對(duì)找這一類(lèi)的同位角,找這一類(lèi)的內(nèi)錯(cuò)角,找這一類(lèi)的同旁內(nèi)角有一定困難,為此安排本組選擇題,有利于突破難點(diǎn),第2題中學(xué)生對(duì) C 、D 兩個(gè)圖形易混淆,要加強(qiáng)對(duì)比以便解決教學(xué)疑點(diǎn)。第3題讓學(xué)生掌握三角形中的3對(duì)同旁內(nèi)角。另外本組練習(xí)也為后面的練習(xí)打基礎(chǔ)。

  投影顯示(投影片6)

  【教法說(shuō)明】本組題目是上組題的延伸,再次突破難點(diǎn),提高學(xué)生思維的廣度與深度、學(xué)生解決此類(lèi)題常常因考慮不全面而丟解,要使學(xué)生養(yǎng)成全方位多角度考慮問(wèn)題的習(xí)慣,第2題以裁線為標(biāo)準(zhǔn)分類(lèi)求解,分別把 AB 、BD 、EF 看成是截線找三類(lèi)角,這樣既不遺漏又不重復(fù)、

 。ㄋ模┛偨Y(jié)、擴(kuò)展

  1、本節(jié)研究了一條直線分別和兩條直線相交,所得八個(gè)角的位置關(guān)系,掌握辨別這些角位置關(guān)系的關(guān)鍵是分清哪條線是截線,哪些線是被截直線,在截線的同旁找同位角和同旁內(nèi)角,在截線的不同旁找內(nèi)錯(cuò)角,只要抓住三線中的主線——截線,就能正確識(shí)別這三類(lèi)角、

  2、相交直線

  3、教師指著圖中的一條被截直線,問(wèn):“這條直線繞著與截線著與截線的交點(diǎn)旋轉(zhuǎn),當(dāng)同位角相等時(shí),兩條被截直線是什么關(guān)系?”

  【教法說(shuō)明】將所學(xué)知識(shí)進(jìn)行歸納總結(jié),加強(qiáng)了知識(shí)問(wèn)的聯(lián)系,充分體現(xiàn)了所學(xué)知識(shí)的系統(tǒng)性,最后用是合式小結(jié)、可使學(xué)生課后自覺(jué)地去看預(yù)習(xí),尋找答案。系統(tǒng)性,最后用懸念式小結(jié),可使學(xué)生課后自覺(jué)地去看書(shū)預(yù)習(xí),尋找答案。

  八、布置作業(yè)

  課本第72頁(yè)B組第4題、

  【教法說(shuō)明】課本練習(xí)穿插在課堂練習(xí)中完成,故只留一道提高題,讓學(xué)有余力的同學(xué)繼續(xù)探究,提高學(xué)生思維廣度

  作業(yè)答案

  4、答:(1)設(shè) E BC 延長(zhǎng)線上的一點(diǎn),∠ A 與∠ ACD 、∠ ACE 是內(nèi)錯(cuò)角,它們分別是由直線 AB 、CD 被直線 AC 截成的和直線 AB 、BE 被直線 AC 截成的。

 。2)∠ B 與∠ DCE 、∠ ACE 是同位有,它們分別是由直線 AB 、CD 被直線 BE 截成的和直線 AB 、AC 被直線 BE 截成的。

初中數(shù)學(xué)教案11

  把方程兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,就相當(dāng)于把方程中的某些項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,這樣的變形叫做移項(xiàng)。

  一、教材內(nèi)容分析

  本節(jié)課是數(shù)學(xué)人教版七年級(jí)上冊(cè)第三章第二節(jié)第二小節(jié)的內(nèi)容。這是一節(jié)“概念加例題型”課,此種課型中的學(xué)習(xí)內(nèi)容一部分是概念,一部分是運(yùn)用前面的概念解決實(shí)際問(wèn)題的例題。本節(jié)課主要內(nèi)容是利用移項(xiàng)解一元一次方程。是學(xué)生學(xué)習(xí)解一元一次方程的基礎(chǔ),這一部分內(nèi)容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎(chǔ)。這類(lèi)課一般采用“導(dǎo)學(xué)導(dǎo)教,當(dāng)堂訓(xùn)練”的方式進(jìn)行,教師指導(dǎo)學(xué)生學(xué)習(xí)的重點(diǎn)一般不放在概念上,要特別留意學(xué)生運(yùn)用概念解題或做與例題類(lèi)似的習(xí)題時(shí),對(duì)概念的理解是否到位。

  二、教學(xué)目標(biāo):

  1.知識(shí)與技能:(1)找相等關(guān)系列一元一次方程;(2)用移項(xiàng)解一元一次方程。(3)掌握移項(xiàng)變號(hào)的基本原則

  2.過(guò)程與方法:經(jīng)歷運(yùn)用方程解決實(shí)際問(wèn)題的過(guò)程,發(fā)展抽象、概括、分析問(wèn)題和解決問(wèn)題的能力,認(rèn)識(shí)用方程解決實(shí)際問(wèn)題的關(guān)鍵是建立相等關(guān)系。

  3.情感、態(tài)度:通過(guò)具體情境引入新問(wèn)題,在移項(xiàng)法則探究的過(guò)程中,培養(yǎng)學(xué)生合作意識(shí),滲透化歸的思想。

  三、學(xué)情分析

  針對(duì)七年級(jí)學(xué)生學(xué)習(xí)熱情高,但觀察、分析、概括能力較弱的特點(diǎn),本節(jié)從實(shí)際問(wèn)題入手,讓學(xué)生通過(guò)自己思考、動(dòng)手,激發(fā)學(xué)生的求知欲,提高學(xué)生學(xué)習(xí)的興趣與積極性。在課堂教學(xué)中,學(xué)生主要采取自學(xué)、討論、思考、合作交流的學(xué)習(xí)方式,使學(xué)生真正成為課堂的主人,逐步培養(yǎng)學(xué)生觀察、概括、歸納的能力。

  四、教學(xué)重點(diǎn):利用移項(xiàng)解一元一次方程。

  五、教學(xué)難點(diǎn):移項(xiàng)法則的探究過(guò)程。

  六、教學(xué)過(guò)程:

 。ㄒ唬┣榫耙

  引例:請(qǐng)同學(xué)們思考這樣一個(gè)有趣的問(wèn)題,我國(guó)民間流傳著許多趣味算題,多以順口溜的形式表達(dá),請(qǐng)看這樣一個(gè)數(shù)學(xué)問(wèn)題:一群老頭去趕集,半路買(mǎi)了一堆梨,一人一個(gè)多一個(gè),一人兩個(gè)少兩個(gè),老頭和梨分別是( )

  A.3個(gè)老頭,4個(gè)梨 B.4個(gè)老頭,3個(gè)梨 C.5個(gè)老頭,6個(gè)梨 D.7個(gè)老頭,8個(gè)梨

  設(shè)計(jì)意圖:大部分同學(xué)會(huì)用算術(shù)法(答案代入法)來(lái)解答的,而這類(lèi)問(wèn)題我們?nèi)绾斡梅匠虂?lái)解答呢?激起學(xué)生求知的欲望,巧妙過(guò)渡,揭示課題。板書(shū)課題:解一元一次方程——移項(xiàng)

  (二)出示學(xué)習(xí)目標(biāo)

  1.理解移項(xiàng)法,明確移項(xiàng)法的依據(jù),會(huì)解形如ax+b=cx+d類(lèi)型 的一元一次方程。

  2.會(huì)建立方程解決簡(jiǎn)單的實(shí)際問(wèn)題。

  設(shè)計(jì)意圖:這兩個(gè)目標(biāo)的達(dá)成,也驗(yàn)證了本節(jié)課學(xué)生自學(xué)的效果,這也是本節(jié)課的教學(xué)重難點(diǎn)。

 。ㄈ⿲(dǎo)教導(dǎo)學(xué)

  1.出示自學(xué)指導(dǎo)

  自學(xué)教材問(wèn)題2到例3的內(nèi)容,思考以下問(wèn)題:(1)問(wèn)題2中這批書(shū)的總數(shù)有哪幾種表示法?它們之間有什么關(guān)系?本題可作為列方程的依據(jù)的等量關(guān)系是什么?(2)什么是移項(xiàng)?移項(xiàng)的依據(jù)是什么?移項(xiàng)時(shí)應(yīng)該注意什么問(wèn)題?解形如“ax+b=cx+d”類(lèi)型的方程中移項(xiàng)起了什么作用?自學(xué)例3后請(qǐng)歸納解這類(lèi)一元一次方程的步驟(8分鐘后,比誰(shuí)能仿照問(wèn)題2和例3的格式正確解答問(wèn)題)

  2.學(xué)生自學(xué)

  學(xué)生根據(jù)自學(xué)提綱進(jìn)行獨(dú)立學(xué)習(xí),教師巡視,對(duì)自學(xué)速度慢的、自學(xué)能力差的、注意力不夠集中的學(xué)生給以暗示和幫扶,有利于自學(xué)后的成果展示。

  3.交流展示(小組合作展示)

 。ê献鹘涣饕唬┙滩膯(wèn)題2中這批書(shū)的總數(shù)有哪幾種表示法?它們之間有什么關(guān)系?本題哪個(gè)相等關(guān)系可作為列方程的依據(jù)呢?

  問(wèn)題2:把一些圖書(shū)分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個(gè)班有多少學(xué)生?

  1)設(shè)未知數(shù):設(shè)這個(gè)班有X名學(xué)生,根據(jù)兩種不同分法這批書(shū)的總數(shù)就有兩種表示方法,即這批書(shū)共有(3 X+20)本或(4X-25)本。

  2)找相等關(guān)系:這批書(shū)的總數(shù)是一個(gè)定值,表示同一個(gè)量的兩個(gè)不同的式子相等。(板書(shū))

  3)根據(jù)等量關(guān)系列方程: 3x+20 = 4x-25(板書(shū))

  【總結(jié)提升】解決“分配問(wèn)題”應(yīng)用題的列方程的基本要點(diǎn):

  A.找出能貫穿應(yīng)用題始終的一個(gè)不變的量.

  B.用兩個(gè)不同的式子去表示這個(gè)量.

  C.由表示這個(gè)不變的量的兩個(gè)式子相等列出方程.

  設(shè)計(jì)意圖:因?yàn)樵谧詫W(xué)提綱的引領(lǐng)下,每個(gè)小組自主學(xué)習(xí)的效果不同,反饋的意見(jiàn)不同,所以在展示中首先要展示學(xué)生對(duì)課本例題的理解思路。采取主動(dòng)自愿的方式,一個(gè)小組主講,其它小組補(bǔ)充。

  (變式訓(xùn)練1)某學(xué)校組織學(xué)生共同種一批樹(shù),如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹(shù)苗,求參與種樹(shù)的人數(shù)

  (只設(shè)列即可)

 。ㄗ兪接(xùn)練2)我國(guó)民間流傳著許多趣味算題,多以順口溜的形式表達(dá),請(qǐng)看這樣一個(gè)數(shù)學(xué)問(wèn)題:一群老頭去趕集,半路買(mǎi)了一堆梨,一人一個(gè)多一個(gè),一人兩個(gè)少兩個(gè),老頭和梨各多少?

  設(shè)計(jì)意圖:檢查提問(wèn)學(xué)生對(duì)“分配問(wèn)題”應(yīng)用題掌握的情況,學(xué)生回答后教師板書(shū)所列方程為后面教學(xué)做好鋪墊。學(xué)生會(huì)帶著“如何解這類(lèi)方程?”的好奇心過(guò)渡到下一個(gè)環(huán)節(jié)的`學(xué)習(xí)。

 。ê献鹘涣鞫┦裁词且祈(xiàng)?移項(xiàng)的依據(jù)是什么?移項(xiàng)時(shí)應(yīng)該注意什么問(wèn)題?解形如“ax+b=cx+d”類(lèi)型的方程中移項(xiàng)起了什么作用?自學(xué)例3后請(qǐng)歸納解這類(lèi)一元一次方程的步驟。

 。ò鍟(shū) )把等式一邊的某項(xiàng)改變符號(hào)后,從等式的一邊移到另一邊,這種變形叫做移項(xiàng)。

  《解一元一次方程——移項(xiàng)》教學(xué)設(shè)計(jì)(魏玉英)

  師:為什么等式(方程)可以這樣變形?依據(jù)什么?

 。ǔ鍪荆┮罁(jù)等式的基本性質(zhì)1.即:等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,所得結(jié)果仍是等式.

  師:解一元一次方程中“移項(xiàng)”起了什么作用?

 。ǔ鍪荆 通過(guò)移項(xiàng),使等號(hào)左邊僅含未知數(shù)的項(xiàng),等號(hào)右邊僅含常數(shù)的項(xiàng),使方程更接近x=a的形式.(與課題對(duì)照滲透轉(zhuǎn)化思想)

 。ɑA(chǔ)訓(xùn)練)搶答:判斷下列移項(xiàng)是否正確,如有錯(cuò)誤,請(qǐng)修改

  《解一元一次方程——移項(xiàng)》教學(xué)設(shè)計(jì)(魏玉英)

  設(shè)計(jì)理念:讓各個(gè)小組憑著勢(shì)力去搶答。這五個(gè)習(xí)題重點(diǎn)考察學(xué)生對(duì)移項(xiàng)的掌握是本節(jié)課的重難點(diǎn),習(xí)題分層設(shè)計(jì)且成梯度分布。

  【歸納板書(shū)】 解“ax+b=cx+d”型的一元一次方程的步驟:(1) 移項(xiàng),(2) 合并同類(lèi)項(xiàng),(3) 系數(shù)化為1

 。ňC合訓(xùn)練) 解下列方程(任選兩題)

  設(shè)計(jì)理念:第(2)、(3)兩題未知數(shù)系數(shù)是相同類(lèi)型的,所以讓學(xué)生任選一題即可。通過(guò)綜合訓(xùn)練能讓學(xué)生更進(jìn)一步鞏固用移項(xiàng)和合并同類(lèi)項(xiàng)去解方程了。

  (中考試練)若x=2是關(guān)于x的方程2x+3m-1=0的解,則m的值為

  設(shè)計(jì)理念:通過(guò)本題的訓(xùn)練讓學(xué)生明確中考在本節(jié)的考點(diǎn),同時(shí)激勵(lì)學(xué)生在數(shù)學(xué)知識(shí)的學(xué)習(xí)中要抓住知識(shí)的核心和重點(diǎn)。

  (四)我總結(jié)、我提高:

  通過(guò)本節(jié)課的學(xué)習(xí)我收獲了。

  設(shè)計(jì)意圖:通過(guò)小組之間互相談收獲的方式進(jìn)行課堂小結(jié),讓學(xué)生相互檢查本節(jié)課的學(xué)習(xí)效果?梢砸龑(dǎo)學(xué)生從本節(jié)課獲得的知識(shí)、解題的思想方法、學(xué)習(xí)的技巧等方面交流意見(jiàn)。

 。ㄎ澹┊(dāng)堂檢測(cè)(50分)

  1.下列方程變形正確的是( )

  A.由-2x=6, 得x=3

  B.由-3=x+2, 得x=-3-2

  C.由-7x+3=x-3, 得(-7+1)x=-3-3

  D.由5x=2x+3, 得x=-1

  2.一批游客乘汽車(chē)去觀看“上海世博會(huì)”。如果每輛汽車(chē)乘48人,那么還多4人;如果每輛汽車(chē)乘50人,那么還有6個(gè)空位,求汽車(chē)和游客各有多少?(只設(shè)出未知數(shù)和列出方程即可)

  3.(20分)已知x=1是關(guān)于x的方程3m+8x=m+x的解,求m的值。

 。◣熒顒(dòng))學(xué)生獨(dú)立答題,教師巡回檢查,對(duì)先答完的學(xué)生進(jìn)行及時(shí)批改,并把得滿分的學(xué)生作為小老師對(duì)后解答完的學(xué)生的檢測(cè)進(jìn)行評(píng)定,最后老師進(jìn)行小結(jié)。

 。⿲(shí)踐活動(dòng)

  請(qǐng)每一位同學(xué)用自己的年齡編一 道“ax+b=cx+d”型的方程應(yīng)用題,并解答。先在組內(nèi)交流,選出組內(nèi)最有創(chuàng)意的一個(gè)記在題卡上,自習(xí)在全班進(jìn)行展示 。

  設(shè)計(jì)意圖:

  讓學(xué)生課后完成,讓學(xué)生深深體會(huì)到數(shù)學(xué)來(lái)源于生活而又服務(wù)于生活,體現(xiàn)了數(shù)學(xué)知識(shí)與實(shí)際相結(jié)合。

初中數(shù)學(xué)教案12

  一、教材的地位與作用

  《二元一次方程》是九年義務(wù)教育人教版教材七年級(jí)下冊(cè)第四章《二元一次方程組》的第一節(jié)。在此之前學(xué)生已經(jīng)學(xué)習(xí)了一元一次方程,這為本節(jié)的學(xué)習(xí)起了鋪墊的作用。本節(jié)內(nèi)容是二元一次方程的起始部分,因此,在本章的教學(xué)中,起著承上啟下的地位。

  二、教學(xué)目標(biāo)

  (一)知識(shí)與技能:

  1.了解二元一次方程概念;

  2.了解二元一次方程的解的概念和解的不唯一性;

  3.會(huì)將一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

  (二)數(shù)學(xué)思考:

  體會(huì)學(xué)習(xí)二元一次方程的必要性,學(xué)會(huì)獨(dú)立思考,體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想和主元思想。

  (三)問(wèn)題解決:

  初步學(xué)會(huì)利用二元一次方程來(lái)解決實(shí)際問(wèn)題,感受二元一次方程解的不唯一性。獲得求二元一次方程解的思路方法。

  (四)情感態(tài)度:

  培養(yǎng)學(xué)生發(fā)現(xiàn)意識(shí)和能力,使其具有強(qiáng)烈的好奇心和求知欲。

  三、教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):二元一次方程及其解的概念。

  教學(xué)難點(diǎn):二元一次方程的概念里“含未知數(shù)的項(xiàng)的次數(shù)”的理解;把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式。

  四、教法與學(xué)法分析

  教法:情境教學(xué)法、比較教學(xué)法、閱讀教學(xué)法。

  學(xué)法:閱讀、比較、探究的學(xué)習(xí)方式。

  五、教學(xué)過(guò)程

  1.創(chuàng)設(shè)情境,引入新課

  從學(xué)生熟悉的姚明受傷事件引入。

  師:火箭隊(duì)最近取得了20連勝,姚明參加了前面的12場(chǎng)比賽,是球隊(duì)的頂梁柱。

  (1)連勝的第12場(chǎng),火箭對(duì)公牛,在這場(chǎng)比賽中,姚明得了12分,其中罰球得了2分,你知道姚明投中了幾個(gè)兩分球?(本場(chǎng)比賽姚明沒(méi)投中三分球)師:能用方程解決嗎?列出來(lái)的方程是什么方程?

 。2)連勝的第1場(chǎng),火箭對(duì)勇士,在這場(chǎng)比賽中,姚明得了36分,你知道姚明投中了幾個(gè)兩分球,罰進(jìn)了幾個(gè)球嗎?(罰進(jìn)1球得1分,本場(chǎng)比賽姚明沒(méi)投中三分球)師:這個(gè)問(wèn)題能用一元一次方程解決嗎?,你能列出方程嗎?

  設(shè)姚明投進(jìn)了x個(gè)兩分球,罰進(jìn)了y個(gè)球,可列出方程。

 。3)在雄鹿隊(duì)與火箭隊(duì)的比賽中易建聯(lián)全場(chǎng)總共得了19分,其中罰球得了3分。你知道他分別投進(jìn)幾個(gè)兩分球、幾個(gè)三分球嗎?

  設(shè)易建聯(lián)投進(jìn)了x個(gè)兩分球,y個(gè)三分球,可列出方程。

  師:對(duì)于所列出來(lái)的三個(gè)方程,后面兩個(gè)你覺(jué)的是一元一次方程嗎?那這兩個(gè)方程有什么相同點(diǎn)嗎?你能給它們命一個(gè)名稱(chēng)嗎?

  從而揭示課題。

 。ㄔO(shè)計(jì)意圖:第一個(gè)問(wèn)題主要是讓學(xué)生體會(huì)一元一次方程是解決實(shí)際問(wèn)題的數(shù)學(xué)模型,從而回顧一元一次方程的概念;第二、三問(wèn)題設(shè)置的主要目的是讓學(xué)生體會(huì)到當(dāng)實(shí)際問(wèn)題不能用一元一次方程來(lái)解決的時(shí)候,我們可以試著列出二元一次方程,滲透方程模型的通用性。另外,數(shù)學(xué)來(lái)源于生活,又應(yīng)用于生活,通過(guò)創(chuàng)設(shè)輕松的問(wèn)題情境,點(diǎn)燃學(xué)習(xí)新知識(shí)的“導(dǎo)火索”,引起學(xué)生的學(xué)習(xí)興趣,以“我要學(xué)”的主人翁姿態(tài)投入學(xué)習(xí),而且“會(huì)學(xué)”“樂(lè)學(xué)”。)

  2.探索交流,汲取新知

  概念思辨,歸納二元一次方程的特征

  師:那到底什么叫二元一次方程?(學(xué)生思考后回答)

  師:翻開(kāi)書(shū)本,請(qǐng)同學(xué)們把這個(gè)概念劃起來(lái),想一想,你覺(jué)得和我們自己歸納出來(lái)的概念有什么區(qū)別嗎?(同學(xué)們思考后回答)

  師:根據(jù)概念,你覺(jué)得二元一次方程應(yīng)具備哪幾個(gè)特征?

  活動(dòng):你自己構(gòu)造一個(gè)二元一次方程。

  快速判斷:下列式子中哪些是二元一次方程?

 、賦2+y=0②y=2x+

  4③2x+1=2x ④ab+b=4

 。ㄔO(shè)計(jì)意圖:這一環(huán)節(jié)是本課設(shè)計(jì)的重點(diǎn),為加深學(xué)生對(duì)“含有未知數(shù)的項(xiàng)的次數(shù)”的內(nèi)涵的理解,我采取的是閱讀書(shū)本中二元一次方程的概念,形成學(xué)生的認(rèn)知沖突,激發(fā)學(xué)生對(duì)“項(xiàng)的次數(shù)”的思考,進(jìn)而完善學(xué)生對(duì)二元一次方程概念的理解,通過(guò)學(xué)生自己舉例子的活動(dòng)去把“項(xiàng)的次數(shù)”形象化。)

  二元一次方程解的概念

  師:前面列的兩個(gè)方程2x+y=36,2x+3y=16真的是二元一次方程嗎?通過(guò)方程2x+3y=16,你知道易建聯(lián)可能投中幾個(gè)兩分球,幾個(gè)三分球嗎?

  師:你是怎么考慮的?(讓學(xué)生說(shuō)說(shuō)他是如何得到x和y的.值的,怎么證明自己的這對(duì)未知數(shù)的取值是對(duì)的)利用一個(gè)學(xué)生合理的解釋,引導(dǎo)學(xué)生類(lèi)比一元一次方程的解的概念,讓學(xué)生歸納出二元一次方程的解的概念及其記法。(學(xué)生看書(shū)本上的記法)

  使二元一次方程兩邊的值相等的一對(duì)未知數(shù)的值,叫做二元一次方程的一個(gè)解。(設(shè)計(jì)意圖:通過(guò)引導(dǎo)學(xué)生自主取值,猜x和y的值,從而更深刻的體會(huì)二元一次方程解的本質(zhì):使方程左右兩邊相等的一對(duì)未知數(shù)的取值。引導(dǎo)學(xué)生看書(shū)本,目的是讓學(xué)生在記法上體會(huì)“一對(duì)未知數(shù)的取值”的真正含義。)

  二元一次方程解的不唯一性

  對(duì)于2x+3y=16,你覺(jué)得這個(gè)方程還有其它的解嗎?你能試著寫(xiě)幾個(gè)嗎?師:這些解你們是如何算出來(lái)的?

 。ㄔO(shè)計(jì)意圖:設(shè)計(jì)此環(huán)節(jié),目的有三個(gè):首先,是讓學(xué)生學(xué)會(huì)如何檢驗(yàn)一對(duì)未知數(shù)的取值是二元一次方程的解;其次是讓學(xué)生體會(huì)到二元一次方程的解的不唯一性;最后讓學(xué)生感受如何得到一個(gè)正確的解:只要取定一個(gè)未知數(shù)的取值,就可以代入方程算出另一個(gè)未知數(shù)的值,這也就是求二元一次方程的解的方法。)如何去求二元一次方程的解

  例:已知方程3x+2y=10,

  (1)當(dāng)x=2時(shí),求所對(duì)應(yīng)的y的值;

 。2)取一個(gè)你自己喜歡的數(shù)作為x的值,求所對(duì)應(yīng)的y的值;

  (3)用含x的代數(shù)式表示y;

  (4)用含y的代數(shù)式表示x;

  (5)當(dāng)x=負(fù)2,0時(shí),所對(duì)應(yīng)的y的值是多少?

 。6)寫(xiě)出方程3x+2y=10的三個(gè)解.

 。ㄔO(shè)計(jì)意圖:此處設(shè)計(jì)主要是想讓學(xué)生形成求二元一次方程的解的一般方法,先讓學(xué)生展示他們的思維過(guò)程,再?gòu)乃麄兘庖辉淮畏匠痰闹貜?fù)步驟中提煉出用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù),然后把它與原方程比較,把一個(gè)未知數(shù)的值代入哪一個(gè)方程計(jì)算會(huì)更簡(jiǎn)單,形成“正遷移”,引導(dǎo)學(xué)生體會(huì)“用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”的過(guò)程,實(shí)質(zhì)是解一個(gè)關(guān)于y的一元一次方程,滲透數(shù)學(xué)的主元思想。以此突破本節(jié)課的難點(diǎn)。)

  大顯身手:

  課內(nèi)練習(xí)第2題

  梳理知識(shí),課堂升華

  本節(jié)課你有收獲嗎?能和大家說(shuō)說(shuō)你的感想嗎?3.作業(yè)布置

  必做題:書(shū)本作業(yè)題1、2、3、4。

  選做題:書(shū)本作業(yè)題5、6。

  設(shè)計(jì)說(shuō)明

  本節(jié)授課內(nèi)容屬于概念課教學(xué)。數(shù)學(xué)學(xué)科的內(nèi)容有其固有的組成規(guī)律和邏輯結(jié)構(gòu),它總是由一些最基本的數(shù)學(xué)概念作為核心和邏輯起點(diǎn),形成系統(tǒng)的數(shù)學(xué)知識(shí),所以數(shù)學(xué)概念是數(shù)學(xué)課程的核心。只有真正理解數(shù)學(xué)概念,才能理解數(shù)學(xué)。二元一次方程作為初中階段接觸的第二類(lèi)方程,形成概念并不難,關(guān)鍵如何理解它的概念,因此本節(jié)課采用先讓同學(xué)自己試著下定義,然后與教材中的完整定義相互比較,發(fā)現(xiàn)不同點(diǎn),進(jìn)而理解“含有未知數(shù)的項(xiàng)的次數(shù)都是一次”這句話的內(nèi)涵。在二元一次方程的解的教學(xué)過(guò)程中,采用的是讓學(xué)生體會(huì)“一個(gè)解、不止一個(gè)解、無(wú)數(shù)個(gè)解”的漸進(jìn)過(guò)程,感受到用一個(gè)二元一次方程并不能求出一對(duì)確定的未知數(shù)的取值,從而讓學(xué)生產(chǎn)生有后續(xù)學(xué)習(xí)的愿望。

  在講授用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的時(shí)候,采用“特殊、一般、特殊”的教學(xué)流程,以期突破難點(diǎn)。首先拋出問(wèn)題“這幾個(gè)解你是如何求的”,

  此時(shí)注意的聚焦點(diǎn)是二元一次方程;其次學(xué)生歸納先定一個(gè)未知數(shù)的取值,代入原方程求另一個(gè)未知數(shù)的值,此時(shí)注意的聚焦點(diǎn)是一元一次方程;然后教師引導(dǎo)回到二元一次方程,假如x是一個(gè)常數(shù),那么這個(gè)方程可以看成是一個(gè)關(guān)于誰(shuí)的一元一次方程,此時(shí)注意的聚焦點(diǎn)是原來(lái)的二元一次方程;最后代入求值,此時(shí)注意的聚焦點(diǎn)是等號(hào)右邊的那個(gè)算式,體會(huì)“用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”在求值過(guò)程中的簡(jiǎn)潔性,強(qiáng)化這種代數(shù)形式。另外,在引導(dǎo)學(xué)生推導(dǎo)“用含一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)”的過(guò)程中,滲透數(shù)學(xué)的主元思想和轉(zhuǎn)化思想。

初中數(shù)學(xué)教案13

  教學(xué)目標(biāo)

  1.知識(shí)與技能

  能運(yùn)用運(yùn)算律探究去括號(hào)法則,并且利用去括號(hào)法則將整式化簡(jiǎn).

  2.過(guò)程與方法

  經(jīng)歷類(lèi)比帶有括號(hào)的有理數(shù)的運(yùn)算,發(fā)現(xiàn)去括號(hào)時(shí)的符號(hào)變化的規(guī)律,歸納出去括號(hào)法則,培養(yǎng)學(xué)生觀察、分析、歸納能力.

  3.情感態(tài)度與價(jià)值觀

  培養(yǎng)學(xué)生主動(dòng)探究、合作交流的意識(shí),嚴(yán)謹(jǐn)治學(xué)的學(xué)習(xí)態(tài)度.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):去括號(hào)法則,準(zhǔn)確應(yīng)用法則將整式化簡(jiǎn).

  2.難點(diǎn):括號(hào)前面是“-”號(hào)去括號(hào)時(shí),括號(hào)內(nèi)各項(xiàng)變號(hào)容易產(chǎn)生錯(cuò)誤.

  3.關(guān)鍵:準(zhǔn)確理解去括號(hào)法則.

  教具準(zhǔn)備

  投影儀.

  教學(xué)過(guò)程

  一、新授

  利用合并同類(lèi)項(xiàng)可以把一個(gè)多項(xiàng)式化簡(jiǎn),在實(shí)際問(wèn)題中,往往列出的式子含有括號(hào),那么該怎樣化簡(jiǎn)呢?

  現(xiàn)在我們來(lái)看本章引言中的問(wèn)題(3):

  在格爾木到拉薩路段,如果列車(chē)通過(guò)凍土地段要t小時(shí),那么它通過(guò)非凍土地段的時(shí)間為(t-0.5)小時(shí),于是,凍土地段的路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長(zhǎng)為

  100t+120(t-0.5)千米①

  凍土地段與非凍土地段相差

  100t-120(t-0.5)千米②

  上面的式子①、②都帶有括號(hào),它們應(yīng)如何化簡(jiǎn)?

  思路點(diǎn)撥:教師引導(dǎo),啟發(fā)學(xué)生類(lèi)比數(shù)的運(yùn)算,利用分配律.學(xué)生練習(xí)、交流后,教師歸納:

  利用分配律,可以去括號(hào),合并同類(lèi)項(xiàng),得:

  100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60

  100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60

  我們知道,化簡(jiǎn)帶有括號(hào)的整式,首先應(yīng)先去括號(hào).

  上面兩式去括號(hào)部分變形分別為:

  +120(t-0.5)=+120t-60③

  -120(t-0.5)=-120+60④

  比較③、④兩式,你能發(fā)現(xiàn)去括號(hào)時(shí)符號(hào)變化的規(guī)律嗎?

  思路點(diǎn)撥:鼓勵(lì)學(xué)生通過(guò)觀察,試用自己的語(yǔ)言敘述去括號(hào)法則,然后教師板書(shū)(或用屏幕)展示:

  如果括號(hào)外的因數(shù)是正數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來(lái)的.符號(hào)相同;

  如果括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后原括號(hào)內(nèi)各項(xiàng)的符號(hào)與原來(lái)的符號(hào)相反.

  特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).

  利用分配律,可以將式子中的括號(hào)去掉,得:

  +(x-3)=x-3(括號(hào)沒(méi)了,括號(hào)內(nèi)的每一項(xiàng)都沒(méi)有變號(hào))

  -(x-3)=-x+3(括號(hào)沒(méi)了,括號(hào)內(nèi)的每一項(xiàng)都改變了符號(hào))

  去括號(hào)規(guī)律要準(zhǔn)確理解,去括號(hào)應(yīng)對(duì)括號(hào)的每一項(xiàng)的符號(hào)都予考慮,做到要變都變;要不變,則誰(shuí)也不變;另外,括號(hào)內(nèi)原有幾項(xiàng)去掉括號(hào)后仍有幾項(xiàng).

  二、范例學(xué)習(xí)

  例1.化簡(jiǎn)下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  思路點(diǎn)撥:講解時(shí),先讓學(xué)生判定是哪種類(lèi)型的去括號(hào),去括號(hào)后,要不要變號(hào),括號(hào)內(nèi)的每一項(xiàng)原來(lái)是什么符號(hào)?去括號(hào)時(shí),要同時(shí)去掉括號(hào)前的符號(hào).為了防止錯(cuò)誤,題(2)中-3(a2-2b),先把3乘到括號(hào)內(nèi),然后再去括號(hào).

  解答過(guò)程按課本,可由學(xué)生口述,教師板書(shū).

  例2.兩船從同一港口同時(shí)出發(fā)反向而行,甲船順?biāo)掖嫠?兩船在靜水中的速度都是50千米/時(shí),水流速度是a千米/時(shí).

  (1)2小時(shí)后兩船相距多遠(yuǎn)?

  (2)2小時(shí)后甲船比乙船多航行多少千米?

  教師操作投影儀,展示例2,學(xué)生思考、小組交流,尋求解答思路.

  思路點(diǎn)撥:根據(jù)船順?biāo)叫械乃俣?船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時(shí),乙船速度為(50-a)千米/時(shí),2小時(shí)后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時(shí)出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.

  解答過(guò)程按課本.

  去括號(hào)時(shí)強(qiáng)調(diào):括號(hào)內(nèi)每一項(xiàng)都要乘以2,括號(hào)前是負(fù)因數(shù)時(shí),去掉括號(hào)后,括號(hào)內(nèi)每一項(xiàng)都要變號(hào).為了防止出錯(cuò),可以先用分配律將數(shù)字2與括號(hào)內(nèi)的各項(xiàng)相乘,然后再去括號(hào),熟練后,再省去這一步,直接去括號(hào).

  三、鞏固練習(xí)

  1.課本第68頁(yè)練習(xí)1、2題.

  2.計(jì)算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]

  思路點(diǎn)撥:一般地,先去小括號(hào),再去中括號(hào).

  四、課堂小結(jié)

  去括號(hào)是代數(shù)式變形中的一種常用方法,去括號(hào)時(shí),特別是括號(hào)前面是“-”號(hào)時(shí),括號(hào)連同括號(hào)前面的“-”號(hào)去掉,括號(hào)里的各項(xiàng)都改變符號(hào).去括號(hào)規(guī)律可以簡(jiǎn)單記為“-”變“+”不變,要變?nèi)甲?當(dāng)括號(hào)前帶有數(shù)字因數(shù)時(shí),這個(gè)數(shù)字要乘以括號(hào)內(nèi)的每一項(xiàng),切勿漏乘某些項(xiàng).

  五、作業(yè)布置

  1.課本第71頁(yè)習(xí)題2.2第2、3、5、8題.

  2.選用課時(shí)作業(yè)設(shè)計(jì).

初中數(shù)學(xué)教案14

  初中數(shù)學(xué)分層教學(xué)的理論與實(shí)踐

  天山六中裴煥民

  一、分層教學(xué)的含義

  分層教學(xué)是指教師在學(xué)生知識(shí)基礎(chǔ)、智力因素存在明顯差異的情況下,有區(qū)別地設(shè)計(jì)教學(xué)環(huán)節(jié)進(jìn)行教學(xué),遵循因材施教的原則,有針對(duì)性地實(shí)施對(duì)不同類(lèi)別學(xué)生的學(xué)習(xí)指導(dǎo),不僅根據(jù)學(xué)生的不同選擇不同的教法、布置作業(yè),還因材施“助”、因材施“改”、因材施“教”,使每個(gè)學(xué)生都能在原有的基礎(chǔ)上得以發(fā)展,從而達(dá)到不同類(lèi)別的教學(xué)目標(biāo)的一種教學(xué)方法。

  分層教學(xué)是“著眼于與學(xué)生的可持續(xù)性的、良性的發(fā)展”的教育觀念下的一種教學(xué)實(shí)施策略。所謂分層教學(xué)(同班、同年級(jí)分層次教學(xué))就是教師在教授同一教學(xué)內(nèi)容時(shí),對(duì)同一個(gè)班內(nèi)不同知識(shí)水平和接受能力的優(yōu)、中、差生以相應(yīng)的三個(gè)層次的教學(xué)深度和廣度進(jìn)行合講分練,做到課堂教學(xué)有的放矢,區(qū)別對(duì)待,使每個(gè)學(xué)生都在自己原來(lái)的基礎(chǔ)上學(xué)有所得,思有所進(jìn),在不同程度上有所提高,同步發(fā)展。教師的教學(xué)方法應(yīng)從最低點(diǎn)起步,分類(lèi)指導(dǎo),逐步推進(jìn),做到“分合”有序,動(dòng)靜結(jié)合,并分層設(shè)計(jì)練習(xí),分層設(shè)計(jì)課堂,分層布置作業(yè),引導(dǎo)學(xué)生全員參與,各得進(jìn)步。

  二、分層教學(xué)必要性分析

  1、教學(xué)現(xiàn)狀呼喚分層教學(xué)的實(shí)施

  義務(wù)教育的實(shí)施使小學(xué)畢業(yè)生全部升入初中學(xué)習(xí),這樣,在同一班里,學(xué)生的知識(shí)、能力參差不齊。但是,應(yīng)試教育留下的種種弊端抑制了各層次的學(xué)生的學(xué)習(xí)積極性和興趣,整齊劃一的教學(xué)要求,忽視了學(xué)生之間的差異。為了使教育面向全體學(xué)生,減輕部分學(xué)生過(guò)重的負(fù)擔(dān),使他們?cè)谠械幕A(chǔ)上有所提高,全面提高教學(xué)質(zhì)量,又要使有特長(zhǎng)的學(xué)生得到更進(jìn)一步的發(fā)展。因此必須實(shí)施因材施教,根據(jù)不同的學(xué)生的具體情況,確立不同的教學(xué)目標(biāo),采取不同的教學(xué)方法,使其個(gè)性得到充分發(fā)展,為社會(huì)培養(yǎng)各種層次的有用之人。

  2、新課程改革呼喚分層教學(xué)的實(shí)施

  數(shù)學(xué)課程改革的核心是課程的實(shí)施,而教學(xué)是課程實(shí)施的基本途徑。課程改革歸根到底是要轉(zhuǎn)變教師的傳統(tǒng)教學(xué)觀念:包括教學(xué)方式的轉(zhuǎn)變——從“教”到

  “引”;知識(shí)技能掌握理念的轉(zhuǎn)變——從“滿堂灌”、“書(shū)山題海”到“在親身經(jīng)歷中體會(huì)、理解、掌握知識(shí)技能”,強(qiáng)調(diào)自我的情感體驗(yàn);教材觀的轉(zhuǎn)變——從“教教材”到“用教材”,教材變成我們引導(dǎo)學(xué)生探究知識(shí)的工具之一;評(píng)價(jià)機(jī)制的轉(zhuǎn)變——從“唯分?jǐn)?shù)論”到“適合學(xué)生自身特點(diǎn)的發(fā)展”,這是實(shí)施分層教學(xué)的原動(dòng)力,但也是現(xiàn)今新課程改革的一個(gè)難點(diǎn)。

  在新課改中實(shí)施分層教學(xué)法的目的是逐步樹(shù)立學(xué)困生學(xué)習(xí)的信心,激發(fā)中等生的學(xué)習(xí)潛力,擴(kuò)大優(yōu)生的學(xué)習(xí)面。為了適應(yīng)當(dāng)前素質(zhì)教育的需要,我們要采用針對(duì)性的矯正和幫助,進(jìn)行分層教學(xué),分類(lèi)指導(dǎo),及時(shí)反饋,從中探索出一條教學(xué)改革的新路子。

  3、學(xué)生個(gè)體差異的客觀存在

  心理學(xué)的研究結(jié)果表明:學(xué)生的學(xué)習(xí)能力差異是存在的,特別是學(xué)生在數(shù)學(xué)學(xué)習(xí)能力方面存在著較大的差異這已是一個(gè)不爭(zhēng)的事實(shí)。造成差異的原因有很多,學(xué)生的先天遺傳因素及環(huán)境、教育條件都有所不同,還有社會(huì)因素(即環(huán)境、教育條件、科學(xué)訓(xùn)練),這些原因是對(duì)學(xué)生學(xué)習(xí)能力的形成起著決定性作用,所以學(xué)生所表現(xiàn)出的數(shù)學(xué)能力有明顯差異也是正常的。

  學(xué)生作為一個(gè)群體,存在著個(gè)體差異

 。1)智力差異。每個(gè)學(xué)生因?yàn)檫z傳基因的不同,智力的差異是不可避免的。有的人聰明;有的人愚鈍,有的人形象思維強(qiáng);有的邏輯思維強(qiáng);有的人記憶力超人,但推理能力較差;有的人記憶力較差,卻推理能力過(guò)人。

  (2)學(xué)習(xí)基礎(chǔ)差異。不同的學(xué)生在小學(xué)的數(shù)學(xué)狀況不一樣:有的學(xué)生數(shù)學(xué)十分優(yōu)秀,有的學(xué)生數(shù)學(xué)學(xué)習(xí)基本還沒(méi)入門(mén),兩極分化相當(dāng)嚴(yán)重。

 。3)學(xué)習(xí)品質(zhì)差異。有的學(xué)生學(xué)習(xí)數(shù)學(xué)十分認(rèn)真,有一套自己的數(shù)學(xué)學(xué)習(xí)方法,學(xué)得輕松愉快;而有的學(xué)生因?yàn)闆](méi)有入門(mén),數(shù)學(xué)學(xué)得十分艱難,部分學(xué)生甚至對(duì)數(shù)學(xué)學(xué)習(xí)喪失了信心。

  4、分層次教學(xué)符合因材施教的原則

  目前我國(guó)大部分省市的數(shù)學(xué)教學(xué)采用的是統(tǒng)一教材、統(tǒng)一課時(shí)、統(tǒng)一教參,在學(xué)生學(xué)習(xí)能力存在差異的情況下,在教學(xué)過(guò)程中往往容易產(chǎn)全“顧中間、丟兩頭”。如不因材施教,就使部分學(xué)生就成了陪讀、陪考。數(shù)學(xué)能力強(qiáng)的學(xué)生潛能得不到充分發(fā)揮,能力稍差的學(xué)生就可能變成了后進(jìn)生。有研究結(jié)果表明:教師、

  家庭、社會(huì)、學(xué)生、學(xué)校等方面的因素都有可能是形成后進(jìn)生的原因,其中有50%的原因是來(lái)自教師在教學(xué)中的失誤。我們的基礎(chǔ)教育既要注意確保學(xué)生的共性需求,又要顧及學(xué)生的'個(gè)性發(fā)展,所以進(jìn)行分層教育確有必要。

  5、分層次教學(xué)能夠有效推動(dòng)教學(xué)過(guò)程的展開(kāi)

  按照教育家達(dá)尼洛夫關(guān)于教學(xué)過(guò)程的動(dòng)力理論之說(shuō),認(rèn)為只有學(xué)生學(xué)習(xí)的可能性與對(duì)他們的要求是一致的,才可能推動(dòng)教學(xué)過(guò)程的展開(kāi),從而加快學(xué)習(xí)成績(jī)的提高,而這兩者的統(tǒng)一關(guān)系若被破壞,就會(huì)造成學(xué)業(yè)的不良后果。學(xué)生的學(xué)習(xí)可能是由他們生理和心理的一般發(fā)展水平與對(duì)某項(xiàng)學(xué)習(xí)的具體準(zhǔn)備狀態(tài)所決定的,學(xué)生學(xué)習(xí)可能性的構(gòu)成因素中既有相對(duì)穩(wěn)定的因素,又有易變的因素。相對(duì)穩(wěn)定的因素,決定了學(xué)生在一段時(shí)間內(nèi)可能達(dá)到的學(xué)習(xí)水平的范圍,決定了學(xué)業(yè)不良學(xué)生要取得學(xué)業(yè)進(jìn)步只能是一個(gè)漸進(jìn)的過(guò)程;易變的因素,使學(xué)生能在:一定的主客觀條件下提高或降低自己的實(shí)際可能性水平,從而促進(jìn)或阻礙學(xué)習(xí)可能性與教學(xué)要求之間矛盾的轉(zhuǎn)化,加快學(xué)習(xí)成績(jī)提高或降低的速度。由此可見(jiàn),分層次教學(xué)是著眼于協(xié)調(diào)教學(xué)要求與學(xué)生學(xué)習(xí)可能性的關(guān)系的一種極好的手段,使它們之間能相適應(yīng),從而推動(dòng)教學(xué)過(guò)程的展開(kāi)。

  三、分層教學(xué)研究的目的意義

  捷克教育家夸美紐斯在十七世紀(jì)提出來(lái)的班級(jí)授課制以其大大提高教學(xué)效率、加強(qiáng)學(xué)校工作的計(jì)劃性和實(shí)際社會(huì)效益風(fēng)行了三百多年后,其固有的不利于學(xué)生創(chuàng)造能力的培養(yǎng)和因材施教等種種弊端與社會(huì)發(fā)展對(duì)教育的要求的矛盾越來(lái)越尖銳起來(lái)。隨著科學(xué)技術(shù)的發(fā)展,社會(huì)日益進(jìn)步,教育資源和教育需求的增長(zhǎng)和變化,班級(jí)授課制在我國(guó)做出輝煌的貢獻(xiàn)后逐步顯現(xiàn)出其先天的嚴(yán)重不足。教師在班級(jí)授課制下對(duì)能力強(qiáng)的學(xué)生“吃不飽”,能力欠佳的學(xué)生“吃不消”普遍感到力不從心。分層教學(xué)在這種情況下應(yīng)運(yùn)而生,成為優(yōu)化單一班級(jí)授課制的有利途徑。

  1.有利于所有學(xué)生的提高:分層教學(xué)法的實(shí)施,避免了部分學(xué)生在課堂上完成作業(yè)后無(wú)所事事,同時(shí),所有學(xué)生都體驗(yàn)到學(xué)有所成,增強(qiáng)了學(xué)習(xí)信心。

  2.有利于課堂效率的提高:首先,教師事先針對(duì)各層學(xué)生設(shè)計(jì)了不同的教學(xué)目標(biāo)與練習(xí),使得處于不同層的學(xué)生都能“摘到桃子”,獲得成功的喜悅,這極大地優(yōu)化了教師與學(xué)生的關(guān)系,從而提高師生合作、交流的效率;其次,教師在

  備課時(shí)事先估計(jì)了在各層中可能出現(xiàn)的問(wèn)題,并做了充分的準(zhǔn)備,使得實(shí)際施教更有的放矢、目標(biāo)明確、針對(duì)性強(qiáng),增大了課堂教學(xué)的容量。總之,通過(guò)這一教學(xué)法,有利于提高課堂教學(xué)的質(zhì)量和效率。

  3.有利于教師全面能力的提升:通過(guò)有效地組織好對(duì)各層學(xué)生的教學(xué),靈活地安排不同的層次策略,極大地鍛煉了教師的組織調(diào)控與隨機(jī)應(yīng)變能力。分層教學(xué)本身引出的思考和學(xué)生在分層教學(xué)中提出來(lái)的挑戰(zhàn)都有利于教師能力的全面提升。

  四、分層教學(xué)的理論基礎(chǔ)

  1、掌握學(xué)習(xí)理論

  布魯姆提出的“掌握學(xué)習(xí)理論”主張:“給學(xué)生足夠的學(xué)習(xí)時(shí)間,同時(shí)使他們獲得科學(xué)的學(xué)習(xí)方法,通過(guò)他們自己的努力,應(yīng)該都可以掌握學(xué)習(xí)內(nèi)容”。“不同學(xué)生需要用不同的方法去教,不同學(xué)生對(duì)不同的教學(xué)內(nèi)容能持久地集中注意力”。為了實(shí)現(xiàn)這個(gè)目標(biāo),就應(yīng)該采取分層教學(xué)的方法。

  2、教學(xué)最優(yōu)化理論

  巴班斯基的“教學(xué)最優(yōu)化理論”的核心是:教學(xué)過(guò)程的最優(yōu)化是選擇一種能使教師和學(xué)生在花費(fèi)最少的必要時(shí)間和精力的情況下獲得最好的教學(xué)效果的教學(xué)方案并加以實(shí)施。分層教學(xué)是實(shí)現(xiàn)這一目標(biāo)的有效方式之一。

  3、新課標(biāo)的基本理念

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出了一種全新的數(shù)學(xué)課程理念:“人人學(xué)有價(jià)值的數(shù)學(xué);人人都能獲得必需的數(shù)學(xué);不同的人在數(shù)學(xué)上得到不同的發(fā)展”。面向全體學(xué)生,體現(xiàn)了義務(wù)教育的基礎(chǔ)性、普及性和發(fā)展性。不僅為數(shù)學(xué)教學(xué)內(nèi)容的設(shè)定指出方向,而且考慮到學(xué)生的可持續(xù)發(fā)展對(duì)數(shù)學(xué)的需求,并為學(xué)生學(xué)習(xí)數(shù)學(xué)可能產(chǎn)生的差異性留有充分的余地。

  五、分層教學(xué)實(shí)施的指導(dǎo)思想及原則

  首先,分層次教學(xué)的主體是班級(jí)教學(xué)為主,按層次教學(xué)為輔,層次分得好壞直接影響到“分層次教學(xué)”的成功與否。其指導(dǎo)思想是變傳統(tǒng)的應(yīng)試教育為素質(zhì)教育,是成績(jī)差異的分層,而不是人格的分層。為了不給差生增加心理負(fù)擔(dān),必須做好分層前的思想工作,了解學(xué)生的心理特點(diǎn),講情道理:學(xué)習(xí)成績(jī)的差異是客觀存在的,分層次教學(xué)的目的不是人為地制造等級(jí),而是采用不同的方法幫助

  他們提高學(xué)習(xí)成績(jī),讓不同成績(jī)的學(xué)生最大限度地發(fā)揮他們的潛力,以逐步縮小差距,達(dá)到班級(jí)整體優(yōu)化。

  在對(duì)學(xué)生進(jìn)行分層要堅(jiān)持尊重學(xué)生,師生磋商,動(dòng)態(tài)分層的原則。應(yīng)該向?qū)W生宣布分層方案的設(shè)計(jì),講清分層的目的和意義,以統(tǒng)一師生認(rèn)識(shí);指導(dǎo)每位學(xué)生實(shí)事求是地估計(jì)自己,通過(guò)學(xué)生自我評(píng)估,完全由學(xué)生自己自愿選擇適應(yīng)自己的層次;最后,教師根據(jù)學(xué)生自愿選擇的情況進(jìn)行合理性分析,若有必要,在征得學(xué)生同意的基礎(chǔ)上作個(gè)別調(diào)整之后,公布分層結(jié)果。這樣使部分學(xué)生既分到了合適的層次上,又保留了“臉面”,自尊心也不至于受到傷害,也提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  其次,在分層教學(xué)中應(yīng)注意下列原則的使用:

 、偎较嘟瓌t:在分層時(shí)應(yīng)將學(xué)習(xí)狀況相近的學(xué)生歸為“同一層”;

 、诓顒e模糊原則:分層是動(dòng)態(tài)的、可變的,有進(jìn)步的可以“升級(jí)”,退步的應(yīng)“轉(zhuǎn)級(jí)”,且分層結(jié)果不予公布;

 、鄹惺艹晒υ瓌t:在制定各層次教學(xué)目標(biāo)、方法、練習(xí)、作業(yè)時(shí),應(yīng)使學(xué)生跳一跳,才可摘到蘋(píng)果為宜,在分層中感受到成功的喜悅;

  ④零整分合原則:教學(xué)內(nèi)容的合與分,對(duì)學(xué)生的“放”與“扶”,以及課外的分層輔導(dǎo)都應(yīng)遵守這個(gè)原則;

  ⑤調(diào)節(jié)控制原則:由于各層次學(xué)生要求不一,因此在課堂上以學(xué)、議為主,教師要善于激趣、指導(dǎo)、精講、引思,調(diào)節(jié)并控制止好各層次學(xué)生的學(xué)習(xí),做好分類(lèi)指導(dǎo);

 、薹e極激勵(lì)原則:對(duì)各層次學(xué)生的評(píng)價(jià),以縱向性為主。教師通過(guò)觀察、反饋信息,及時(shí)表?yè)P(yáng)激勵(lì),對(duì)進(jìn)步大的學(xué)生及時(shí)調(diào)到高一層次,相對(duì)落后的同意轉(zhuǎn)層。從而促進(jìn)各層學(xué)生學(xué)習(xí)的積極性,使所有學(xué)生隨時(shí)都處于最佳的學(xué)習(xí)狀態(tài)。

  六、實(shí)施分層教學(xué)的策略與措施

 。ㄒ唬┓謱咏ńM

  把學(xué)生分層編組是實(shí)施分層教學(xué)、分類(lèi)指導(dǎo)的基礎(chǔ)。學(xué)生的分類(lèi)應(yīng)遵循“多維性原則、自愿性原則和動(dòng)態(tài)性原則”,教師通過(guò)對(duì)全班學(xué)生平時(shí)的數(shù)學(xué)學(xué)習(xí)的智能,技能、心理、成績(jī)、在校表現(xiàn)、家庭環(huán)境等,并對(duì)所獲得的數(shù)據(jù)資料進(jìn)行綜合分析,分類(lèi)歸檔。在此基礎(chǔ)上,將學(xué)生分成好、中、差層次的學(xué)習(xí)小組,讓

初中數(shù)學(xué)教案15

  教學(xué)目標(biāo):

  1、知識(shí)與技能:(1)通過(guò)學(xué)生熟悉的問(wèn)題情景,以過(guò)探索有理數(shù)減法法則得出的過(guò)程,理解有理數(shù)減法法則的合理性。

  (2)能熟練進(jìn)行有理數(shù)的減法法則。

  2、過(guò)程與方法

  通過(guò)實(shí)例,歸納出有理數(shù)的減法法則,培養(yǎng)學(xué)生的邏輯思維能力和運(yùn)算能力,通過(guò)減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會(huì)人歸的數(shù)學(xué)思想。

  重點(diǎn)、難點(diǎn)

  1、重點(diǎn):有理數(shù)減法法則及其應(yīng)用。

  2、難點(diǎn):有理數(shù)減法法則的應(yīng)用符號(hào)的改變。

  教學(xué)過(guò)程:

  一、創(chuàng)設(shè)情景,導(dǎo)入新課

  1、有理數(shù)加法運(yùn)算是怎樣做的?(-5)+3= —3+(—5)=

  —3+(+5)=

  2、-(-2)= -[-(+23)]=,+[-(-2)]=

  3、20xx的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?

  導(dǎo)語(yǔ):可見(jiàn),有理數(shù)的減法運(yùn)算在現(xiàn)實(shí)生活中也有著很廣泛的應(yīng)用。(出示課題)

  二、合作交流,解讀探究

  1(-2)-(-10)=8=(-2)+8

  2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?

  3、通過(guò)以上列式,你能發(fā)現(xiàn)減法運(yùn)算與加法運(yùn)算的關(guān)系嗎?

  (學(xué)生分組討論,大膽發(fā)言,總結(jié)有理數(shù)的減法法則)

  減去一個(gè)數(shù)等于加上這個(gè)數(shù)的相反數(shù)

  教師提問(wèn)、啟發(fā):(1)法則中的`“減去一個(gè)數(shù)”,這個(gè)數(shù)指的是哪個(gè)數(shù)?“減去”兩字怎樣理解?(2)法則中的“加上這個(gè)數(shù)的相反數(shù)”“加上”兩字怎樣理解?“這個(gè)數(shù)的相反數(shù)”又怎樣理解?(3)你能用字母表示有理數(shù)減法法則嗎?

  三、應(yīng)用遷移,鞏固提高

  1、P.24例1 計(jì)算:

  (1) 0-(-3.18)(2)(-10)-(-6)(3)-

  解:(1)0-(-3.18)=0+3.18=3.18

  (2)(-10)-(-6)=(-10)+6=-4

  (3)-=+=1

  2、課內(nèi)練習(xí):P.241、2、3

  3、游戲:兩人一組,用撲克牌做有理數(shù)減法運(yùn)算游戲(每人27張牌,黑牌點(diǎn)數(shù)為正數(shù),紅牌點(diǎn)數(shù)為負(fù)數(shù),王牌點(diǎn)數(shù)為0。每人每次出一張牌,兩人輪流先出(先出者為被減數(shù)),先求出這兩張牌點(diǎn)數(shù)之差者獲勝,直至其中一人手中無(wú)牌為止)。

  四、總結(jié)反思

  (1) 有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  (2) 有理數(shù)減法的步驟:先變?yōu)榧臃,再改變減數(shù)的符號(hào),最后按有理數(shù)加法法則計(jì)算。

  五、作業(yè)

  P.27習(xí)題1.4A組1、2、5、6

  備選題

  填空:比2小-9的數(shù)是 。

  а比а+2小 。

  若а小于0,е是非負(fù)數(shù),則2а-3е 0。

【初中數(shù)學(xué)教案】相關(guān)文章:

初中數(shù)學(xué)教案【經(jīng)典】07-23

初中數(shù)學(xué)教案05-28

初中數(shù)學(xué)教案【薦】03-31

【熱】初中數(shù)學(xué)教案03-27

初中數(shù)學(xué)教案【熱】03-27

【薦】初中數(shù)學(xué)教案02-27

初中趣味數(shù)學(xué)教案11-22

初中數(shù)學(xué)教案模板02-06

初中數(shù)學(xué)教案【精】04-02