當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教學(xué)反思> 二次函數(shù)教學(xué)反思

二次函數(shù)教學(xué)反思

時(shí)間:2024-06-24 21:11:20 教學(xué)反思 我要投稿

二次函數(shù)教學(xué)反思(15篇)

  身為一位優(yōu)秀的教師,教學(xué)是我們的工作之一,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編為大家整理的二次函數(shù)教學(xué)反思,希望對(duì)大家有所幫助。

二次函數(shù)教學(xué)反思(15篇)

二次函數(shù)教學(xué)反思1

  元月14日,高港區(qū)數(shù)學(xué)骨干教師培訓(xùn)班成員在我校組織了一次集體備課。其中一組成員討論了由我主備的二次函數(shù)圖象和性質(zhì)的復(fù)習(xí)課,他們提出了許多寶貴的建議,在經(jīng)過幾天的精心修改后,我于元月21日在我校多功能教室上了這堂公開課。本節(jié)課的復(fù)習(xí)目標(biāo)是:①能根據(jù)已知條件確定二次函數(shù)的解析式、開口方向、頂點(diǎn)和對(duì)稱軸。②理解并能運(yùn)用二次函數(shù)的圖象和性質(zhì)解決有關(guān)問題。本節(jié)課的重、難點(diǎn)是:二次函數(shù)圖象和性質(zhì)的綜合應(yīng)用。我立足于學(xué)生自主復(fù)習(xí),師生合作探究的形式完成本節(jié)課的教學(xué)任務(wù)。

  首先我讓學(xué)生課前完成二次函數(shù)圖象和性質(zhì)的基礎(chǔ)訓(xùn)練,促使學(xué)生對(duì)二次函數(shù)圖象和性質(zhì)的知識(shí)點(diǎn)全面梳理和掌握。課上我用投影儀檢查一名學(xué)生完成課前復(fù)習(xí)情況,其他學(xué)生交換批改,發(fā)現(xiàn)最后一小條有部分學(xué)生有問題,我及時(shí)評(píng)講分析,幫助學(xué)生解決。

  接著,師生合作探究本節(jié)課的例題。本例是用已知拋物線解決7個(gè)問題,這7個(gè)問題是我從全國(guó)20xx年中考試題中整理出來的,它代表了中考的方面。問題1是用頂點(diǎn)式求出拋物線的解析式再通過解析式求與坐標(biāo)軸的交點(diǎn),通過觀察圖象我又提出了x為何值時(shí),y>0,y<0?以及圖中△AOC與△DCB有何關(guān)系,進(jìn)一步培養(yǎng)學(xué)生發(fā)現(xiàn)問題解決問題的能力。問題2、問題3、問題4是拋物線的平移、軸對(duì)稱和旋轉(zhuǎn)的題目。主要是讓學(xué)生抓住拋物線的頂點(diǎn)和開口方向來完成。這種類型的題目也有少數(shù)同學(xué)從坐標(biāo)點(diǎn)的對(duì)稱角度來解決也是可行的,并且方便記憶,對(duì)于這兩種方法我讓學(xué)生作了及時(shí)的'歸納小結(jié)。問題5和問題6是關(guān)于拋物線的最值問題。問題5是利用拋物線的對(duì)稱性解決三角形的周長(zhǎng)最小的題目。學(xué)生通過作圖能獨(dú)立解決并求出點(diǎn)的坐標(biāo)。問題6是本節(jié)課的重點(diǎn),它通過建立目標(biāo)函數(shù)解決四邊形面積的極值。本題目關(guān)鍵是引導(dǎo)學(xué)生如何設(shè)點(diǎn)的坐標(biāo),將四邊形的面積轉(zhuǎn)化成我們熟悉的三角形(或直角梯形)來建立函數(shù)關(guān)系式。通過這條題進(jìn)一步培養(yǎng)學(xué)生建立函數(shù)模型的思想。本題讓學(xué)生充分合作交流,最后,讓學(xué)生在自主探索中獲取新的知識(shí)。通過觀察圖象求出了四邊形的面積后,我又提出如何求△BCF的面積的最大值的問題,讓本題得到進(jìn)一步的升華,培養(yǎng)學(xué)生的創(chuàng)新思維。問題7是在拋物線上探求點(diǎn)存在性問題,引導(dǎo)學(xué)生先作出符合條件的平行四邊形,再判斷點(diǎn)是否在拋物線上,本題著重培養(yǎng)了學(xué)生數(shù)形結(jié)合的思想方法。

  這7個(gè)問題由淺入深,循序漸進(jìn)推出,符合學(xué)生的認(rèn)知規(guī)律,使學(xué)生對(duì)二次函數(shù)圖象和性質(zhì)有了進(jìn)一步的理解和提高。

  本節(jié)課完成后,我感到也有不足的地方:課堂容量稍有點(diǎn)偏大,學(xué)生沒有時(shí)間獨(dú)立完成作業(yè)。雖然我對(duì)每個(gè)問題及時(shí)小結(jié)、歸納,但沒有留一定時(shí)間讓學(xué)生整理消化。通過這堂公開課,我受益匪淺,感受頗多,讓我在如何備復(fù)習(xí)課,準(zhǔn)確把握重點(diǎn),突破難點(diǎn)方面有了很大的提高,同時(shí)在駕馭課堂能力方面有了很大的進(jìn)步。今后我將在如何提高有效課堂效率方面多下功夫,使自己教育教學(xué)(此文來自)水平更上一個(gè)臺(tái)階。

二次函數(shù)教學(xué)反思2

  一、教學(xué)目標(biāo):

  1。經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系。

  2。理解拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)數(shù)和沒有實(shí)根。

  3。能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

  二、教學(xué)重點(diǎn)、難點(diǎn):

  教學(xué)重點(diǎn):

  1。體會(huì)方程與函數(shù)之間的聯(lián)系。

  2。能夠利用二次函數(shù)的圖象求一元二次方程的近似根。

  教學(xué)難點(diǎn):

  1。探索方程與函數(shù)之間關(guān)系的過程。

  2。理解二次函數(shù)與x軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系。

  三、教學(xué)方法:?jiǎn)l(fā)引導(dǎo) 合作交流

  四:教具、學(xué)具:課件

  五、教學(xué)媒體:計(jì)算機(jī)、實(shí)物投影。

  六、教學(xué)過程:

  [活動(dòng)1] 檢查預(yù)習(xí) 引出課題

  預(yù)習(xí)作業(yè):

  1。解方程:(1)x2+x—2=0; (2) x2—6x+9=0; (3) x2—x+1=0; (4) x2—2x—2=0。

  2。 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x—4=0的解。

  師生行為:教師展示預(yù)習(xí)作業(yè)的內(nèi)容, 指名回答,師生共同回顧舊知,教師做出適當(dāng)總結(jié)和評(píng)價(jià)。

  教師重點(diǎn)關(guān)注:學(xué)生回答問題結(jié)論準(zhǔn)確性,能否把前后知識(shí)聯(lián)系起來,2題的格式要規(guī)范。

  設(shè)計(jì)意圖:這兩道預(yù)習(xí)題目是對(duì)舊知識(shí)的回顧,為本課的教學(xué)起到鋪墊的作用,1題中的三個(gè)方程是課本中觀察欄目中的三個(gè)函數(shù)式的變式,這三個(gè)方程把二次方程的根的三種情況體現(xiàn)出來,讓學(xué)生回顧二次方程的相關(guān)知識(shí);2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計(jì)是讓學(xué)生用學(xué)過的熟悉的知識(shí)類比探究本課新知識(shí)。

  [活動(dòng)2] 創(chuàng)設(shè)情境 探究新知

  問題

  1。課本P16 問題。

  2。結(jié)合圖形指出,為什么有兩個(gè)時(shí)間球的高度是15m或0m?為什么只在一個(gè)時(shí)間球的高度是20m?

 。ńY(jié)合預(yù)習(xí)題1,完成課本P16 觀察中的題目。)

  師生行為:教師提出問題1,給學(xué)生獨(dú)立思考的時(shí)間,教師可適當(dāng)引導(dǎo),對(duì)學(xué)生的解題思路和格式進(jìn)行梳理和規(guī)范;問題2學(xué)生獨(dú)立思考指名回答,注重?cái)?shù)形結(jié)合思想的滲透;問題3是由學(xué)生分組探究的,這個(gè)問題的探究稍有難度,活動(dòng)中教師要深入到各個(gè)小組中進(jìn)行點(diǎn)撥,引導(dǎo)學(xué)生總結(jié)歸納出正確結(jié)論。

  二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)的坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

  二次函數(shù)y=ax2+bx+c的圖象和x軸交點(diǎn)

  一元二次方程ax2+bx+c=0的根

  一元二次方程ax2+bx+c=0根的判別式=b2—4ac

  兩個(gè)交點(diǎn)

  兩個(gè)相異的實(shí)數(shù)根

  b2—4ac 0

  一個(gè)交點(diǎn)

  兩個(gè)相等的實(shí)數(shù)根

  b2—4ac = 0

  沒有交點(diǎn)

  沒有實(shí)數(shù)根

  b2—4ac 0

  教師重點(diǎn)關(guān)注:

  1。學(xué)生能否把實(shí)際問題準(zhǔn)確地轉(zhuǎn)化為數(shù)學(xué)問題;

  2。學(xué)生在思考問題時(shí)能否注重?cái)?shù)形結(jié)合思想的應(yīng)用;

  3。學(xué)生在探究問題的過程中,能否經(jīng)歷獨(dú)立思考、認(rèn)真傾聽、獲得信息、梳理歸納的.過程,使解決問題的方法更準(zhǔn)確。

  設(shè)計(jì)意圖:由現(xiàn)實(shí)中的實(shí)際問題入手給學(xué)生創(chuàng)設(shè)熟悉的問題情境,促使學(xué)生能積極地參與到數(shù)學(xué)活動(dòng)中去,體會(huì)二次函數(shù)與實(shí)際問題的關(guān)系;學(xué)生通過小組合作分析、交流,探求二次函數(shù)與一元二次方程的關(guān)系,培養(yǎng)學(xué)生的合作精神,積累學(xué)習(xí)經(jīng)驗(yàn)。

  [活動(dòng)3] 例題學(xué)習(xí) 鞏固提高

  問題: 例 利用函數(shù)圖象求方程x2—2x—2=0的實(shí)數(shù)根(精確到0。1)。

  師生行為:教師提出問題,引導(dǎo)學(xué)生根據(jù)預(yù)習(xí)題2獨(dú)立完成,師生互相訂正。

  教師關(guān)注:(1)學(xué)生在解題過程中格式是否規(guī)范;(2)學(xué)生所畫圖象是否準(zhǔn)確,估算方法是否得當(dāng)。

  設(shè)計(jì)意圖:通過預(yù)習(xí)題2的鋪墊,同學(xué)們已經(jīng)從舊知識(shí)中尋找到新知識(shí)的生長(zhǎng)點(diǎn),很容易明確例題的解題思路和方法,這樣既降低難點(diǎn)且突出重點(diǎn)。

  [活動(dòng)4] 練習(xí)反饋 鞏固新知

  問題:(1) P97。習(xí)題 1、2(1)。

  師生行為:教師提出問題,學(xué)生獨(dú)立思考后寫出答案,師生共同評(píng)價(jià);問題(2)學(xué)生獨(dú)立思考后同桌交流,實(shí)物投影出學(xué)生解題過程,教師強(qiáng)調(diào)正確解題思路。

  教師關(guān)注:學(xué)生能否準(zhǔn)確應(yīng)用本節(jié)課的知識(shí)解決問題;學(xué)生解題時(shí)候暴露的共性問題作針對(duì)性的點(diǎn)評(píng),積累解題經(jīng)驗(yàn)。

  設(shè)計(jì)意圖:這兩個(gè)題目就是對(duì)本節(jié)課知識(shí)的鞏固應(yīng)用,讓新知識(shí)內(nèi)化升華,培養(yǎng)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性。

  [活動(dòng)5] 自主小結(jié),深化提高:

  1。通過這節(jié)課的學(xué)習(xí),你獲得了哪些數(shù)學(xué)知識(shí)和方法?

  2。這節(jié)課你參與了哪些數(shù)學(xué)活動(dòng)?談?wù)勀惬@得知識(shí)的方法和經(jīng)驗(yàn)。

  師生活動(dòng):學(xué)生思考后回答,教師對(duì)學(xué)生的錯(cuò)誤予以糾正,不足的予以補(bǔ)充,精彩的適當(dāng)表揚(yáng)。

  設(shè)計(jì)意圖:

  1。題促使學(xué)生反思在知識(shí)和技能方面的收獲;

  2。題讓學(xué)生反思自己的學(xué)習(xí)活動(dòng)、認(rèn)知過程,總結(jié)解決問題的策略,積累學(xué)習(xí)知識(shí)的方法,力求不同的學(xué)生有不同的發(fā)展。

  [活動(dòng)6] 分層作業(yè),發(fā)展個(gè)性:

  1。(必做題)閱讀教材并完成P97 習(xí)題21。2: 3、4。

  2。(備選題)P97 習(xí)題21。2:5、6

  設(shè)計(jì)意圖:分層作業(yè),使不同層次的學(xué)生都能有所收獲。

  七、教學(xué)反思:

  1。注重知識(shí)的發(fā)生過程與思想方法的應(yīng)用

  《用函數(shù)的觀點(diǎn)看一元二次方程》內(nèi)容比較多,而課時(shí)安排只一節(jié),為了在一節(jié)課的時(shí)間里更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律遵循教師為主導(dǎo)、學(xué)生為主體的指導(dǎo)思想,本節(jié)課給學(xué)生布置的預(yù)習(xí)作業(yè),從學(xué)生已有的經(jīng)驗(yàn)出發(fā)引發(fā)學(xué)生觀察、分析、類比、聯(lián)想、歸納、總結(jié)獲得新的知識(shí),讓學(xué)生充分感受知識(shí)的產(chǎn)生和發(fā)展過程,使學(xué)生始終處于積極的思維狀態(tài)中,對(duì)新的知識(shí)的獲得覺得不意外,讓學(xué)生跳一跳就可以摘到桃子。

  探究拋物線交x軸的點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系及其應(yīng)用的過程中,引導(dǎo)學(xué)生觀察圖形, 從圖象與x軸交點(diǎn)的個(gè)數(shù)與方程的根之間進(jìn)行分析、猜想、歸納、總結(jié),這是重要的數(shù)學(xué)中數(shù)形結(jié)合的思想方法,在整個(gè)教學(xué)過程中始終貫穿的是類比思想方法。這些方法的使用對(duì)學(xué)生良好思維品質(zhì)的形成有重要的作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。

  2。關(guān)注學(xué)生學(xué)習(xí)的過程

  在教學(xué)過程中,教師作為引導(dǎo)者,為學(xué)生創(chuàng)設(shè)問題情境、提供問題串、給學(xué)生提供廣闊的思考空間、活動(dòng)空間、為學(xué)生搭建自主學(xué)習(xí)的平臺(tái);學(xué)生則在老師的指導(dǎo)下經(jīng)歷操作、實(shí)踐、思考、交流、合作的過程,其知識(shí)的形成和能力的培養(yǎng)相伴而行,創(chuàng)造海闊憑魚躍,天高任鳥飛的課堂境界。

  3。強(qiáng)化行為反思

  反思是數(shù)學(xué)的重要活動(dòng),是數(shù)學(xué)活動(dòng)的核心和動(dòng)力,本節(jié)課在教學(xué)過程中始終融入反思的環(huán)節(jié),用問題的設(shè)計(jì),課堂小結(jié),課后的數(shù)學(xué)日記等方式引發(fā)學(xué)生反思,使學(xué)生在掌握知識(shí)的同時(shí),領(lǐng)悟解決問題的策略,積累學(xué)習(xí)方法。說到數(shù)學(xué)日記,數(shù)學(xué)日記就是學(xué)生以日記的形式,記述學(xué)生在數(shù)學(xué)學(xué)習(xí)和應(yīng)用過程中的感受與體會(huì)。通過日記的方式,學(xué)生可以對(duì)他所學(xué)的數(shù)學(xué)內(nèi)容進(jìn)行總結(jié),寫出自己的收獲與困惑。數(shù)學(xué)日記該如何寫,寫什么呢?開始摸索寫數(shù)學(xué)日記的時(shí)候,我根據(jù)課程標(biāo)準(zhǔn)的內(nèi)容給學(xué)生提出寫數(shù)學(xué)日記的簡(jiǎn)單模式:日記參考格式:課題;所涉及的重要數(shù)學(xué)概念或規(guī)律;理解得最好的地方;不明白的或還需要進(jìn)一步理解的地方;所涉及的數(shù)學(xué)思想方法;所學(xué)內(nèi)容能否應(yīng)用在日常生活中,舉例說明。通過這兩年的摸索,我把數(shù)學(xué)日記大致分為:課堂日記、復(fù)習(xí)日記、錯(cuò)題日記。

  4。優(yōu)化作業(yè)設(shè)計(jì)

  作業(yè)的設(shè)計(jì)分必做題和選做題,必做題鞏固本課基礎(chǔ)知識(shí),基本要求;選做題屬于拓廣探索題目,培養(yǎng)學(xué)生的創(chuàng)新能力和實(shí)踐能力。

二次函數(shù)教學(xué)反思3

  二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的.概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問題中二次函數(shù)的解析式和它的定義域.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義. 在教學(xué)中,我主要遇到了這樣幾個(gè)問題:

  1、關(guān)于能夠進(jìn)行整理變?yōu)檎降氖阶有问脚袛嗖粶?zhǔn),主要是我自身對(duì)這個(gè)概念把握不是很清楚,通過這節(jié)課的教學(xué)過程,和各位老師的幫助知道,真正達(dá)到了教學(xué)相長(zhǎng)的效果。

  2、在細(xì)節(jié)方面我還有很多的不足,比如,在二次函數(shù)的表示過程中,應(yīng)注意強(qiáng)調(diào)按自變量的降冪排列進(jìn)行整理,這類問題在今后的教學(xué)中,我會(huì)注意這些方面的教學(xué)。

  3、在變式訓(xùn)練的過程中要注意思考容量和密度以及效度的關(guān)系,注意教學(xué)安排的合理性。另外在教學(xué)語言的精煉方面我還有待加強(qiáng)。

二次函數(shù)教學(xué)反思4

  二次函數(shù)是學(xué)生學(xué)習(xí)了正比例函數(shù),一次函數(shù)和反比例函數(shù)以后進(jìn)一步學(xué)習(xí)函數(shù)知識(shí),是函數(shù)知識(shí)螺旋發(fā)展的一個(gè)重要環(huán)節(jié),二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時(shí)所采用的重要方法之一,也是某些簡(jiǎn)單變量最優(yōu)化問題的數(shù)學(xué)模型。和一次函數(shù),反比例函數(shù)一樣,它也是一種非;镜某醯群瘮(shù),對(duì)二次函數(shù)的研究將為學(xué)生進(jìn)一步學(xué)習(xí)函數(shù),體會(huì)函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗(yàn)。

  本節(jié)課的具體內(nèi)容是讓學(xué)生理解二次函數(shù)的概念,會(huì)判斷一個(gè)函數(shù)是否是二次函數(shù),并能夠用二次函數(shù)的一般形式解決一些問題。為此,我先帶領(lǐng)學(xué)生復(fù)習(xí)了什么是一次函數(shù),然后設(shè)計(jì)具體的問題情境讓學(xué)生自己“推導(dǎo)”出一個(gè)二次函數(shù),并觀察、總結(jié)它與一次函數(shù)有什么不同。在此基礎(chǔ)上,逐步歸納出二次函數(shù)的一般解析式:y=ax+bx+c(a,b,c是常數(shù),a≠0)。最后,通過隨堂練習(xí)鞏固二次函數(shù)的概念并解決一些簡(jiǎn)單的數(shù)學(xué)問題。

  我個(gè)人以為,本節(jié)課的成功之處是:

  教學(xué)時(shí),通過實(shí)例引入二次函數(shù)的'概念,讓學(xué)生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型,通過學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問題中二次函數(shù)的解析式,大部分學(xué)生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述,研究變量之間變化規(guī)律的意義。讓學(xué)生終生受用的思考方法,使學(xué)生的思維水平有所提高。這樣不僅提高了學(xué)生獨(dú)立發(fā)現(xiàn)問題、解決問題的能力,避免學(xué)習(xí)落入程式化的窠臼,而且也讓學(xué)生體驗(yàn)到了成功的快樂。

二次函數(shù)教學(xué)反思5

  一、背景說明

  這是九年級(jí)剛上完二次函數(shù)新課后的一堂復(fù)習(xí)課,本堂課的目的是通過用多種方法求二次函數(shù)的解析式,從而培養(yǎng)學(xué)生的一題多解能力及探索意識(shí)。

  二、探究與討論

  問題:已知二次函數(shù)的圖象過點(diǎn)(1,0),在y軸上的截距為3,對(duì)稱軸是直線x=2,求它的函數(shù)解析式。

  (給學(xué)生充分的思考時(shí)間)

  師:哪位同學(xué)能把解法說一下?

  生A:解:設(shè)二次函數(shù)解析式為y=ax2+bx+c,把(1,0),(0,3)代入,得

  a+b+c=0

  c=3

  又因?yàn)閷?duì)稱軸是x=2,所以—b/2a=2

  所以得a+b+c=0

  c=3

  —b/2a=2

  解得a=1

  b=—4

  c=3

  所以所求解析式為y=x2—4x+3

  師:兩點(diǎn)代入二次函數(shù)一般式必定出現(xiàn)不定式,能想到對(duì)稱軸,從而以三元一次方程組解得a,b,c,不錯(cuò)!除此方法外,還有沒有其他方法,大家可以相互討論一下。

  (同學(xué)們開始討論,思考)

  生B:我認(rèn)為此題可用頂點(diǎn)式,即設(shè)二次函數(shù)解析式為y=a(x—2)2+k,把(1,0),(0,3)代入,得

  a+k=0

  4a+k=3

  解得a=1

  k=—1

  故所求二次函數(shù)的解析式為y=(x—2)2—1,即y=x2—4x+3

  師:非常好。那還有沒有其他方法,請(qǐng)大家再思考一下。

 。▽W(xué)生沉默一會(huì)兒,有人舉手發(fā)言)

  生C:因?yàn)閷?duì)稱軸是直線x=2,在y軸上的截距為3,我認(rèn)為該二次函數(shù)解析式可設(shè)為y=ax2—4ax+3,在把(1,0)代入得a—4a+3=0,解得a=1,所以所求解析式為y=x2—4x+3

  師:設(shè)得巧妙,這個(gè)函數(shù)解析式只含一個(gè)字母,這給運(yùn)算帶來很大方便,很好,很善于思考。大家再想想看,是否還有其他解題途徑。

 。▽W(xué)生們又挖空心思地思考起來,終于有一學(xué)生打破沉寂)

  生D:由于圖象過點(diǎn)(1,0),對(duì)稱軸是直線x=2,故得與x軸的另一交點(diǎn)為(3,0),所以可用兩根式設(shè)二次函數(shù)解析式為y=a(x—1)(x—3),再把(0,3)代入,得a=1,

  所以二次函數(shù)解析式為y=(x—1)(x—3),即y=x2—4x+3

 。ㄍ瑢W(xué)們給生D以熱烈的.掌聲)

  師:函數(shù)本身與圖形是不可分割的,能數(shù)形結(jié)合,非常不錯(cuò),用兩根式解此題,非常獨(dú)到。

  (至此下課時(shí)間快到,原先設(shè)計(jì)好的三題只完成一題,但看到學(xué)生的探索的可愛勁,不能按課前安排完成內(nèi)容又有何妨呢?)

  師:最后,請(qǐng)同學(xué)們想一下,通過本堂課的學(xué)習(xí),你獲得了什么?

  生1:我知道了求二次函數(shù)解析式方法有:一般式,頂點(diǎn)式,兩根式。

  生2:我獲得了解題的能力,今后做完一道題目,我會(huì)思考還有沒有更好的方法。

  三、回顧與反思

  1。每一個(gè)學(xué)生都有豐富的知識(shí)體驗(yàn)和生活積累,每一個(gè)學(xué)生都會(huì)有各自的思維方式和解決問題的策略。而我對(duì)他們的能力經(jīng)常低估,在以往的上課過程中,總喋喋不休,深怕講漏了什么,但一堂課下來,學(xué)生收獲甚微。本堂課,我賦予學(xué)生較多的思考和交流的機(jī)會(huì),試著讓學(xué)生成為數(shù)學(xué)學(xué)習(xí)的主人,我自己充當(dāng)了一回?cái)?shù)學(xué)學(xué)習(xí)的組織者,沒想到取得了意想不到的效果,學(xué)生不但能用一般式,頂點(diǎn)式解決此題,還能深層挖掘巧妙地用兩根式解決此題,學(xué)生的潛力真是無窮。

  2。通過本堂課的教學(xué),我想了很多。新課程改革要求教師要有現(xiàn)代的教學(xué)觀、學(xué)生觀,才能培養(yǎng)出具有創(chuàng)新精神和實(shí)踐能力的下一代。所以教師應(yīng)當(dāng)走下“教壇”,與學(xué)生在民主、平等的氛圍中交流意見,共同探討問題。學(xué)生的主動(dòng)參與是學(xué)習(xí)活動(dòng)有效進(jìn)行的關(guān)鍵所在,因此教師還應(yīng)該在學(xué)生“學(xué)”上進(jìn)行改革,從學(xué)生的實(shí)際出發(fā),從學(xué)生的生活出發(fā),才能把學(xué)生從被動(dòng)聽的束縛中解放出來,使學(xué)生真正成為學(xué)習(xí)的主人。本節(jié)課教師始終與學(xué)生保持著平等和相互尊重,為學(xué)生探究學(xué)習(xí)提供了前提條件。

  問題是無窮盡而活的,只有讓學(xué)生主動(dòng)探索,才能真正地理解,鞏固知識(shí)點(diǎn),從而運(yùn)用知識(shí)點(diǎn),即真正知其所以然。今后,我將不斷嘗試,不斷完善自身,使學(xué)生的討論和思考更有意義。

二次函數(shù)教學(xué)反思6

  課后查看了數(shù)學(xué)課程標(biāo)準(zhǔn)中對(duì)二次函數(shù)的要求:

  1、通過對(duì)實(shí)際問題情境的分析確定二次函數(shù)的表達(dá)式,并體會(huì)二次函數(shù)的意義。

  2、會(huì)用描點(diǎn)法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識(shí)二次函數(shù)的性質(zhì)。

  3、會(huì)根據(jù)公式確定圖象的頂點(diǎn)、開口方向和對(duì)稱軸(公式不要求記憶和推導(dǎo)),并能解決簡(jiǎn)單的實(shí)際問題。

  4、會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解。

  發(fā)現(xiàn)并沒有提到用頂點(diǎn)式來求二次函數(shù)的解析式,而且在后面的幾節(jié)課的教學(xué)中也沒有要求用頂點(diǎn)式來求二次函數(shù)的`解析式。但是我認(rèn)為新課標(biāo)所提出的要求應(yīng)該是對(duì)學(xué)生的最低要求,它并不反對(duì)教師結(jié)合學(xué)生的實(shí)際對(duì)教材的重新處理。并且從教學(xué)的反饋來看,加上了這3個(gè)練習(xí)學(xué)生能較好的理解本課的教學(xué)目標(biāo),同時(shí)也能對(duì)前面所學(xué)的二次函數(shù)頂點(diǎn)的知識(shí)加深印象。適應(yīng)學(xué)生的最近發(fā)展區(qū)。何樂而不為。

二次函數(shù)教學(xué)反思7

  根據(jù)市骨干教師交流學(xué)習(xí)的安排,我在九年四班上了《2.1二次函數(shù)所描述的關(guān)系》這節(jié)課。這節(jié)課我首先讓學(xué)生思考了列兩個(gè)函數(shù)關(guān)系式的生活實(shí)際問題,然后又對(duì)函數(shù)的定義和分類進(jìn)行了鞏固。接著在學(xué)生探究?jī)蓚(gè)實(shí)際問題的基礎(chǔ)上,思考、歸納出二次函數(shù)的定義以及探討對(duì)二次函數(shù)的判斷,最后針對(duì)二次函數(shù)的定義和能用二次函數(shù)表示變量之間關(guān)系進(jìn)行了鞏固應(yīng)用。

  課后,組內(nèi)的老師認(rèn)真地評(píng)析了本節(jié)課。結(jié)合組內(nèi)老師的評(píng)課,我自己也進(jìn)行了認(rèn)真反思。

  成功之處:

  1、對(duì)二次函數(shù)的學(xué)習(xí),本節(jié)課通過豐富的現(xiàn)實(shí)背景,通過學(xué)生感興趣的問題,使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價(jià)值。對(duì)二次函數(shù)的學(xué)習(xí),通過學(xué)生的探究性活動(dòng)(經(jīng)歷數(shù)學(xué)化的過程),通過學(xué)生之間的合作與交流,通過分析實(shí)際問題,如探究橙子的數(shù)量與橙子樹之間的關(guān)系、及用關(guān)系式表示這一關(guān)系的過程,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的'密切聯(lián)系、

  2、設(shè)計(jì)大量的可以表示為二次函數(shù)、利用所學(xué)的二次函數(shù)知識(shí)可以解決的實(shí)際問題,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力;利用“想一想”,提出進(jìn)一步的最大產(chǎn)量的問題;用統(tǒng)計(jì)的方法得到關(guān)于最大產(chǎn)量的一種猜想,問題的最后讓學(xué)生初步感受二次函數(shù)能解決最優(yōu)化的實(shí)際問題。在“做一做”的活動(dòng)中,把兩年后的本息和y與年利率x的關(guān)系表示為二次函數(shù);在以上兩例的基礎(chǔ)上,給出二次函數(shù)的定義,并舉出以前所見到的一些二次函數(shù)關(guān)系式,為新知的理解做好了鋪墊。

  3、在新知的鞏固應(yīng)用環(huán)節(jié),我精心設(shè)計(jì)了不同題型的問題,很好鞏固應(yīng)用了本節(jié)的新知,課堂達(dá)到了較好的教學(xué)效果。

  4、本節(jié)課我注重訓(xùn)練學(xué)生書寫的規(guī)范性,讓學(xué)生養(yǎng)成良好的答題規(guī)范習(xí)慣。

  不足之處:

  1、在分組教學(xué)時(shí),對(duì)用統(tǒng)計(jì)的方法得到關(guān)于最大產(chǎn)量的一種猜想,課堂上有一部分學(xué)生沒有充分參加計(jì)算,此處給學(xué)生的時(shí)間少一些。

  2、在“做一做”的活動(dòng)中,把兩年后的本息和y與年利率x的關(guān)系表示為二次函數(shù)的過程中,沒有讓學(xué)生有更多的交流和互相評(píng)價(jià),有些學(xué)生對(duì)列函數(shù)關(guān)系式不是完全理解;

  總之,通過本節(jié)課,讓我真正意識(shí)到:對(duì)于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗(yàn)設(shè)計(jì)。在每節(jié)課的課前,一定要進(jìn)行精心的預(yù)設(shè)。在課堂中,同時(shí)要結(jié)合課堂的實(shí)際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進(jìn)行分組教學(xué)時(shí),提前預(yù)設(shè)好教學(xué)時(shí)間,在每節(jié)課上,既要放的開,同時(shí)又要注意在適當(dāng)?shù)臅r(shí)機(jī)收回,以保證每節(jié)教學(xué)基本任務(wù)完成。

二次函數(shù)教學(xué)反思8

  教學(xué)中,對(duì)函數(shù)與方程的關(guān)系有一個(gè)逐步認(rèn)識(shí)的過程,教材遵循了由淺入深、循序漸進(jìn)的原則。分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認(rèn)為較簡(jiǎn)單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點(diǎn)的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。

  除了函數(shù)模型的應(yīng)用之外,還要介紹函數(shù)的零點(diǎn)與方程的`根的關(guān)系,用二分法求方程的近似解,以及幾種不同增長(zhǎng)的函數(shù)模型。教科書在處理上,以函數(shù)模型的應(yīng)用這一內(nèi)容為主線,以幾個(gè)重要的函數(shù)模型為對(duì)象或工具,將各部分內(nèi)容緊密結(jié)合起來,使之成為一個(gè)系統(tǒng)的整體。教學(xué)中應(yīng)當(dāng)注意貫徹教科書的這個(gè)意圖,是學(xué)生經(jīng)歷函數(shù)模型應(yīng)用的完整。

二次函數(shù)教學(xué)反思9

  二次函數(shù)的應(yīng)用是學(xué)習(xí)二次函數(shù)的圖像與性質(zhì)后,檢驗(yàn)學(xué)生應(yīng)用所學(xué)知識(shí)解決實(shí)際問題能力的一個(gè)綜合考查,它是本章的難點(diǎn)。新的課程標(biāo)準(zhǔn)要求學(xué)生能通過對(duì)實(shí)際問題的情境的分析確定二次函數(shù)的表達(dá)式,體會(huì)其意義,能根據(jù)圖像的性質(zhì)解決簡(jiǎn)單的實(shí)際問題,而最大值問題是生活中利用二次函數(shù)知識(shí)解決最常見、最有實(shí)際應(yīng)用價(jià)值的問題,它生活背景豐富,學(xué)生比較感興趣。本節(jié)課通過學(xué)習(xí)求水流的最高點(diǎn)問題,引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用數(shù)學(xué)建模的思想去解決和函數(shù)有關(guān)的應(yīng)用問題。此部分內(nèi)容是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅(jiān)實(shí)的基礎(chǔ)。

  由于本節(jié)課是二次函數(shù)的應(yīng)用問題,重在通過學(xué)習(xí)總結(jié)解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學(xué)活動(dòng),以學(xué)生動(dòng)手動(dòng)腦探究為主,必要時(shí)加以小組合作討論,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性和主動(dòng)性,突出學(xué)生的主體地位,達(dá)到“不但使學(xué)生學(xué)會(huì),而且使學(xué)生會(huì)學(xué)”的目的。二次函數(shù)應(yīng)用的教學(xué)后,比我預(yù)想的效果要好一些,出現(xiàn)了幾個(gè)點(diǎn)引人深思:

  1、精心設(shè)計(jì)問題,引發(fā)學(xué)生思考建立數(shù)模

  在《二次函數(shù)的應(yīng)用》的教學(xué)過程中,復(fù)習(xí)舊知后,主要安排了一道例3—水流最高點(diǎn)問題:人工噴泉有一個(gè)豎直的噴水槍AB,噴水口A距地面2m,噴水水流的軌跡是拋物線。如果要求水流的最高點(diǎn)P到噴水槍AB所在直線的距離為1m,且水流的著地點(diǎn)C距離水槍底部B的距離為2。5m,那么,水流的最高點(diǎn)距離地面是多少米?以此題為契機(jī),培養(yǎng)學(xué)生的分析問題、解決問題的能力。本節(jié)課重點(diǎn)放在分析問題,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立數(shù)學(xué)模型解決問題。所以在教學(xué)時(shí),教師應(yīng)有意鍛煉學(xué)生從讀題開始,分析題意,搜索與問題有聯(lián)系的數(shù)學(xué)知識(shí),運(yùn)用知識(shí)和技能使問題獲得解決。在備課中,我發(fā)現(xiàn)學(xué)生對(duì)例題的理解存在困難,采用設(shè)計(jì)小問題,鋪設(shè)小臺(tái)階,引導(dǎo)學(xué)生探究,突破教學(xué)難點(diǎn),帶領(lǐng)學(xué)生尋找解決的方法。我設(shè)計(jì)的問題如下:

  (1)讀題,檢索有用信息;

 。2)分析已知,他們講的是什么含義?根據(jù)題意畫出圖形;

 。3)分析所求,是讓我們求什么?將實(shí)際問題可轉(zhuǎn)化為什么知識(shí)來解決?

 。4)如何求二次函數(shù)的最大值?

  學(xué)生根據(jù)老師提出的問題,小組討論,同學(xué)間互相交流與補(bǔ)充,在教師的引領(lǐng)下,發(fā)現(xiàn)本題就是轉(zhuǎn)化為求二次函數(shù)的最大值問題,逐步將難點(diǎn)突破,幫助學(xué)生建立數(shù)模解決問題。學(xué)生在動(dòng)手畫圖、討論的基礎(chǔ)上找到解決的方法與步驟,先求二次函數(shù)的解析式,再求二次函數(shù)的`最大值。學(xué)生在理解題意后畫圖形,又加深了對(duì)題目的理解,為解決問題奠定了基礎(chǔ),進(jìn)一步體會(huì)運(yùn)用數(shù)形結(jié)合的思想方法求解二次函數(shù)的問題,將數(shù)學(xué)思想與方法滲透到整個(gè)教學(xué)過程中。

  2、為學(xué)生提供思考的空間,注重一題多解

  學(xué)生在建立平面直角坐標(biāo)系后,根據(jù)題意知道,對(duì)稱軸是x=1,A點(diǎn)坐標(biāo)(0,2),B點(diǎn)坐標(biāo)(0,0),C點(diǎn)坐標(biāo)(0,2),確定二次函數(shù)解析式時(shí),出現(xiàn)了一個(gè)小插曲。學(xué)生用一般式確定二次函數(shù)解式后,有同學(xué)想用其他的方法求解想法,我馬上鼓勵(lì)學(xué)生去尋找新的方法。四班學(xué)生思維活躍,有個(gè)學(xué)生想用兩根式求解析式,讓這個(gè)學(xué)生說出自己的思路,其他學(xué)生幫助他進(jìn)行分析與補(bǔ)充。該同學(xué)將A、B、C三點(diǎn)坐標(biāo)帶入兩根式求解,發(fā)現(xiàn)求得解析式與用一般式求得解析式不同,很疑惑,不知道問題出在哪里?我并沒有否定該同學(xué)的方法,而是讓其他學(xué)生幫助糾正,在大家的分析圖形中發(fā)現(xiàn),B點(diǎn)坐標(biāo)不在拋物線上,不能將其帶入。

  在教學(xué)中出現(xiàn)分歧時(shí),要給學(xué)生空間去思考,發(fā)現(xiàn)問題的原因,從而確定解決得方法,避免今后出現(xiàn)類似錯(cuò)誤。而六班學(xué)生善于思考,在用兩根式求解析式時(shí),我設(shè)計(jì)一個(gè)小陷阱,故意引導(dǎo)學(xué)生選用A、B、C三點(diǎn)求解析式,學(xué)生通過計(jì)算與觀察,同樣發(fā)現(xiàn)了這個(gè)問題:B點(diǎn)坐標(biāo)不在拋物線上,不能將其帶入求解。在這種情景下,追問:如何利用兩根式確定解析式呢?學(xué)生積極性很高,小組討論,學(xué)生根據(jù)拋物線的對(duì)稱性找到它與x軸另一個(gè)交點(diǎn)D(—0.5,0),將A、D、C三點(diǎn)帶入可求出二次函數(shù)的解析式。在教學(xué)中,要注重解題方法的靈活性,一題多解,開闊學(xué)生的思維,提高學(xué)生的發(fā)現(xiàn)問題,解決問題的能力。在教學(xué)過程中,層層設(shè)疑,激發(fā)學(xué)生求知欲,積極主動(dòng)參與教學(xué)活動(dòng),大大提高了課堂效率。

  3、數(shù)學(xué)來源于生活并運(yùn)用于生活

  例題3有較強(qiáng)的現(xiàn)實(shí)感,例題的選擇增加數(shù)學(xué)教學(xué)的現(xiàn)實(shí)性,使學(xué)生體驗(yàn)數(shù)學(xué)知識(shí)與日常生活的密切聯(lián)系,從而培養(yǎng)學(xué)生喜愛數(shù)學(xué),學(xué)好數(shù)學(xué)的情感。課堂中,學(xué)生在解決數(shù)學(xué)情境問題的過程中,感悟數(shù)學(xué)來源于生活并運(yùn)用于生活,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。在課上,學(xué)生因問題來自于身邊而思維活躍,有強(qiáng)烈的探索欲望,這樣才能充分發(fā)揮學(xué)生學(xué)習(xí)的積極性,進(jìn)而提高課堂教學(xué)質(zhì)量。

  4、不足之處

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:教師不僅是學(xué)生的引導(dǎo)者,也是學(xué)生的合作者。教學(xué)中,要讓學(xué)生通過自主討論、交流,來探究學(xué)習(xí)中碰到的問題、難題,教師從中點(diǎn)撥、引導(dǎo),并和學(xué)生一起學(xué)習(xí)探討。在本節(jié)課的教學(xué)中,教師引導(dǎo)學(xué)生較多,沒有完全放開讓學(xué)生自主探究學(xué)習(xí),獲得新知;學(xué)生在數(shù)學(xué)學(xué)習(xí)中還是有較強(qiáng)的依賴性,教師要有意培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。

  教師要想在開放的課堂上具有靈活駕馭的能力,就需要在備課時(shí)盡量考慮周到,既要備教材,又要備學(xué)生,更需要教師具有豐富的科學(xué)文化知識(shí),這樣才能使我們的學(xué)生在輕松活躍的課堂上找到學(xué)習(xí)的樂趣與興趣。

二次函數(shù)教學(xué)反思10

  教學(xué)目標(biāo)的設(shè)定:

  一、 教學(xué)知識(shí)點(diǎn):

  (1)、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.

  (2)、 理解二次函數(shù)與 x 軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的關(guān)系,理解何時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒有實(shí)根.

 。3)、 理解一元二次方程的根就是二次函數(shù)與y =h 交點(diǎn)的橫坐標(biāo).

  二、 能力訓(xùn)練要求:

 。1)、經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,培養(yǎng)學(xué)生的探 索能力和創(chuàng)新精神。

 。2)、通過觀察二次函數(shù)與x 軸交 點(diǎn)的個(gè)數(shù),討論 一元二次方程的根的情況,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合思想.

  (3)、通過學(xué)生共同觀察和討論,培養(yǎng)合作交流意識(shí).

  三、 情感與價(jià)值觀要求

 。1)、 經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性以及數(shù)學(xué)結(jié)論的確定性.

 。2)、 具有初步的創(chuàng)新精神和實(shí)踐能力.

  教學(xué)重點(diǎn):(1).體會(huì)方程與函數(shù)之間的.聯(lián)系.

 。2).理解何 時(shí)方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒有實(shí)根.

  (3).理解一元二次方程的根就是二次函數(shù)與y =h 交點(diǎn)的橫坐標(biāo).

  教學(xué)難點(diǎn)(1)、探索方程與函數(shù)之間的聯(lián)系的過程.

 。2)、理解二次函數(shù)與x 軸交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系. 解決重難點(diǎn)的方法1、 設(shè)問題情境,引入新課

  我們已學(xué)過一元一次方程kx+b=0 (k≠0)和一次函數(shù)y =kx+b (k≠0)的關(guān)系,你還記得嗎?

  它們之間的關(guān)系是:當(dāng)一次函數(shù)中的函數(shù)值y =0時(shí),一次函數(shù)y =kx+b就轉(zhuǎn)

  化成了一元一次方 程kx+b=0,且一次函數(shù)的圖像與x 軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b=0的解.

  現(xiàn)在我們學(xué)習(xí)了一元二次方程和二次函數(shù),它們之間是否也存在一定的關(guān)系呢?本節(jié)課我們將探索這個(gè)問題.

二次函數(shù)教學(xué)反思11

  在二次函數(shù)教學(xué)中,根據(jù)它在初中數(shù)學(xué)函數(shù)在教學(xué)中的地位,細(xì)心地準(zhǔn)備《二次函數(shù)》的教學(xué),教學(xué)重點(diǎn)為二次函數(shù)的圖象性質(zhì)及應(yīng)用,教學(xué)難點(diǎn)為a、b、c與二次函數(shù)的圖象的關(guān)系。根據(jù)反思備課過程和講課效果,感受頗深,有收獲,也有不足。

  本章的教學(xué)是我對(duì)選題有了進(jìn)一步認(rèn)識(shí),要體現(xiàn)教學(xué)目標(biāo),要有實(shí)際意義。要體現(xiàn)學(xué)生的“最近發(fā)展區(qū)”,有利于學(xué)生分析。如為了幫助學(xué)生建立二次函數(shù)的概念,從學(xué)生非常熟悉的正方形的面積的研究出發(fā),通過建立函數(shù)解析式,歸納解析式特點(diǎn),給出二次函數(shù)的定義.建立了二次函數(shù)概念后,再通過三個(gè)例題的分析和解決,促進(jìn)學(xué)生理解和建構(gòu)二次函數(shù)的概念,在建構(gòu)概念的過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程.體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

  接下來教學(xué)主要從“拋物線的開口方向、對(duì)稱軸、頂點(diǎn)坐標(biāo)、增減性”循序漸進(jìn),由特殊到一般的學(xué)習(xí)二次函數(shù)的性質(zhì),并幫助學(xué)生總結(jié)性的去記憶。在學(xué)習(xí)過程中加強(qiáng)利用配方法將二次函數(shù)一般式化頂點(diǎn)式、判斷拋物線對(duì)稱軸、借圖象分析函數(shù)增減性等的訓(xùn)練。這部分內(nèi)容就是中等偏下的學(xué)生容易混淆,還需掌握方法,加強(qiáng)記憶,強(qiáng)調(diào)必須利用圖形去分析。通過教學(xué),讓學(xué)生對(duì)建模思想、圖形結(jié)合思想及分類討論思想都有了較清晰的認(rèn)識(shí),學(xué)會(huì)了分析問題的初步方法。

  本章中二次函數(shù)上下左右的平移是我覺得上的比較成功的一部分,主要是借助多媒體,動(dòng)態(tài)的展示了二次函數(shù)的平移過程,讓學(xué)生自己總結(jié)規(guī)律,很形象,便于記憶。

  二次函數(shù) 中含有三個(gè)字母系數(shù),因此確定其解析式要三個(gè)獨(dú)立的條件,用待定系數(shù)法來解.學(xué)習(xí)確定二次函數(shù)的一般式,即 的形式,這方面,學(xué)生的學(xué)習(xí)情況還是比較理想的,但方法沒有問題,計(jì)算能力還有待加強(qiáng)。

  在學(xué)習(xí)了二次函數(shù)的知識(shí)后,我們嘗試運(yùn)用于解決三個(gè)實(shí)際問題.問題1是根據(jù)實(shí)際問題建立函數(shù)解析式并學(xué)習(xí)如何確定函數(shù)的定義域;問題二是根據(jù)二次函數(shù)的.解析式,分析二次函數(shù)的性質(zhì),并通過畫函數(shù)圖像檢驗(yàn)作出的分析和判斷是否;問題三是綜合應(yīng)用一次函數(shù)、二次函數(shù)的知識(shí)確定函數(shù)的解析式和定義域,并嘗試解決銷售問題中最大利潤(rùn)的問題;通過這三個(gè)問題的分析和解決,讓學(xué)生初步體會(huì)二次函數(shù)在實(shí)際生活中的運(yùn)用,再次感悟數(shù)學(xué)源于生活又服務(wù)于生活。雖然有部分學(xué)生尚不能熟練解決相關(guān)應(yīng)用問題,但在下面的學(xué)習(xí)中會(huì)得到補(bǔ)充和提高。

  但在教學(xué)中,我自認(rèn)為熱情不夠,沒有積極調(diào)動(dòng)學(xué)生學(xué)習(xí)熱情的語言,感染力不足。今后備課時(shí)要重視創(chuàng)設(shè)豐富而風(fēng)趣的語言,來調(diào)動(dòng)學(xué)生的積極性。

  總之,在數(shù)學(xué)教學(xué)中不但要善于設(shè)疑置難,而且要理論聯(lián)系實(shí)際,只有這樣,才會(huì)吸引學(xué)生對(duì)數(shù)學(xué)學(xué)科的熱愛。

二次函數(shù)教學(xué)反思12

  在新課程中,教學(xué)過程要符合學(xué)生學(xué)習(xí)過程,學(xué)生在學(xué)習(xí)過程中應(yīng)該以探究、實(shí)踐、合作學(xué)習(xí)為重,要善于引導(dǎo)學(xué)生積極參與教學(xué)過程中的探討活動(dòng),讓學(xué)生在動(dòng)手實(shí)踐、自主探究與合作交流的過程中來學(xué)習(xí)數(shù)學(xué)。教師的教學(xué)活動(dòng)要能激發(fā)學(xué)生探求新知識(shí)的興趣和欲望,逐步培養(yǎng)他們提問的意識(shí),鼓勵(lì)學(xué)生多思考。同時(shí)還要關(guān)注他們?cè)跀?shù)學(xué)學(xué)習(xí)過程中的變化和發(fā)展,關(guān)注學(xué)習(xí)方法與習(xí)慣的養(yǎng)成。

  在初中一元二次方程和二次函數(shù)學(xué)習(xí)的基礎(chǔ)上,教學(xué)中通過比較一元二次方程的根與對(duì)應(yīng)的二次函數(shù)的圖象和x軸的交點(diǎn)的橫坐標(biāo)之間的關(guān)系,給出函數(shù)的零點(diǎn)的概念,并揭示了方程的根與對(duì)應(yīng)的函數(shù)的'零點(diǎn)之間的關(guān)系。然后,通過探究介紹了判斷一個(gè)函數(shù)在某個(gè)給定區(qū)間存在零點(diǎn)的方法和二分法。并且,教科書在“用二分法求函數(shù)零點(diǎn)的步驟”中滲透了算法的思想,為學(xué)生后續(xù)學(xué)習(xí)算法內(nèi)容埋下伏筆。

二次函數(shù)教學(xué)反思13

  新人教版九年級(jí)數(shù)學(xué)第二十二章《二次函數(shù)》是學(xué)生學(xué)習(xí)了正比例函數(shù)、一次函數(shù)進(jìn)一步學(xué)習(xí)函數(shù)知識(shí),是函數(shù)知識(shí)螺旋發(fā)展的一個(gè)重要環(huán)節(jié),二次函數(shù)單元教學(xué)反思。二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時(shí)所采用的重要方法之一,也是某些單變量最優(yōu)化問題的數(shù)學(xué)模型。和一次函數(shù)一樣,二次函數(shù)也是一種非;镜某醯群瘮(shù),對(duì)二次函數(shù)的研究將為學(xué)生進(jìn)一步學(xué)習(xí)函數(shù)、體會(huì)函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗(yàn)。二次函數(shù)作為初中階段學(xué)習(xí)的重要函數(shù)模型,對(duì)理解函數(shù)的性質(zhì),掌握研究函數(shù)的方法,體會(huì)函數(shù)的思想是十分重要的,因此本章的重點(diǎn)是二次函數(shù)的圖象與性質(zhì)的理解與掌握,應(yīng)教會(huì)學(xué)生畫二次函數(shù)圖象,學(xué)會(huì)觀察函數(shù)圖象,借助函數(shù)圖象來研究函數(shù)性質(zhì)并解決相關(guān)的問題。本章的難點(diǎn)是體會(huì)二次函數(shù)學(xué)習(xí)過程中所蘊(yùn)含的數(shù)學(xué)思想方法,函數(shù)圖象的特征和變換有及二次函數(shù)性質(zhì)的靈活應(yīng)用。

  下面是我通過本單元對(duì)《二次函數(shù)》教學(xué)內(nèi)容的分類后的幾點(diǎn)反思:

  “二次函數(shù)概念”教學(xué)反思

  關(guān)于“二次函數(shù)概念”教學(xué)中我的成功之處是:教學(xué)時(shí),通過實(shí)例引入二次函數(shù)的概念, 讓學(xué)生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型。通過學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問題中二次函數(shù)的解析式和它的定義域;大部分學(xué)生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。絕大多數(shù)學(xué)生理解了二次函數(shù)的概念;掌握了二次函數(shù)的一般表達(dá)式以及二次項(xiàng)和二次項(xiàng)的系數(shù)、一次項(xiàng)和一次項(xiàng)的系數(shù)及常數(shù)項(xiàng)。

  不足之處表現(xiàn)在:少數(shù)學(xué)生不能從函數(shù)本身的實(shí)際意義去正確判定一個(gè)函數(shù)是否是二次函數(shù)。

  “二次函數(shù)的圖像及性質(zhì)”教學(xué)反思

  關(guān)于“二次函數(shù)的圖象和性質(zhì)”在教學(xué)中我采用了體驗(yàn)探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動(dòng)手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗(yàn)知識(shí)的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。通過引導(dǎo)學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax的圖象。畫圖的過程包括列表、描點(diǎn)、連線。列表過程是我引導(dǎo)學(xué)生取點(diǎn)的,其間我引導(dǎo)學(xué)生要明確取點(diǎn)注意的事項(xiàng),比如代表性、易操作性。在性質(zhì)的探究中我讓學(xué)生觀察圖像自主探討當(dāng)a>0時(shí)函數(shù)y=ax的性質(zhì)。當(dāng)a<0時(shí)函數(shù)y=ax的性質(zhì)。探討函數(shù)的性質(zhì)主要從開口方向、對(duì)稱軸、增減性、頂點(diǎn)坐標(biāo)和最值方面入手,讓學(xué)生從特殊函數(shù)來歸納總結(jié)一般函數(shù)的性質(zhì)。通過觀察自己畫出的兩個(gè)圖象,它們代表函數(shù)y=ax的兩種情況,找出a的符號(hào)不同時(shí)他們的相同點(diǎn)、不同點(diǎn)和聯(lián)系點(diǎn)。絕大多數(shù)學(xué)生通過觀察圖像理解并掌握了y=ax圖像的性質(zhì),緊接著,我用了三節(jié)課時(shí)間引導(dǎo)學(xué)生通過坐標(biāo)平移探究了y=ax+k、y=a(x-h)、y=a(x-h)+k的圖像,絕大多數(shù)學(xué)生很快掌握了圖形平移的規(guī)律,理解了平移后圖像的性質(zhì),教學(xué)反思《二次函數(shù)單元教學(xué)反思》。達(dá)到了學(xué)習(xí)目標(biāo)中的要求。

  不足之處表現(xiàn)在:

  1.課堂上時(shí)間安排欠合理。學(xué)生說的多,動(dòng)手不夠

  2. 學(xué)生作圖速度慢。簡(jiǎn)單的列表、描點(diǎn)、連線。學(xué)生做起來就比較困難,作圖中單位長(zhǎng)度不準(zhǔn)確,描點(diǎn)不準(zhǔn)確,圖象中的平滑曲線不夠平滑

  3.合作學(xué)習(xí)的有效性不夠。對(duì)于老師提出的問題,各組匯報(bào)討論結(jié)果的效果不明顯。說明自主、探究、合作的學(xué)習(xí)方式?jīng)]有落到實(shí)處,學(xué)生的創(chuàng)新能力的培養(yǎng)不夠。

  4.少數(shù)學(xué)生二次函數(shù)圖像平移變換能力差。不會(huì)進(jìn)行二次函數(shù)圖像的平移變換。

  “求二次函數(shù)解析式”教學(xué)反思

  關(guān)于“求二次函數(shù)解析式”教學(xué)中,我通過創(chuàng)設(shè)有關(guān)待定系數(shù)法的問題情境出發(fā),導(dǎo)入求二次函數(shù)一般解析式的方法。學(xué)生把已知點(diǎn)代入二次函數(shù)的一般解析式,很快就得出了三元一次方程組,學(xué)生很快就理解了求二次函數(shù)一般解析式的`方法。然后我通過變式,給出拋物線的頂點(diǎn)坐標(biāo)和經(jīng)過拋物線的一個(gè)點(diǎn),引導(dǎo)學(xué)生設(shè)頂點(diǎn)式的二次函數(shù)解析式,學(xué)生在老師的點(diǎn)撥下,將已知點(diǎn)代入,很快理解了用頂點(diǎn)式求的二次函數(shù)解析式的方法。再通過變式我又引導(dǎo)學(xué)生觀察拋物線與x軸的交點(diǎn),啟發(fā)學(xué)生設(shè)交點(diǎn)式解析式求二次函數(shù)解析式的方法。在整個(gè)教學(xué)中,環(huán)環(huán)相扣,充分調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,所以教學(xué)非常流暢,效果不錯(cuò),目標(biāo)的達(dá)成度較高。

  不足之處表現(xiàn)在:

  1.一般式的應(yīng)用中學(xué)生的難度在于解三元一次方程組上。

  2.學(xué)生對(duì)求頂點(diǎn)式和交點(diǎn)式的二次函數(shù)解析式方法欠靈活

  3.變式訓(xùn)練的習(xí)題太少導(dǎo)致學(xué)生掌握知識(shí)不夠牢固

  “實(shí)際問題與二次函數(shù)”教學(xué)反思

  關(guān)于“實(shí)際問題與二次函數(shù)”教學(xué)中我通過引導(dǎo)學(xué)生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點(diǎn)式、交點(diǎn)式的表達(dá)形式,以及二次函數(shù)的性質(zhì)如拋物線的開口方向,對(duì)稱軸,頂點(diǎn)坐標(biāo),最大最小值,函數(shù)在對(duì)稱軸兩側(cè)的增減性。然后出示問題1,即最大面積問題。教材中的三個(gè)探究我分別安排了三節(jié)課進(jìn)行分類教學(xué)。我從學(xué)生的實(shí)際出發(fā),幫助學(xué)生解決學(xué)習(xí)中的困難,啟發(fā)和引導(dǎo)學(xué)生觀察二次函數(shù)圖像,對(duì)圖像進(jìn)行分析,得出解決問題的方案。教學(xué)每一類實(shí)際問題,我都搜集了大量的實(shí)例,所以教學(xué)重點(diǎn)、難點(diǎn)把握的較準(zhǔn)確,同時(shí)調(diào)動(dòng)大多數(shù)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,所以這部分內(nèi)容學(xué)生掌握的比較好。

  不足之處表現(xiàn)在:

  1.“探究1”中少數(shù)學(xué)生對(duì)于用配方法或公式法求函數(shù)的極值容易出錯(cuò)

  2.少數(shù)學(xué)生不會(huì)分析題意,不能正確列式求出二次函數(shù)的解析式

  3.“探究2”少數(shù)學(xué)生對(duì)最大利潤(rùn)問題中的漲價(jià)和定價(jià)理解有偏差

  4.“探究3”少數(shù)學(xué)生不會(huì)靈活建立直角坐標(biāo)系把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題

  以上就是我在教學(xué)本單元的感受、體會(huì)。因?yàn)槎魏瘮?shù)知識(shí)是函數(shù)中的重點(diǎn)也是中考的重點(diǎn)考點(diǎn),所以針對(duì)教學(xué)中的不足和學(xué)生暴露出的問題,在期末復(fù)習(xí)中還要制定詳實(shí)有效的復(fù)習(xí)計(jì)劃,通過精選習(xí)題再進(jìn)行最后的強(qiáng)化訓(xùn)練。

二次函數(shù)教學(xué)反思14

  這節(jié)課,我對(duì)教材進(jìn)行了探究性重組,同時(shí)放手讓學(xué)生在探究活動(dòng)中去經(jīng)歷、體驗(yàn)、內(nèi)化知識(shí)的做法是成功的。通過充分的過程探究,學(xué)生容易得出也是最早得出了圖象的性質(zhì),借助直觀圖象的性質(zhì)而得到二次函數(shù)的性質(zhì);ㄙM(fèi)了一番周折,說明去掉這個(gè)中介,直接讓學(xué)生從單調(diào)性來接受二次函數(shù)性質(zhì)是困難的。

  真正的形成往往來源于真實(shí)的自主探究。只有放手探究,學(xué)生的潛力與智慧才會(huì)充分表現(xiàn),學(xué)生也才會(huì)表現(xiàn)真實(shí)的思維和真實(shí)的自我。在新課程理念的指導(dǎo)下,我們的一切教學(xué)都要圍繞學(xué)生的成長(zhǎng)與發(fā)展做文章,真正讓學(xué)生理解、掌握真實(shí)的知識(shí)和真正的知識(shí)。

  首先,要設(shè)計(jì)適合學(xué)生探究的.素材。教材對(duì)二次函數(shù)的性質(zhì)是從增減來描述的,我們認(rèn)為這種對(duì)性質(zhì)的表述是教條化的,對(duì)這種學(xué)術(shù)、文本狀態(tài)的知識(shí),學(xué)生不容易接受。當(dāng)然教材強(qiáng)調(diào)所呈現(xiàn)內(nèi)容的邏輯性、嚴(yán)密性與科學(xué)性是合理的。但是能讓學(xué)生理解和接受的知識(shí)才是最好的。如果牽強(qiáng)的引出來,不一定是好事。

  其次,探究教學(xué)的過程就是實(shí)現(xiàn)學(xué)術(shù)形態(tài)的知識(shí)轉(zhuǎn)化為教育形態(tài)知識(shí)的過程。探究教學(xué)是追求教學(xué)過程的探究和探究過程的自然和本真。只有這樣探究才是有價(jià)值的,真知才會(huì)有生長(zhǎng)性。要表現(xiàn)過程的真實(shí)與自然,從建構(gòu)主義的觀點(diǎn)出發(fā),就是要尊重學(xué)生各自的經(jīng)驗(yàn)與思維方式、習(xí)慣。結(jié)論是一致的,但過程可以是多元的,教師要善于恰倒好處地優(yōu)化提煉學(xué)生的結(jié)論。追求自然,就要適當(dāng)放開學(xué)生的手、口、腦,例如本文中的“走向”問題,“向上爬”、“向下走”等,如果是講授注入式,我們就聽不到學(xué)生真實(shí)的聲音了。

  最后,教師在學(xué)生探究真知之旅上應(yīng)是一個(gè)促進(jìn)者、協(xié)作者、組織者。要做善于點(diǎn)燃學(xué)生探究欲望和智慧火把的人,要善于讓學(xué)生說教師要說的話,做教師想做的事,這就是一個(gè)成功的促進(jìn)者。數(shù)學(xué)教學(xué)的過程是師生共同活動(dòng)、共同成長(zhǎng)與發(fā)展的過程。

二次函數(shù)教學(xué)反思15

  怎樣教學(xué)初中階段二次函數(shù)應(yīng)用問題

  二次函數(shù)問題在整個(gè)初中階段既是重點(diǎn)又是難點(diǎn),其應(yīng)用題綜合性比較強(qiáng),知識(shí)涉及面廣,對(duì)學(xué)生能力的要求更高,因此成為教學(xué)中的重點(diǎn),也成為學(xué)習(xí)的一大難點(diǎn)。在升學(xué)考試中占有相當(dāng)大的分值,往往又以中檔題或高檔題的形式出現(xiàn),成為中考的壓軸題。作為教師在組織教學(xué)的過程中,應(yīng)注意選擇合適的教學(xué)方法分散其難點(diǎn)。若采用分類教學(xué),學(xué)生易于掌握,針對(duì)不同的題型進(jìn)行訓(xùn)練,短期內(nèi)確實(shí)有利于提高學(xué)生的學(xué)習(xí)成績(jī)。但從長(zhǎng)遠(yuǎn)看,這樣做容易使學(xué)生形成思維定勢(shì),不利于思維能力和創(chuàng)新能力的培養(yǎng)。教師可以針對(duì)不同的'學(xué)生分梯度設(shè)置不同的題型,放手讓學(xué)生自主探索,自己去感悟,疑難問題通過小組合作學(xué)習(xí)來解決,同時(shí)教師做適當(dāng)?shù)狞c(diǎn)撥,這樣可以激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,讓不同的學(xué)生都得到發(fā)展。

  我認(rèn)為初中階段應(yīng)從以下幾個(gè)方面來處理好二次函數(shù)的應(yīng)用問題:

  一、注重與代數(shù)式知識(shí)的類比教學(xué),觸及函數(shù)知識(shí)。

  現(xiàn)在人教版教材把函數(shù)提前到初二進(jìn)行教學(xué),我認(rèn)為這是很好的整合。初二的學(xué)生對(duì)基本概念還是比較難理解,但能夠要求學(xué)生有意識(shí)的去理解函數(shù)這一概念,逐步接觸函數(shù)的知識(shí)和建模思想,認(rèn)識(shí)到數(shù)學(xué)問題來源于生活應(yīng)用于生活,建模后又高于生活。不管是列代數(shù)式還是代數(shù)式的求值,只要變換一個(gè)字母或量的數(shù)值,代數(shù)式的值就隨之變化,這本身就可以培養(yǎng)學(xué)生的函數(shù)意識(shí)。

  二、注意在方程教學(xué)中有意識(shí)滲透函數(shù)思想。

  方程與函數(shù)之間具有很深的聯(lián)系。在學(xué)習(xí)方程時(shí)要有意識(shí)的打破只關(guān)注等量關(guān)系而忽略分析數(shù)量關(guān)系的弊端,這是對(duì)函數(shù)建模提供的最好的契機(jī)。教師在組織教學(xué)中,特別是應(yīng)用題教學(xué),不能只讓學(xué)生尋找等量關(guān)系,而不注重學(xué)生分析量與量、數(shù)與數(shù)之間的內(nèi)在聯(lián)系能力的培養(yǎng),從而更加大了學(xué)生學(xué)習(xí)函數(shù)的難度。不管是一元方程還是二元方程應(yīng)用題教學(xué)中,應(yīng)該訓(xùn)練學(xué)生分析問題中的量與量關(guān)系的能力,讓學(xué)生樹立只要有量就應(yīng)該也可以用字母去表示它,不要怕量多字母多,量表示好了再通過數(shù)量關(guān)系逐步縮少字母即可。這樣就為后續(xù)函數(shù)的學(xué)習(xí)做好了鋪墊。

  三、通過數(shù)形結(jié)合方法體驗(yàn)函數(shù)建模思想。

  不管是長(zhǎng)度、角度還是面積的有關(guān)計(jì)算,都應(yīng)該通過適當(dāng)變換數(shù)據(jù)來樹立函數(shù)思想。圖形具有豐富性與直觀性,圖形變化具有條件性,因此說圖形教學(xué)相比純粹數(shù)量計(jì)算教學(xué)更能夠體現(xiàn)函數(shù)思想。

  函數(shù)思想的建立,應(yīng)用題解題方式的定型絕不是一蹴而就的,它需要慢慢的滲透與慢慢體驗(yàn)的過程。從這個(gè)意義上說,二次函數(shù)應(yīng)用題的教學(xué)不需要分類。二次函數(shù)的學(xué)習(xí)是把以前學(xué)習(xí)的內(nèi)容進(jìn)行適當(dāng)加深或以嶄新的視角重新審視,因此二次函數(shù)應(yīng)用題的解決,需要師生在教與學(xué)中有意識(shí)的樹立函數(shù)思想。正是二次函數(shù)的這種綜合性,要求教師在組織教學(xué)中把這一難點(diǎn)消化在平日教學(xué)中,而不是簡(jiǎn)單的把二次函數(shù)應(yīng)用題進(jìn)行分類來加重學(xué)生的負(fù)擔(dān)。

【二次函數(shù)教學(xué)反思】相關(guān)文章:

二次函數(shù)教學(xué)反思02-13

二次函數(shù)的教學(xué)反思04-22

二次函數(shù)的教學(xué)反思05-21

二次函數(shù)教學(xué)反思05-27

《二次函數(shù)》教學(xué)反思07-19

二次函數(shù)教學(xué)反思【推薦】05-28

《二次函數(shù)》教學(xué)反思范文10-11

二次函數(shù)教學(xué)反思15篇03-02

數(shù)學(xué)二次函數(shù)教學(xué)反思04-22

二次函數(shù)教學(xué)反思15篇05-28