當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教學(xué)反思> 《倒數(shù)的認(rèn)識(shí)》教學(xué)反思

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思

時(shí)間:2024-08-19 23:49:02 教學(xué)反思 我要投稿

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思

  作為一名到崗不久的老師,教學(xué)是重要的工作之一,對(duì)學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,那么什么樣的教學(xué)反思才是好的呢?下面是小編為大家收集的《倒數(shù)的認(rèn)識(shí)》教學(xué)反思,歡迎閱讀,希望大家能夠喜歡。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思1

  今年教學(xué)倒數(shù)的認(rèn)識(shí)后,我的感觸很多。以往教學(xué)這部分內(nèi)容,我是直接讓學(xué)生寫出結(jié)果是1的算式,再從學(xué)生說的算式中把乘積是1的算式板演在黑板上,再讓學(xué)生觀察算式的特點(diǎn),然后再讓學(xué)生理解互為的意思,最后總結(jié)出倒數(shù)的意義,F(xiàn)在想起來有一種牽著學(xué)生鼻子走的感覺。

  通過看雜志和其他教學(xué)刊物,我重新設(shè)計(jì)了教案。我覺得這樣設(shè)計(jì)才是讓學(xué)生自己通過觀察、比較、歸納總結(jié)出倒數(shù)的意義,是學(xué)生自己通過參與整個(gè)學(xué)習(xí)過程后有了真正的收獲。特別是通過比賽的形式激發(fā)學(xué)生的學(xué)習(xí)興趣,學(xué)生發(fā)現(xiàn)了算式的特點(diǎn),并讓學(xué)生舉例后發(fā)現(xiàn),有這樣特點(diǎn)的算式是寫不完的。然后讓學(xué)生仿照老師的樣子,通過例子說倒數(shù)的意義,并強(qiáng)調(diào)說倒數(shù)的關(guān)鍵字詞。這對(duì)學(xué)生掌握概念是非常必要的。當(dāng)學(xué)生很高興的自認(rèn)為是掌握了求一個(gè)數(shù)的倒數(shù)的方法時(shí),我有給學(xué)生設(shè)計(jì)了障礙:怎樣求帶分?jǐn)?shù)、小數(shù)和整數(shù)的倒數(shù)。雖然教材新授內(nèi)容沒有這些知識(shí),但在以后的練習(xí)中出現(xiàn)了。我把它提到前面來,大家一起研究。我覺得很有必要。這樣,使學(xué)生避免把帶分?jǐn)?shù)的倒數(shù)也用把分子分母顛倒位置的.方法來求。這樣就不會(huì)給學(xué)生的認(rèn)知造成誤導(dǎo)。學(xué)生在知道了分?jǐn)?shù)、帶分?jǐn)?shù)、整數(shù)、小數(shù)的求倒數(shù)的方法以后,我又提出是不是所有的數(shù)都有倒數(shù)?使學(xué)生想到0的倒數(shù)問題。以前我是直接問學(xué)生“0“有倒數(shù)嗎?好像暗示學(xué)生”0“沒有倒數(shù)。改換成今天這樣問,學(xué)生通過自己思考,得出兩種答案,”0“有倒數(shù),另一種是”0“沒有倒數(shù)。有了分歧意見,又一次把學(xué)生帶入了問題王國。學(xué)生分別發(fā)表自己的見解。

  最后,大家一致認(rèn)為”0“沒有倒數(shù)。因?yàn)椤?”不能做除數(shù),也就是0不能作分母。我覺得這節(jié)課的教學(xué)比以往教學(xué)有了本質(zhì)的轉(zhuǎn)變,就是發(fā)揮了學(xué)生的主體作用。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思2

  《倒數(shù)的認(rèn)識(shí)》這節(jié)課是在學(xué)生學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為后面學(xué)習(xí)分?jǐn)?shù)除法做準(zhǔn)備。這一課時(shí)的內(nèi)容主要是讓學(xué)生理解倒數(shù)的意義和會(huì)求一個(gè)數(shù)的倒數(shù),學(xué)生只有學(xué)好這部分知識(shí),才能更好地位掌握后面的分?jǐn)?shù)除法的計(jì)算和應(yīng)用題打下堅(jiān)實(shí)的'基礎(chǔ)。

  記得朱永新說過:作為教師,關(guān)鍵是要給孩子自由,給他時(shí)間,給他空間。你給他一個(gè)舞臺(tái),他就能還給你一個(gè)精彩;你給他一點(diǎn)空間,他就能為你創(chuàng)造無數(shù)輝煌。

  為了充分給孩子時(shí)間和空間,本節(jié)課我采用了發(fā)現(xiàn)式教學(xué)法。教師只是通過組織者,引導(dǎo)者與合作者的身份,引導(dǎo)學(xué)生主動(dòng)參與到整個(gè)學(xué)習(xí)過程中去,讓學(xué)生自己組織學(xué)習(xí)材料,給學(xué)生提供放手的思維空間,并尊重學(xué)生的自主性,允許學(xué)生在探索新知中犯錯(cuò)誤,并在修正錯(cuò)誤中體會(huì)成功。以平等寬容的態(tài)度,激起學(xué)生的探究熱情。特別是在探究倒數(shù)的意義與求倒數(shù)的方法時(shí),放手讓學(xué)生自己去探索,去觀察,去歸納,去總結(jié)。

  “倒數(shù)”的學(xué)習(xí)適于學(xué)生展開觀察、比較、交流、歸納等教學(xué)活動(dòng)。為了更好地指導(dǎo)學(xué)法,我還采用小組合作形式組織教學(xué)。這樣一方面可以讓學(xué)生嘗試發(fā)現(xiàn),體驗(yàn)到創(chuàng)造的過程;另一方面也可以增強(qiáng)學(xué)生的合作意識(shí),讓學(xué)生在小組交流、全班交流過程中,相互學(xué)習(xí)、相互借鑒,逐步完成對(duì)“倒數(shù)”的認(rèn)識(shí),有時(shí)還受同學(xué)啟發(fā),迸發(fā)出智慧的火花。并且充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,給學(xué)生提供充足的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),引導(dǎo)學(xué)生進(jìn)行小組合作學(xué)習(xí),在討論中探究知,理解并掌握倒數(shù)的意義和求法,培養(yǎng)學(xué)生的探究能力和探究意識(shí)。

  通過教學(xué),我感受到教師在教學(xué)中應(yīng)相信學(xué)生的能力,并積極成為學(xué)生學(xué)習(xí)的合作者、幫助者和促進(jìn)者,讓學(xué)生大膽地去發(fā)現(xiàn),去探索,去思考,去總結(jié)。

  相信學(xué)生,他就會(huì)還給你一個(gè)意想不到的精彩!

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思3

  教學(xué)說明:

  讓學(xué)生經(jīng)歷提出問題、自探問題、應(yīng)用知識(shí)的過程,理解倒數(shù)的意義自主總結(jié)出求倒數(shù)的方法。

  反思:

  本節(jié)課中,在探究新知之前,我打破數(shù)學(xué)教學(xué)常規(guī),進(jìn)行學(xué)科整合,借助語文學(xué)科與數(shù)學(xué)學(xué)科之間的聯(lián)系為切入點(diǎn),由文字構(gòu)成規(guī)律引發(fā)學(xué)生數(shù)學(xué)思維火花,把文字構(gòu)成規(guī)律變成數(shù)字,進(jìn)行鋪墊。引發(fā)學(xué)生探究數(shù)學(xué)的欲望,極大調(diào)動(dòng)學(xué)生學(xué)習(xí)的興趣。接著設(shè)疑引發(fā)學(xué)生提出問題:關(guān)于倒數(shù)你想知道些什么?學(xué)生提出的問題是:什么是倒數(shù)?倒數(shù)的意義是什么?倒數(shù)有什么特點(diǎn)?學(xué)生在探究新知識(shí)的同時(shí),能夠自己舉一些倒數(shù)的例子,提出自己的問題,讓學(xué)生自己發(fā)現(xiàn)倒數(shù)的一些特點(diǎn):每組中的兩個(gè)數(shù)相乘的積是1;每組中的兩個(gè)數(shù)的分子和分母的`位置互相顛倒;每組中的兩個(gè)數(shù)是相互依存的關(guān)系,不能孤立。依據(jù)倒數(shù)的特點(diǎn)讓學(xué)生自己舉例驗(yàn)證以上發(fā)現(xiàn)是否正確。

  在爭論數(shù)字0和1的倒數(shù)問題時(shí),我創(chuàng)設(shè)情景境,通過兩個(gè)卡通人物(明明、紅紅)發(fā)生爭論 ――0和1都有倒數(shù),0和1都沒有倒數(shù),課堂上學(xué)生引起了較大的爭議,學(xué)生沒有從分?jǐn)?shù)的角度去發(fā)現(xiàn)0不能作為分?jǐn)?shù)的分母,所以產(chǎn)生了0有倒數(shù)的念頭,再次的小組辯論。得出0不能作除數(shù)、0不能作分母。0沒有倒數(shù)的結(jié)論。而1這個(gè)數(shù)字學(xué)生還是會(huì)發(fā)現(xiàn)1的倒數(shù)就是一分之一,也就是1。在教學(xué)求倒數(shù)的方法時(shí),學(xué)生也能根據(jù)已學(xué)的知識(shí)自主解決,老師只是作為輔助,學(xué)生自行總結(jié)求倒數(shù)的法。但是整數(shù)到底有沒有倒數(shù)?整數(shù)怎么樣來求倒數(shù)?要怎么樣把一個(gè)整數(shù)看成是分母是1的分?jǐn)?shù),再調(diào)換它們的位置。這樣開放性題目,學(xué)生要經(jīng)過小組合作才可以填出來,沒有辦法獨(dú)立思考。所以,我覺得以后的內(nèi)容就應(yīng)該多出一些具有挑戰(zhàn)性的題目,以幫助學(xué)生更好地理解新知識(shí)的應(yīng)用。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思4

  “倒數(shù)的認(rèn)識(shí)”是在學(xué)生掌握了整數(shù)乘法等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。理解倒數(shù)的意義和會(huì)求一個(gè)數(shù)的倒數(shù)是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法的前提。學(xué)生必須學(xué)好這部分知識(shí),才能更好地掌握后面的分?jǐn)?shù)除法的計(jì)算和應(yīng)用題。在引入部分,我利用朋友的相互關(guān)系及中國文字形象的使學(xué)生對(duì)倒數(shù)有了直觀的認(rèn)識(shí),為了使學(xué)生深入了解倒數(shù)的意義,我引導(dǎo)學(xué)生舉了大量分?jǐn)?shù)的'例子,并通過觀察、計(jì)算等方法使學(xué)生明確“互為倒數(shù)的兩個(gè)數(shù)的乘積是1”、“倒數(shù)的兩個(gè)數(shù)只是把分子和分母的位置進(jìn)行了調(diào)換”、更讓我高興的是學(xué)生能注意到“倒數(shù)是相互依存的”。抓住學(xué)生的發(fā)現(xiàn),我引導(dǎo)他們很快就總結(jié)出了倒數(shù)的概念——乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)。

  在讓學(xué)生通過研究求各種數(shù)的倒數(shù)的方法的環(huán)節(jié)上,避免了學(xué)生在學(xué)習(xí)中只會(huì)求分?jǐn)?shù)的倒數(shù)的知識(shí)的單一,延伸的所學(xué)的內(nèi)容。在最后,面對(duì)特殊的0和1這兩個(gè)數(shù)時(shí),“學(xué)生們出現(xiàn)了小小的”爭執(zhí)“。有人認(rèn)為:”0和1有倒數(shù)!坝腥苏J(rèn)為:”0和1沒有倒數(shù)!皩(duì)于學(xué)生的”爭執(zhí)“我沒有直接介入,而是引導(dǎo)他們互相說說自己的理由,在他們的交流中,學(xué)生們達(dá)成了一致的認(rèn)識(shí):0沒有倒數(shù),1的倒數(shù)時(shí)它本身。并且在說明理由時(shí),學(xué)生還認(rèn)為”0不能做分母,所以0沒有倒數(shù)“這個(gè)理由,拓展了我所提供給學(xué)生的知識(shí)內(nèi)容。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思5

  此次于老師來聽課,我按照教學(xué)進(jìn)度選擇的內(nèi)容是第四單元知識(shí)鏈接教材中《倒數(shù)的認(rèn)識(shí)》一課,這一節(jié)課是在學(xué)生學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,是為后面單元學(xué)習(xí)分?jǐn)?shù)除法知識(shí)做準(zhǔn)備。本節(jié)課的內(nèi)容不多,首先是用兩個(gè)數(shù)的乘積是1這樣的幾個(gè)算式來引出倒數(shù)的概念,然后是求一個(gè)數(shù)的倒數(shù)的方法。

  本節(jié)課我的教學(xué)思路是:

  第一大環(huán)節(jié):利用課前三分鐘的口算練習(xí)這一素材,可以按照乘積是否是1進(jìn)行分組整理,再將乘積是1的一類進(jìn)行二次分類,分成分?jǐn)?shù)乘法與小數(shù)乘法,先從比較直觀的分?jǐn)?shù)乘法入手研究因數(shù)的特征,繼而過渡到小數(shù)乘法算式中因數(shù)的特征,由發(fā)現(xiàn)到猜想再到舉例驗(yàn)證,繼而得出倒數(shù)的概念。

  第二大環(huán)節(jié),由如何求一個(gè)數(shù)的倒數(shù)入手?引導(dǎo)學(xué)生交流方法,并在練習(xí)中鞏固求倒數(shù)的方法。

  上完這節(jié)課,我的第一感覺是領(lǐng)著孩子繞著知識(shí)點(diǎn)走了一遍,用能力的孩子可能真的理解了倒數(shù)的意義,而大部分的孩子可能只是學(xué)會(huì)了求倒數(shù)的方法,至于是否真正理解了倒數(shù)的意義,還處于模棱兩可的狀態(tài)。結(jié)合著于老師的點(diǎn)評(píng),再回頭看我這節(jié)課的.設(shè)計(jì)流程,還真是存在著很大的問題:

  一、概念上存在偏差

  本節(jié)課在研究分?jǐn)?shù)乘法這組算式的特征之后,我引導(dǎo)學(xué)生用“顛倒數(shù)”這樣的一個(gè)詞來反復(fù)描述兩個(gè)分?jǐn)?shù)的特征,而忽視了乘積是1的這一個(gè)大的背景。而如果從“為什么它們的乘積是1”這一個(gè)大問題入手,學(xué)生會(huì)順藤摸瓜,思考它們因數(shù)之間存在的特殊關(guān)系。

  正是因?yàn)楸竟?jié)課,我一直在強(qiáng)調(diào)分?jǐn)?shù)的分子與分母相互顛倒這一點(diǎn),造成學(xué)生沒有真正從意義上理解倒數(shù)的意義,才會(huì)出現(xiàn)在+()=1這個(gè)加法算式中,有的學(xué)生填這一錯(cuò)誤。

  二、小步引領(lǐng),走馬觀花

  為了鞏固求一個(gè)數(shù)的倒數(shù),在練習(xí)這一環(huán)節(jié)我分四類設(shè)計(jì)并總結(jié)出:

 。1)真分?jǐn)?shù)的倒數(shù)都是大于1的假分?jǐn)?shù);

 。2)大于1的假分?jǐn)?shù)的倒數(shù)都是真分?jǐn)?shù);

 。3)分?jǐn)?shù)單位的倒數(shù)都是自然數(shù);

  (4)非零整數(shù)的倒數(shù)都是幾分之一。

  反過頭來再看,真如于老師所說的那樣,學(xué)生根本沒有深刻的記憶,只是走馬觀花,但是如果按照于老師的建議,利用數(shù)軸的形式,在數(shù)軸上表示,我想即方便學(xué)生直觀認(rèn)識(shí),也加深了學(xué)生的認(rèn)識(shí)。

  非常感謝于老師能在百忙之中來聽評(píng)課,感謝于老師的指點(diǎn),借著這次聽課的東風(fēng),在教學(xué)路上且思且行!

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思6

  倒數(shù)的認(rèn)識(shí)是一節(jié)概念教學(xué)課,它是在分?jǐn)?shù)乘法計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的,通過觀察乘積是1的幾組數(shù)的特點(diǎn)引導(dǎo)學(xué)生認(rèn)識(shí)倒數(shù),主要是為后面學(xué)習(xí)除法作準(zhǔn)備的 , 在教學(xué)中,必須打下堅(jiān)實(shí)的基礎(chǔ),為以后學(xué)習(xí)分?jǐn)?shù)除法掃清障礙,提高學(xué)習(xí)效率。

  這節(jié)課我主要圍繞“導(dǎo)入、探究、深討、練習(xí)、小結(jié)”這幾個(gè)環(huán)節(jié)進(jìn)行。

  在導(dǎo)入中通過一個(gè)小故事中的對(duì)聯(lián),借助語文學(xué)科與數(shù)學(xué)學(xué)習(xí)之間的聯(lián)系為切入點(diǎn),由文字構(gòu)成規(guī)律激發(fā)學(xué)生的好奇心,引起學(xué)習(xí)興趣。讓學(xué)生初步感知“倒”的意思。這樣學(xué)生對(duì)馬上接觸到的“互為倒數(shù)”就比較容易理解了。在學(xué)生知道什么叫倒數(shù)后,讓學(xué)生根據(jù)倒數(shù)的意義舉例,通過學(xué)生的舉例進(jìn)一步理解“乘積是1的`兩個(gè)數(shù)是互為倒數(shù)”這句話。同時(shí)讓學(xué)生說說你認(rèn)為在“乘積是1的兩個(gè)數(shù)互為倒數(shù)。”這句話中哪幾個(gè)詞比較重要。然后根據(jù)學(xué)生的回答,理解:“互為”、“乘積是1”、“兩個(gè)數(shù)”。對(duì)倒數(shù)的定義作深入的剖析。

  最后通過適當(dāng)?shù)木毩?xí),讓學(xué)生自己總結(jié)出求帶分?jǐn)?shù)、小數(shù)的倒數(shù)一般先變形,再換位。并且讓學(xué)生小結(jié)出求倒數(shù)過程中發(fā)現(xiàn)的一些小規(guī)律.在探討中,讓學(xué)生根據(jù)自己的想法研究出:1的倒數(shù)是1,0沒有倒數(shù).

  綜觀全課下來, 覺得整節(jié)課教得比較扎實(shí),該傳授的時(shí)候做到了適當(dāng)?shù)膫魇?練習(xí)也有層次感, 對(duì)于兩個(gè)特例“1”和“0”,教學(xué)中沒有專門由老師提出,而是在學(xué)生的深入思考中得出的,這就是學(xué)生學(xué)習(xí)的成果。自我感覺處理得較好。

  學(xué)生的積極性在家長聽課當(dāng)中也充分的得到了發(fā)揮, 平時(shí)不做聲的孩子當(dāng)天也敢積極舉手發(fā)言了,充分的調(diào)動(dòng)了孩子回答問題的欲望。

  在設(shè)計(jì)中,感覺練習(xí)的設(shè)計(jì)還是缺少了難度,缺少了靈活性的題目,對(duì)“倒數(shù)”的運(yùn)用練習(xí)設(shè)計(jì)不夠豐富。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思7

  《倒數(shù)的認(rèn)識(shí)》是在學(xué)生掌握了整數(shù)乘法、分?jǐn)?shù)加法和減法計(jì)算、分?jǐn)?shù)乘法的意義和計(jì)算法則、分?jǐn)?shù)乘法應(yīng)用題等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。理解倒數(shù)的意義和會(huì)求一個(gè)數(shù)的倒數(shù)是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法的前提。學(xué)生只有學(xué)好這部分知識(shí),才能更好地掌握后面的分?jǐn)?shù)除法的計(jì)算和應(yīng)用題。

  《倒數(shù)的認(rèn)識(shí)》這一課的核心內(nèi)容是“倒數(shù)的意義和求法”!暗箶(shù)的意義”屬于概念的教學(xué),我認(rèn)為,只有讓學(xué)生關(guān)注基礎(chǔ)知識(shí)本身,讓學(xué)生在深入剖析“倒數(shù)的意義”的過程中,學(xué)會(huì)數(shù)學(xué)思考,體會(huì)解決問題所帶來的成功體驗(yàn),才能使學(xué)習(xí)真正成為學(xué)生的需要。

  本節(jié)課我在設(shè)計(jì)教學(xué)時(shí)力求充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,引導(dǎo)學(xué)生自主探索與交流合作中再現(xiàn)知識(shí)發(fā)生的過程,提高學(xué)生的觀察分析和概括歸納的能力,實(shí)現(xiàn)知識(shí)技能與學(xué)生智能的同步發(fā)展。通過這節(jié)課的實(shí)際教學(xué),結(jié)合新課標(biāo),也給了我不少啟示。

  啟示一:處理好“教教材”和“用教材”的關(guān)系:

  1、在課的導(dǎo)入部分,聯(lián)系學(xué)生熟悉的生活情景,由倒影和一些有趣的文字引出本節(jié)課所要探究的問題――倒數(shù),從形象直觀上感受顛倒位置,既激發(fā)了學(xué)生的探究興趣,為學(xué)生學(xué)習(xí)新知識(shí)做了充分的準(zhǔn)備,為學(xué)生較好理解倒數(shù)的意義做了鋪墊。

  2、變例題教學(xué)為學(xué)生自學(xué)課本,發(fā)現(xiàn)求一個(gè)數(shù)的倒數(shù)的方法,然后通過舉例,檢查學(xué)生的掌握情況,再總結(jié)出求一個(gè)數(shù)的倒數(shù)的方法。

  3、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時(shí),我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)中提高。比如設(shè)計(jì)的'“比較大小”,在比較大小之后,讓學(xué)生找找其中的規(guī)律,為接下來的分?jǐn)?shù)除法做鋪墊!安乱徊隆埃粌H用到了倒數(shù)的知識(shí),也聯(lián)系到前面學(xué)的分?jǐn)?shù)乘法應(yīng)用題。

  啟示二:相信學(xué)生,處理好扶與放的關(guān)系:

  1、給學(xué)生獨(dú)立思考的時(shí)間,相信學(xué)生能具有獨(dú)立思考的能力,教學(xué)中每一個(gè)問題的提出,要使學(xué)生不是坐等聽別人講,而是能養(yǎng)成先自己積極思考的習(xí)慣。

  2、給學(xué)生合作學(xué)習(xí)的機(jī)會(huì);當(dāng)學(xué)生有困惑時(shí),教師可以充分發(fā)揮學(xué)生集體智慧,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。在教學(xué)中,我對(duì)于探求“整數(shù)有沒有倒數(shù)”、“0和1有沒有倒數(shù)”、“小數(shù)有沒有倒數(shù)”這幾個(gè)環(huán)節(jié),充分發(fā)揮學(xué)生合作交流的作用,去共同解決問題。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思8

  在學(xué)校舉行的教師“課堂大練兵”教學(xué)活動(dòng)中,我上的是《倒數(shù)的認(rèn)識(shí)》,現(xiàn)就這節(jié)課的整個(gè)教學(xué)環(huán)節(jié)做如下反思:

  《倒數(shù)的認(rèn)識(shí)》是在學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為后面學(xué)習(xí)分?jǐn)?shù)除法做準(zhǔn)備。核心內(nèi)容是“倒數(shù)的意義和求法”!暗箶(shù)的意義”屬于概念的教學(xué),我認(rèn)為,只有讓學(xué)生關(guān)注基礎(chǔ)知識(shí)本身,讓學(xué)生在深入剖析“倒數(shù)的意義”的過程中,學(xué)會(huì)數(shù)學(xué)思考,體會(huì)解決問題所帶來的成功體驗(yàn),才能使學(xué)習(xí)真正成為學(xué)生的需要。本節(jié)課的教學(xué)難度不大,但是因?yàn)閷W(xué)生基礎(chǔ)太差,所以我在設(shè)計(jì)教學(xué)時(shí)力求所有的學(xué)生能聽得懂,學(xué)得進(jìn)去,盡量引導(dǎo)學(xué)生能在交流合作中再現(xiàn)知識(shí)發(fā)生的過程,提高學(xué)生的觀察分析和概括歸納的能力。

  本節(jié)課的優(yōu)點(diǎn):

  1、復(fù)習(xí)題合理,緊扣這節(jié)課的學(xué)習(xí)內(nèi)容,為這節(jié)課的學(xué)習(xí)做了很好的鋪墊。

  2、學(xué)生能深入了解倒數(shù)的意義。明白“乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)”,理解相互依存的概念。

  3、歸納全面,教學(xué)緊湊,由簡入繁介紹了整數(shù)、小數(shù)、帶分?jǐn)?shù)、分?jǐn)?shù)的倒數(shù);0沒有倒數(shù),1的'倒數(shù)是它本身。

  4、豐富練習(xí)的形式。在充分利用教材的練習(xí)同時(shí),我還適當(dāng)?shù)匮a(bǔ)充了練習(xí)的內(nèi)容,使學(xué)生在練習(xí)中鞏固,在練習(xí)提高。

  本節(jié)課的不足:

  1、在教學(xué)倒數(shù)的定義時(shí),對(duì)于倒數(shù)的相互關(guān)系教學(xué)不夠深入,應(yīng)該讓學(xué)生多說。

  2、學(xué)生活動(dòng)環(huán)節(jié)不夠,參與太少。

  3、在問題導(dǎo)入時(shí)提問不夠精準(zhǔn),應(yīng)明確分類條件。

  4、小組合作效果不佳,反響不好。

  5、知識(shí)點(diǎn)歸納留給學(xué)生自主完成,教師點(diǎn)撥即可,不要講太多。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思9

  《倒數(shù)的認(rèn)識(shí)》屬于一節(jié)典型的數(shù)學(xué)概念課,對(duì)概念知識(shí)技能的教學(xué)目標(biāo)的達(dá)成并不是很難。但這樣的課堂,教師可以花更過的心思達(dá)成其他數(shù)學(xué)素養(yǎng)的培養(yǎng)。在這一節(jié)課上,學(xué)生經(jīng)歷了解到模糊再到深刻理解的概念認(rèn)識(shí)過程,通過交流、合作自主梳理總結(jié)方法,在解決問題中感受數(shù)學(xué)的嚴(yán)謹(jǐn)之美、科學(xué)之美,這才是學(xué)生最大的收獲。

  這節(jié)課對(duì)我自己的教學(xué)的啟示如下:

  1、讀懂教材、吃透教材是對(duì)教學(xué)重難點(diǎn)的把脈。教材在編寫上分成三格部分-認(rèn)識(shí)、求解、練習(xí),給出的層次很清楚。呈現(xiàn)方式上是給出算式,學(xué)生計(jì)算,觀察再發(fā)現(xiàn),雖然表現(xiàn)的模式有些生硬,但其指向是學(xué)生自主探究倒數(shù)的定義,倒數(shù)的特征。在例題一當(dāng)中,主要教學(xué)求倒數(shù)的方法,教材并沒有給出所有倒數(shù)的求找方法,是因?yàn)榍蟮箶?shù)的方法也不能一言概之,需要分類思考。那么在教學(xué)過程中,教師側(cè)重在引導(dǎo)學(xué)生去進(jìn)行有序的分類思考。只有這樣,學(xué)生在接下來的方法總結(jié)交流是才能總結(jié)的完整、嚴(yán)謹(jǐn)。

  2、概念的本質(zhì)遠(yuǎn)高于概念的形式。倒數(shù)的定義是乘積為一的兩個(gè)數(shù)互為倒數(shù),特征是分母、分子相互顛倒的兩個(gè)數(shù)。很多學(xué)生以特征代替定義,這樣的認(rèn)識(shí)是不充分,不準(zhǔn)確的。所以在教學(xué)設(shè)計(jì)中我以游戲的`方式寫乘積互為1的兩個(gè)數(shù),那他們寫下的各種形式的兩個(gè)數(shù)互為倒數(shù)嗎?一個(gè)綱領(lǐng)性問題順勢產(chǎn)生,直接激發(fā)學(xué)生求知欲望。對(duì)定義的根本認(rèn)識(shí)直接反應(yīng)在后續(xù)求倒數(shù)方法的多樣性上。教材中給出顛倒分子分母的方法學(xué)生可以用,在對(duì)倒數(shù)認(rèn)識(shí)后,還有相當(dāng)一部分學(xué)生會(huì)用1除以一個(gè)數(shù)求出倒數(shù)。同時(shí)“1”的倒數(shù)是多少?0有倒數(shù)嗎?這樣的問題都可迎刃而解。注重?cái)?shù)學(xué)概念的本質(zhì)含義,讓學(xué)生自主經(jīng)歷概念形成的過程是幾乎所有概念課的要求。

  3、在高年級(jí)數(shù)學(xué)教學(xué)中,還要加強(qiáng)學(xué)生數(shù)學(xué)閱讀習(xí)慣培養(yǎng)。數(shù)學(xué)文字的閱讀不僅僅是一種視覺上的感受,更是思維上的活動(dòng)。在真正閱讀倒數(shù)定義時(shí),學(xué)生大腦里應(yīng)該經(jīng)歷思考、篩選的過程。從定義中提取核心內(nèi)容,對(duì)疑惑進(jìn)行質(zhì)疑、猜測、證明,最終達(dá)到對(duì)定義認(rèn)識(shí)的新高度。良好的數(shù)學(xué)閱讀習(xí)慣也可以有效地加強(qiáng)思維的嚴(yán)謹(jǐn)性。

  4、放手學(xué)生自主學(xué)習(xí),開展有趣的數(shù)學(xué)活動(dòng)。設(shè)計(jì)有趣的數(shù)學(xué)活動(dòng)是提高學(xué)生參與度的準(zhǔn)繩。這節(jié)課從開課就是速算比賽,然后小組交流對(duì)倒數(shù)的認(rèn)識(shí),生生交流突破對(duì)倒數(shù)認(rèn)識(shí)最后一層隔膜到最后小組內(nèi)總結(jié)求倒數(shù)的方法,這一系列的活動(dòng)都是學(xué)生自主完成的,這樣的教學(xué)過程對(duì)學(xué)生學(xué)習(xí)的意義完全不同。但要到達(dá)到預(yù)期設(shè)計(jì)的效果,老師需要準(zhǔn)備充分。首先,對(duì)學(xué)生充滿信任,相信學(xué)生的能力,給學(xué)生留有充足的時(shí)間和空間。第二,充分預(yù)設(shè)學(xué)生學(xué)情,這樣才能是老師對(duì)課堂組織的監(jiān)控有的放矢,才便于在更高層面引導(dǎo)學(xué)生活動(dòng)的發(fā)展方向。另外,教師需要對(duì)教案相當(dāng)熟練、在課堂中關(guān)注所有學(xué)生的反饋,尤其后進(jìn)生的知識(shí)生長,從而提高課堂效率。

  困惑與不足:

  1、課堂節(jié)奏太快留給學(xué)生思考時(shí)間不夠。

  2、要適時(shí)注意引導(dǎo)學(xué)生如何正確思考解決問題。

  3、要注意控制語速和語言的啟發(fā)性、目性。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思10

  本節(jié)課,我注重了貫穿“激趣導(dǎo)學(xué)”的基本思想。首先,用三種途徑創(chuàng)設(shè)情境以激趣:一是口令游戲創(chuàng)設(shè)情境,如敘述“你們是宋老師的好朋友,宋老師是你們的好朋友,宋老師和你們互為好朋友!;二是借助幾幅美麗的倒影圖畫創(chuàng)設(shè)情境;三是通過幾個(gè)特殊漢字,如“呆”和“杏”、“吳”和“吞”,從中國漢字的結(jié)構(gòu)點(diǎn)引入,既溝通了學(xué)科間的聯(lián)系,又形象地激發(fā)了互為倒數(shù)學(xué)習(xí)的興趣。在此基礎(chǔ)上,引導(dǎo)學(xué)生通過體驗(yàn),觀察,研究等實(shí)踐活動(dòng),讓學(xué)生經(jīng)歷提出問題,自探問題,使學(xué)生產(chǎn)生疑問,通過自主,合作,探究的方法來解決他們心中的疑惑。一上課就抓住了學(xué)生的心。

  這節(jié)課是一節(jié)概念課的教學(xué),什么是倒數(shù)呢?乘積是1的兩個(gè)數(shù)叫做互為倒數(shù),學(xué)生對(duì)于“互為”兩個(gè)字的理解比較難,是教學(xué)中的一個(gè)難點(diǎn)。在這節(jié)課的教學(xué)中,我利用學(xué)生的生活體驗(yàn),利用“教師”和“學(xué)生”這一關(guān)系的.多次轉(zhuǎn)化,在自然中創(chuàng)設(shè)情境,讓學(xué)生在具體的情境中知道什么是“互為老師”,什么是“互為同學(xué)”,什么是“互為倒數(shù)”,不僅調(diào)動(dòng)了同學(xué)們學(xué)習(xí)的積極性,更重要的是讓學(xué)生在不知不覺中理解了“互為”的含義,分散了教學(xué)的難點(diǎn)。

  這節(jié)課還注意充分發(fā)揮學(xué)生的主體作用。如新授一開始,就讓學(xué)生觀察每道算式,找出共同點(diǎn),引出倒數(shù)的意義。而后又讓學(xué)生觀察互為倒數(shù)的兩個(gè)數(shù)的變化規(guī)律,得出“求一個(gè)數(shù)的倒數(shù)”的方法。

  提倡小組合作是否本課的一個(gè)重要特點(diǎn),在討論中,老師真正以一個(gè)組織者、引導(dǎo)者的身份出現(xiàn),實(shí)現(xiàn)互動(dòng)對(duì)話式教學(xué)。在求倒數(shù)方法之后,我出示了小組討論題(以兩個(gè)同學(xué)的爭論為載體):引出怎樣求一個(gè)整數(shù)的倒數(shù)?1的倒數(shù)是幾?哪些數(shù)可能沒有倒數(shù)?由此學(xué)生展開激烈的討論交流,整數(shù)的倒數(shù)就用1除以整數(shù),1的倒數(shù)是1,0沒有倒數(shù)。 “1的倒數(shù)為什么是1?”“0為什么沒有倒數(shù)?” “0沒有倒數(shù)是因?yàn)槿螖?shù)乘0都得0而不可能等于1,且“0作除數(shù)無意義。因此,0沒有倒數(shù)!

  新課程標(biāo)準(zhǔn)中指出既要關(guān)注學(xué)生的學(xué)習(xí)結(jié)果,又要關(guān)注學(xué)生的學(xué)習(xí)過程,更要關(guān)注他們?cè)诨顒?dòng)過程中所表現(xiàn)出來的情感與態(tài)度。在本課中,學(xué)生對(duì)同伴提出的問題賦予很大的探究熱情,比老師直截了當(dāng)?shù)亟o予要強(qiáng)烈得多。作為新課程的實(shí)施者應(yīng)更好地保護(hù)學(xué)生的這種求知欲,保護(hù)學(xué)生提問的信心,這樣才能讓我們的課堂更有人情味,更有生氣,更有參與性,學(xué)生才能真正地脫離教師的疆繩,不總是被教師牽著鼻子走。

  這節(jié)課中,學(xué)生從觀察中比較,從比較中發(fā)現(xiàn),從發(fā)現(xiàn)中提問“整數(shù)有倒數(shù)嗎?小數(shù)有倒數(shù)嗎?”這是一個(gè)從歷來順受到“叛逆”的福音,我們就是要打破這種陳規(guī),把學(xué)生置于學(xué)習(xí)的最高領(lǐng)域,我們應(yīng)當(dāng)持積極的態(tài)度順應(yīng)、保護(hù)并提倡學(xué)生提問的習(xí)慣。并引導(dǎo)學(xué)生主動(dòng)去把握探究的樂趣。只有歷經(jīng)思維磨礪,他們才能深刻體會(huì)到其中的挫折、失敗、樂趣和成功。

  《倒數(shù)的認(rèn)識(shí)》這一課內(nèi)容比較簡單,學(xué)生容易接受,是在學(xué)生已經(jīng)熟練掌握分?jǐn)?shù)乘法的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的,為下章節(jié)分?jǐn)?shù)除法教學(xué)打好基礎(chǔ)。我在備課時(shí)考慮到學(xué)生情況,改變了以往的教學(xué)方式,充分發(fā)揮學(xué)生的主體作用,創(chuàng)設(shè)情境,讓學(xué)生自主提出問題,自主解決。讓學(xué)生經(jīng)歷提問、驗(yàn)證、爭論、交流等獲取知識(shí)的過程。讓學(xué)生經(jīng)歷提出問題、自探問題、應(yīng)用知識(shí)的過程,理解倒數(shù)的意義自主總結(jié)出求倒數(shù)的方法。為了讓學(xué)生獲得充分的經(jīng)歷感知,取得良好的情感體驗(yàn)。

  通過本節(jié)課的教學(xué),大部分學(xué)生能夠很好的理解倒數(shù)的意義,掌握求一個(gè)數(shù)的倒數(shù)的方法,但有一部分學(xué)生對(duì)于倒數(shù)的認(rèn)識(shí),可能僅僅是停留在是不是分子分母顛倒這一表面形式上,忽略了兩個(gè)數(shù)的乘積為1這一條件。因此還應(yīng)在后面分?jǐn)?shù)除法的計(jì)算等內(nèi)容中及時(shí)復(fù)習(xí)以鞏固。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思11

  “倒數(shù)的認(rèn)識(shí)”一課是學(xué)習(xí)分?jǐn)?shù)除法的基礎(chǔ)。這節(jié)課的主要目標(biāo)是讓學(xué)生認(rèn)識(shí)倒數(shù)的意義,知道什么是倒數(shù),并會(huì)求一個(gè)數(shù)的倒數(shù)。這節(jié)課我在上課時(shí),課堂氣氛比較活躍,學(xué)生知識(shí)掌握得較好,通過這節(jié)課的實(shí)際教學(xué),結(jié)合新課標(biāo),給了我不少啟示。

  第一,從聯(lián)系學(xué)生熟悉的生活情景入手,讓學(xué)生用簡單的話介紹一下自己的同桌,學(xué)生通過實(shí)際的`對(duì)話“我是…的同桌”、“…是我的同桌”、“…和…互為同桌”,讓學(xué)生從直觀上理解“互為”同桌的意思,分散了教學(xué)難點(diǎn),為學(xué)習(xí)“互為倒數(shù)”做了一個(gè)鋪墊。而且課堂氣氛也活躍了,融洽了師生關(guān)系。

  第二,相信學(xué)生。給學(xué)生獨(dú)立思考的時(shí)間,讓學(xué)生自己自學(xué)課本,通過書中的算式,自己發(fā)現(xiàn)什么叫做倒數(shù);同時(shí)也給學(xué)生合作學(xué)習(xí)的機(jī)會(huì),探求“整數(shù)的倒數(shù)怎么求”、“0和1有沒有倒數(shù)”、“小數(shù)有沒有倒數(shù)”時(shí),讓學(xué)生小組合作學(xué)習(xí),互相交流,得出結(jié)論,能夠群策群力地解決問題。

  第三,練習(xí)的設(shè)計(jì)多種多樣,我不僅設(shè)計(jì)了關(guān)于倒數(shù)的基礎(chǔ)練習(xí),也有讓學(xué)生“跳一跳,就能摘到蘋果”的提高題,讓學(xué)生在練習(xí)中鞏固,在練習(xí)中提高。最后,我出示了一副回文對(duì)聯(lián)“客上天然居,居然天上客;僧過大佛寺,寺佛大過僧。”讓學(xué)生體會(huì)到數(shù)學(xué)之美。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思12

  一、讓學(xué)生在活動(dòng)化的教學(xué)過程中激活思維。

  由于概念教學(xué)比較枯燥,學(xué)生往往缺乏興趣,所以在揭示倒數(shù)的概念這一環(huán)節(jié),我以游戲競賽的形式進(jìn)行,讓學(xué)生用30秒的時(shí)間進(jìn)行( )×( )=1的比賽,誘發(fā)了學(xué)生強(qiáng)烈的學(xué)習(xí)興趣。在校對(duì)評(píng)價(jià)后,又引導(dǎo)學(xué)生觀察所有算式的共同點(diǎn),根據(jù)學(xué)生的回答開門見山說明倒數(shù)的意義“乘積是1的兩個(gè)數(shù)互為倒數(shù)”,接著通過讓學(xué)生說說對(duì)“和互為倒數(shù)”的理解以及舉例、判斷等多種形式,加深對(duì)倒數(shù)的認(rèn)識(shí)。這樣的活動(dòng)為學(xué)生提供了廣闊的思維空間,確保了人人獲得成功,人人都有成功的體驗(yàn),學(xué)生學(xué)習(xí)的自主性被充分調(diào)動(dòng),思維積極性被充分激活。

  二、讓學(xué)生在自主探究與合作交流中獲取新知。

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:在自主探索和合作交流的過程中才能真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)。在教學(xué)中,充分地探索時(shí)間和空間是有利于促進(jìn)學(xué)生發(fā)展的。因此在教學(xué)求倒數(shù)的方法時(shí),我設(shè)計(jì)了兩個(gè)導(dǎo)學(xué)單,

  導(dǎo)學(xué)單一:

  1.試著寫出 、 的倒數(shù)。

  2.觀察互為倒數(shù)的兩個(gè)數(shù),思考:怎樣就能很快求出一個(gè)數(shù)的倒數(shù)。

  3.先獨(dú)立思考,再小組交流,重點(diǎn)說說是怎么想的?

  導(dǎo)學(xué)單二;

  試著寫出6、1、0.6、0的倒數(shù)。

  2.先獨(dú)立思考,再小組交流,重點(diǎn)交流:

  (1)每個(gè)數(shù)的倒數(shù)是怎么求的?

  (2) 如何檢驗(yàn)?zāi)闱蟮牡箶?shù)是否正確?讓學(xué)生先自主探究,再在小組內(nèi)合作交流。學(xué)生在交流與爭論中達(dá)成了共識(shí),掌握了求一個(gè)數(shù)倒數(shù)的方法。整個(gè)過程學(xué)生學(xué)有興趣、學(xué)有方法、學(xué)有疑問、學(xué)有主見、學(xué)有時(shí)間、學(xué)有伙伴。學(xué)生樂于探索、樂于表現(xiàn)、樂于共享。

  三、讓學(xué)生在思維碰撞中體驗(yàn)成功。

  著名教育家蘇霍姆林斯基說過:“在人的內(nèi)心深處都有一種根深蒂固的需要,那就是希望自己是一個(gè)發(fā)現(xiàn)者和探索者!倍趦和.心理,這種需求更為強(qiáng)烈。在研究關(guān)于0的倒數(shù)問題時(shí),我把0混在其他數(shù)中讓學(xué)生去碰“釘子”,當(dāng)時(shí)學(xué)生中存在兩種答案:一種認(rèn)為0的倒數(shù)是0,另一種認(rèn)為0沒有倒數(shù)。對(duì)于這兩種答案我沒有馬上作出評(píng)價(jià),而是讓學(xué)生辯論、交流,充分發(fā)表自己的看法,學(xué)生從不同角度闡述了0為什么沒有倒數(shù)。這樣不僅增添了課堂的活力,而且還讓學(xué)生經(jīng)歷了探索的過程,解決了學(xué)生的困惑,更讓學(xué)生體會(huì)到成功的快樂。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思13

  “倒數(shù)的認(rèn)識(shí)”是在學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為后面學(xué)習(xí)分?jǐn)?shù)除法做準(zhǔn)備。這一課時(shí)的內(nèi)容主要是讓學(xué)生理解倒數(shù)的意義和會(huì)求一個(gè)數(shù)的倒數(shù),學(xué)生只有學(xué)好這部分知識(shí),才能更好地掌握后面的分?jǐn)?shù)除法的計(jì)算和應(yīng)用題。

  因考慮本節(jié)課的教學(xué)難度不太,所以在設(shè)計(jì)本課的教學(xué)時(shí),我采取了學(xué)生自主學(xué)習(xí)為主的教學(xué)方式,首先創(chuàng)設(shè)了一個(gè)問題情境引入課題,讓學(xué)生帶著問題進(jìn)入課堂,后出示自學(xué)提綱,讓學(xué)生根據(jù)提示自學(xué)課本內(nèi)容,給學(xué)生充分獨(dú)立思考的機(jī)會(huì),然后將自學(xué)所得在小組內(nèi)交流,最后在進(jìn)行全班交流。整個(gè)教學(xué)過程充分體現(xiàn)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,讓學(xué)生在自主探索與交流合作中再現(xiàn)知識(shí)發(fā)生的過程,提高學(xué)生的觀察分析和概括歸納的能力,實(shí)現(xiàn)知識(shí)技能與學(xué)生智能的同步發(fā)展。反思整個(gè)教學(xué)過程.

  1、創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的學(xué)習(xí)積極性。課始,我以一道和本課內(nèi)容相關(guān)的.智力題引入教學(xué),很快就激起了學(xué)生的探究欲望,在學(xué)生努力思考而沒有答案的情況下,我提示了課題,使學(xué)生的學(xué)習(xí)的探究興趣達(dá)到了最高點(diǎn),大大地提高了教學(xué)效果。

  2、給學(xué)生充分合作學(xué)習(xí)的時(shí)間。隨著新課改的實(shí)施,新的教學(xué)理念沖擊著我們的課堂,學(xué)生是課堂的主人,課堂上要充分發(fā)揮學(xué)生學(xué)習(xí)的積極性和主動(dòng)性的思想,使我們不得不退出“主角”地位,努力當(dāng)好 “配角”,在教學(xué)本課時(shí),我努力扮演好自己的角色,給學(xué)生充分的自主學(xué)習(xí)和自主交流的時(shí)間,讓學(xué)生在小組合作中,互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑,在碰撞中體驗(yàn)到成功的快樂。通過合作學(xué)習(xí)使學(xué)生的語言表達(dá)能力、思維能力、與同伴溝通的能力都得到了很大的提高,使學(xué)生的主人翁地位得以體現(xiàn)。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思14

  《倒數(shù)的認(rèn)識(shí)》是在學(xué)生掌握了分?jǐn)?shù)乘法的基礎(chǔ)上教學(xué)的。在這節(jié)課中,我抓住了兩大主要內(nèi)容展開教學(xué):1、學(xué)習(xí)理解倒數(shù)的意義。2、學(xué)習(xí)求一個(gè)數(shù)的倒數(shù)的方法。我以玩文字游戲?qū)胄抡n,吸引學(xué)生的注意力,同時(shí)給學(xué)生灌輸“倒”的想法,把游戲的現(xiàn)象融入到數(shù)學(xué)當(dāng)中。在理解倒數(shù)的意義時(shí),讓學(xué)生抓住關(guān)鍵的詞語“乘積、互為”來理解,并強(qiáng)調(diào)倒數(shù)不是孤立的,而是對(duì)于兩個(gè)數(shù)來說的。有了文字游戲的導(dǎo)入,學(xué)生觀察到了互為倒數(shù)的兩個(gè)數(shù)分子、分母的位置發(fā)生了倒換了,對(duì)求真分?jǐn)?shù)和假分?jǐn)?shù)的倒數(shù)容易掌握了,因而課堂的氛圍很濃,積極踴躍回答問題的同學(xué)很多。但對(duì)自然數(shù)的倒數(shù)以及小數(shù)、帶分?jǐn)?shù)的`倒數(shù),大部分學(xué)生的思維一下子還轉(zhuǎn)不過彎了,只有極少數(shù)的學(xué)生能夠說出方法。對(duì)于特殊的數(shù)1和0,學(xué)生基本上能夠知道他們的倒數(shù)。

  這節(jié)課需要改進(jìn)的地方是:求一個(gè)數(shù)的倒數(shù)還有另外一個(gè)方法就是一個(gè)數(shù)乘以另一個(gè)數(shù),乘積是1,那另一個(gè)數(shù)就是這個(gè)數(shù)的倒數(shù)。如5×( )=1,括號(hào)里的數(shù)就是5的倒數(shù)。這個(gè)方法在這節(jié)課中,我沒有明顯強(qiáng)調(diào)出來,還不能讓學(xué)生真正去理解倒數(shù)的意義。因此,知識(shí)與技能方面的目標(biāo)還不能完成達(dá)到。

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思15

  本節(jié)課是一節(jié)概念課,是陳述性知識(shí),放在這個(gè)單元是起到了承上啟下作用,是為了銜接分?jǐn)?shù)乘法和分?jǐn)?shù)除法計(jì)算法則。其目的就是為除以一個(gè)數(shù)等于乘這個(gè)數(shù)的倒數(shù)做鋪墊,在這個(gè)問題上我一直認(rèn)為:為什么要乘這個(gè)數(shù)的倒數(shù)這個(gè)問題要說清楚,否則分?jǐn)?shù)除法的計(jì)算法則不好理解。

  教學(xué)從尋找乘積是1的兩個(gè)分?jǐn)?shù)開始。在給出的8個(gè)分?jǐn)?shù)中,學(xué)生能夠找到三對(duì)乘積是1的分?jǐn)?shù)。這項(xiàng)貌似游戲的活動(dòng)凸顯了“倒數(shù)”是乘積為1的兩個(gè)數(shù)之間的關(guān)系,這正是建立倒數(shù)概念必須充分注意的內(nèi)涵。教材在三對(duì)乘積是1的分?jǐn)?shù)基礎(chǔ)上,指出“乘積是1的兩個(gè)數(shù)互為倒數(shù)”。學(xué)生準(zhǔn)確理解這句話的意思,不僅要知道互成“倒數(shù)”的兩個(gè)數(shù)的乘積是1,還要明白兩個(gè)數(shù)是“互為倒數(shù)”的。教材里三個(gè)卡通的交流,說的都是兩個(gè)分?jǐn)?shù)的乘積是1。下面的文字?jǐn)⑹鰪?qiáng)調(diào)兩個(gè)數(shù)“互為倒數(shù)”,還以3/8和8/3為例,引導(dǎo)學(xué)生體會(huì)“甲數(shù)是乙數(shù)的倒數(shù),乙數(shù)也是甲數(shù)的倒數(shù)”。

  求已知數(shù)的倒數(shù)分三個(gè)層次教學(xué):先求3/5、2/3等分?jǐn)?shù)的倒數(shù),然后求5、1等整數(shù)的倒數(shù),最后是0沒有倒數(shù)。在第一個(gè)層次里,要求學(xué)生觀察互為倒數(shù)的兩個(gè)分?jǐn)?shù),發(fā)現(xiàn)它們的分子、分母剛好互換位置,一方面進(jìn)一步體會(huì)互為倒數(shù)的兩個(gè)數(shù)的乘積是1,另一方面找到了寫出一個(gè)數(shù)的倒數(shù)的方法。第二個(gè)層次寫出整數(shù)的倒數(shù)?梢詮母拍畛霭l(fā),尋找與這個(gè)整數(shù)相乘等于1的數(shù)。如果把整數(shù)看成分母是1的分?jǐn)?shù),就能像分?jǐn)?shù)那樣直接寫出它的倒數(shù)。第三個(gè)層次理解0沒有倒數(shù),并要求作出相應(yīng)的解釋。這是因?yàn)?和任何數(shù)相乘的積都是0,不存在與0相乘能夠得到1的數(shù)。

  倒數(shù)的意義就是一句話:乘積是1的兩個(gè)數(shù)互為倒數(shù)。但是對(duì)于這句話的理解是有著比較豐富的內(nèi)涵的,這也就是概念內(nèi)涵的體現(xiàn)。這節(jié)課的教學(xué)流程分為這樣幾個(gè)基本塊面:首先通過例題7提出的問題——給出倒數(shù)的含義——分層突擊理解倒數(shù)含義——出示形式上的經(jīng)典錯(cuò)例(特別是小數(shù)的倒數(shù))——處理1和0的問題(這是本節(jié)課的難點(diǎn))。

  本文所談的不是教學(xué)流程上的問題,而是通過倒數(shù)這個(gè)概念,談一談對(duì)概念教學(xué)的理解,從拆句的角度,乘積是1的兩個(gè)數(shù)互為倒數(shù)拆為:乘積是1、兩個(gè)數(shù)、互為倒數(shù)。

  針對(duì)倒數(shù)這個(gè)概念,我認(rèn)為:內(nèi)涵是指向正例的,外延是指向反例的。比如:書上出示乘積是1的正例,我們需要出示商、和、差是1的反例;書上說的是兩個(gè)數(shù)互為倒數(shù),沒有出示3個(gè)數(shù)的反例。這兩個(gè)反例是針對(duì)倒數(shù)概念本身的。

  學(xué)生在倒數(shù)的答案呈現(xiàn)上,習(xí)慣于用等號(hào)表示“的倒數(shù)是”這樣的錯(cuò)誤,比如2=1/2,從數(shù)學(xué)表達(dá)式上說這是非常明顯的錯(cuò)誤,學(xué)生確實(shí)犯了,而且每屆都有這樣的情況,在今年的教學(xué)中我已經(jīng)強(qiáng)調(diào)并且糾正了這樣的錯(cuò)誤,這說明教學(xué)方式對(duì)于不同學(xué)生是不一樣的`,學(xué)生本身的理解和態(tài)度的端正與否也是重要的問題,需要引起重視。

  本節(jié)課需要重視的第二個(gè)問題就是1和0的問題,這兩個(gè)問題實(shí)際上牽涉到其他的概念:假分?jǐn)?shù)、整數(shù)、自然數(shù)。假分?jǐn)?shù)分為1和大于1的假分?jǐn)?shù);整數(shù)和自然數(shù)里都有0,在這個(gè)問題上需要處理好,學(xué)生的理解需要通過不同的方式來體現(xiàn)。

  單獨(dú)的概念教學(xué),或者說倒數(shù)概念本身不是一個(gè)很復(fù)雜的問題,有關(guān)倒數(shù)的知識(shí)主要包括兩點(diǎn):一點(diǎn)是倒數(shù)的意義,另一點(diǎn)是求倒數(shù)的方法。學(xué)生建立倒數(shù)的概念以后,求一個(gè)數(shù)的倒數(shù)就容易了。因此,例7十分重視概念的形成以及對(duì)概念的準(zhǔn)確把握。

  相同的教學(xué)內(nèi)容,幾年的教學(xué)實(shí)踐下來,發(fā)現(xiàn):同樣的教學(xué)內(nèi)容,同樣的知識(shí)點(diǎn),為什么會(huì)出現(xiàn)這么大的差別?究其原因就是因?yàn)槲覀冃枰P(guān)注概念結(jié)構(gòu)出現(xiàn)的次序,比如:整數(shù)的概念是復(fù)習(xí)、假分?jǐn)?shù)的概念是辨析。

  皮亞杰理論中認(rèn)知發(fā)展的三個(gè)基本過程——同化、順應(yīng)、平衡,對(duì)于倒數(shù)概念來說,學(xué)生之前毫無經(jīng)驗(yàn),是屬于順應(yīng),其實(shí)順應(yīng)更類似一個(gè)質(zhì)變的過程,有對(duì)于知識(shí)結(jié)構(gòu)的擴(kuò)展和修正,會(huì)形成一個(gè)新的認(rèn)知圖式。

  但是本節(jié)課的教學(xué)難度不大,原因是這個(gè)知識(shí)點(diǎn)本身是不難的,從形式到本質(zhì),需要考慮的問題主要就是0,所以我在教學(xué)的時(shí)候特別關(guān)注了數(shù)字0的問題,然后在書本上39頁第19題的處理上特別強(qiáng)調(diào)了數(shù)字1的問題。

  從整個(gè)概念系統(tǒng)來說,同化和順應(yīng)是相互依存的,如:本節(jié)課中倒數(shù)的概念是順應(yīng),而用到的外圍概念是整數(shù)、自然數(shù)、假分?jǐn)?shù),我在學(xué)習(xí)的時(shí)候注重對(duì)概念本身的解讀,數(shù)包括自然數(shù)和整數(shù),倒數(shù)的形式是分?jǐn)?shù),但不是分?jǐn)?shù)的整數(shù)和小數(shù)需要先轉(zhuǎn)化為最簡分?jǐn)?shù)之后再處理。

  在概念的形式實(shí)現(xiàn)之后的環(huán)節(jié)就是對(duì)倒數(shù)概念的辨析,如:題目a都有倒數(shù),這句話本身是有問題的,但是我們關(guān)注的點(diǎn)應(yīng)該是a這個(gè)數(shù)的取值范圍,是取正整數(shù)?負(fù)整數(shù)?0?非正整數(shù)?非負(fù)整數(shù)?自然數(shù)?這里都是學(xué)生需要考慮的問題,其實(shí)有沒有倒數(shù)的核心概念就是:0沒有倒數(shù),但是對(duì)于具體的表現(xiàn)形式是我們需要花時(shí)間去思量的問題。

【《倒數(shù)的認(rèn)識(shí)》教學(xué)反思】相關(guān)文章:

倒數(shù)的認(rèn)識(shí)教學(xué)反思02-17

認(rèn)識(shí)倒數(shù)教學(xué)反思11-05

倒數(shù)的認(rèn)識(shí)教學(xué)反思07-04

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思范文05-19

數(shù)學(xué)倒數(shù)的認(rèn)識(shí)教學(xué)反思09-30

倒數(shù)的認(rèn)識(shí)教學(xué)反思范文06-25

《倒數(shù)的認(rèn)識(shí)》教學(xué)反思(15篇)07-12

倒數(shù)的認(rèn)識(shí)課堂教學(xué)反思02-13

倒數(shù)的認(rèn)識(shí)教學(xué)反思15篇02-26