初中數(shù)學(xué)知識(shí)點(diǎn)歸納
在現(xiàn)實(shí)學(xué)習(xí)生活中,說(shuō)起知識(shí)點(diǎn),應(yīng)該沒(méi)有人不熟悉吧?知識(shí)點(diǎn)也不一定都是文字,數(shù)學(xué)的知識(shí)點(diǎn)除了定義,同樣重要的公式也可以理解為知識(shí)點(diǎn)。掌握知識(shí)點(diǎn)是我們提高成績(jī)的關(guān)鍵!下面是小編整理的初中數(shù)學(xué)知識(shí)點(diǎn)歸納,僅供參考,大家一起來(lái)看看吧。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納1
有理數(shù)部分
正數(shù)和負(fù)數(shù)
⒈正數(shù)和負(fù)數(shù)的概念
負(fù)數(shù):比0小的數(shù) 正數(shù):比0大的數(shù) 0既不是正數(shù),也不是負(fù)數(shù)
注意:①字母a可以表示任意數(shù),當(dāng)a表示正數(shù)時(shí),-a是負(fù)數(shù);當(dāng)a表示負(fù)數(shù)時(shí),-a是正數(shù);當(dāng)a表示0時(shí),-a仍是0。(如果出判斷題為:帶正號(hào)的數(shù)是正數(shù),帶負(fù)號(hào)的數(shù)是負(fù)數(shù),這種說(shuō)法是錯(cuò)誤的,例如+a,-a就不能做出簡(jiǎn)單判斷)
、谡龜(shù)有時(shí)也可以在前面加“+”,有時(shí)“+”省略不寫(xiě)。所以省略“+”的正數(shù)的符號(hào)是正號(hào)。
2.具有相反意義的量
若正數(shù)表示某種意義的量,則負(fù)數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:-8℃
3.0表示的意義
、0表示“ 沒(méi)有”,如教室里有0個(gè)人,就是說(shuō)教室里沒(méi)有人;
⑵0是正數(shù)和負(fù)數(shù)的分界線,0既不是正數(shù),也不是負(fù)數(shù)。如:
有理數(shù)
1.有理數(shù)的概念
⑴正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱(chēng)為整數(shù)(0和正整數(shù)統(tǒng)稱(chēng)為自然數(shù))
⑵正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱(chēng)為分?jǐn)?shù)
、钦麛(shù),0,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù)都可以寫(xiě)成分?jǐn)?shù)的形式,這樣的數(shù)稱(chēng)為有理數(shù)。
理解:只有能化成分?jǐn)?shù)的數(shù)才是有理數(shù)。①π是無(wú)限不循環(huán)小數(shù),不能寫(xiě)成分?jǐn)?shù)形式,不是有理數(shù)。②有限小數(shù)和無(wú)限循環(huán)小數(shù)都可化成分?jǐn)?shù),都是有理數(shù)。
注意:引入負(fù)數(shù)以后,奇數(shù)和偶數(shù)的范圍也擴(kuò)大了,像-2,-4,-6,-8?也是偶數(shù),-1,-3,-5?也是奇數(shù)。
2.有理數(shù)的分類(lèi)
、虐从欣頂(shù)的意義分類(lèi) ⑵按正、負(fù)來(lái)分 正整數(shù)
整數(shù)正有理數(shù)正分?jǐn)?shù)
有理數(shù)有理數(shù)(0不能忽視) 負(fù)整數(shù)
分?jǐn)?shù)負(fù)有理數(shù)負(fù)分?jǐn)?shù)
總結(jié):①正整數(shù)、0統(tǒng)稱(chēng)為非負(fù)整數(shù)(也叫自然數(shù))
②負(fù)整數(shù)、0統(tǒng)稱(chēng)為非正整數(shù)
、壅欣頂(shù)、0統(tǒng)稱(chēng)為非負(fù)有理數(shù)
、茇(fù)有理數(shù)、0統(tǒng)稱(chēng)為非正有理數(shù)
數(shù)軸
⒈數(shù)軸的概念
規(guī)定了原點(diǎn),正方向,單位長(zhǎng)度的直線叫做數(shù)軸。
注意:⑴數(shù)軸是一條向兩端無(wú)限延伸的直線;⑵原點(diǎn)、正方向、單位長(zhǎng)度是數(shù)軸的三要素,三者缺一不可;⑶同一數(shù)軸上的單位長(zhǎng)度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實(shí)際需要規(guī)定的。
2.數(shù)軸上的點(diǎn)與有理數(shù)的關(guān)系
⑴所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,正有理數(shù)可用原點(diǎn)右邊的點(diǎn)表示,負(fù)有理數(shù)可用原點(diǎn)左邊的點(diǎn)表示,0用原點(diǎn)表示。
、扑械挠欣頂(shù)都可以用數(shù)軸上的點(diǎn)表示出來(lái),但數(shù)軸上的點(diǎn)不都表示有理數(shù),也就是說(shuō),有理數(shù)與數(shù)軸上的點(diǎn)不是一一對(duì)應(yīng)關(guān)系。(如,數(shù)軸上的點(diǎn)π不是有理數(shù))
3.利用數(shù)軸表示兩數(shù)大小
、旁跀(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
、普龜(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
⑶兩個(gè)負(fù)數(shù)比較,距離原點(diǎn)遠(yuǎn)的數(shù)比距離原點(diǎn)近的數(shù)小。
4.數(shù)軸上特殊的最大(小)數(shù)
、抛钚〉淖匀粩(shù)是0,無(wú)最大的自然數(shù);
、谱钚〉恼麛(shù)是1,無(wú)最大的正整數(shù);
、亲畲蟮呢(fù)整數(shù)是-1,無(wú)最小的負(fù)整數(shù)
5.a可以表示什么數(shù)
、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;
、芶<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
⑶a=0表示a是0;反之,a是0,,則a=0
6.數(shù)軸上點(diǎn)的移動(dòng)規(guī)律
根據(jù)點(diǎn)的移動(dòng),向左移動(dòng)幾個(gè)單位長(zhǎng)度則減去幾,向右移動(dòng)幾個(gè)單位長(zhǎng)度則加上幾,從而得到所需的點(diǎn)的位置。
相反數(shù)
、毕喾磾(shù)
只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),其中一個(gè)是另一個(gè)的相反數(shù),0的相反數(shù)是0。
注意:⑴相反數(shù)是成對(duì)出現(xiàn)的;⑵相反數(shù)只有符號(hào)不同,若一個(gè)為正,則另一個(gè)為負(fù);
、0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。
2.相反數(shù)的性質(zhì)與判定
、湃魏螖(shù)都有相反數(shù),且只有一個(gè);
、0的相反數(shù)是0;
、腔橄喾磾(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0
3.相反數(shù)的幾何意義
在數(shù)軸上與原點(diǎn)距離相等的兩點(diǎn)表示的兩個(gè)數(shù),是互為相反數(shù);互為相反數(shù)的兩個(gè)數(shù),在數(shù)軸上的對(duì)應(yīng)點(diǎn)(0除外)在原點(diǎn)兩旁,并且與原點(diǎn)的距離相等。0的相反數(shù)對(duì)應(yīng)原點(diǎn);原點(diǎn)表示0的相反數(shù)。 說(shuō)明:在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng)。
4.相反數(shù)的求法
⑴求一個(gè)數(shù)的相反數(shù),只要在它的前面添上負(fù)號(hào)“-”即可求得(如:5的相反數(shù)是-5);
、魄蠖鄠(gè)數(shù)的和或差的相反數(shù)是,要用括號(hào)括起來(lái)再添“-”,然后化簡(jiǎn)(如;5a+b的相反數(shù)是-(5a+b);(jiǎn)得-5a-b);
、乔笄懊鎺А-”的單個(gè)數(shù),也應(yīng)先用括號(hào)括起來(lái)再添“-”,然后化簡(jiǎn)(如:-5的相反數(shù)是-(-5),化簡(jiǎn)得5)
5.相反數(shù)的表示方法
、乓话愕兀瑪(shù)a 的相反數(shù)是-a ,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。
當(dāng)a>0時(shí),-a<0(正數(shù)的相反數(shù)是負(fù)數(shù))
當(dāng)a<0時(shí),-a>0(負(fù)數(shù)的相反數(shù)是正數(shù))
當(dāng)a=0時(shí),-a=0,(0的相反數(shù)是0)
6.多重符號(hào)的化簡(jiǎn)
多重符號(hào)的化簡(jiǎn)規(guī)律:“+”號(hào)的個(gè)數(shù)不影響化簡(jiǎn)的結(jié)果,可以直接省略;“-”號(hào)的個(gè)數(shù)決定最后化簡(jiǎn)結(jié)果;即:“-”的個(gè)數(shù)是奇數(shù)時(shí),結(jié)果為負(fù),“-”的個(gè)數(shù)是偶數(shù)時(shí),結(jié)果為正。
絕對(duì)值
、苯^對(duì)值的幾何定義
一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做a的絕對(duì)值,記作|a|。
2.絕對(duì)值的代數(shù)定義
、乓粋(gè)正數(shù)的絕對(duì)值是它本身; ⑵一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù); ⑶0的絕對(duì)值是0.
可用字母表示為:
、偃绻鸻>0,那么|a|=a; ②如果a<0,那么|a|=-a; ③如果a=0,那么|a|=0。
可歸納為①:a≥0,<═> |a|=a (非負(fù)數(shù)的絕對(duì)值等于本身;絕對(duì)值等于本身的數(shù)是非負(fù)數(shù)。) ②a≤0,<═> |a|=-a (非正數(shù)的絕對(duì)值等于其相反數(shù);絕對(duì)值等于其相反數(shù)的數(shù)是非正數(shù)。)
3.絕對(duì)值的性質(zhì)
任何一個(gè)有理數(shù)的絕對(duì)值都是非負(fù)數(shù),也就是說(shuō)絕對(duì)值具有非負(fù)性。所以,a取任何有理數(shù),都有|a|≥0。即⑴0的絕對(duì)值是0;絕對(duì)值是0的數(shù)是0.即:a=0 <═> |a|=0;
、埔粋(gè)數(shù)的絕對(duì)值是非負(fù)數(shù),絕對(duì)值最小的數(shù)是0.即:|a|≥0;
、侨魏螖(shù)的絕對(duì)值都不小于原數(shù)。即:|a|≥a;
、冉^對(duì)值是相同正數(shù)的數(shù)有兩個(gè),它們互為相反數(shù)。即:若|x|=a(a>0),則x=±a;
、苫橄喾磾(shù)的兩數(shù)的絕對(duì)值相等。即:|-a|=|a|或若a+b=0,則|a|=|b|;
、式^對(duì)值相等的兩數(shù)相等或互為相反數(shù)。即:|a|=|b|,則a=b或a=-b;
、巳魩讉(gè)數(shù)的絕對(duì)值的和等于0,則這幾個(gè)數(shù)就同時(shí)為0。即|a|+|b|=0,則a=0且b=0。
(非負(fù)數(shù)的常用性質(zhì):若幾個(gè)非負(fù)數(shù)的和為0,則有且只有這幾個(gè)非負(fù)數(shù)同時(shí)為0)
4.有理數(shù)大小的比較
⑴利用數(shù)軸比較兩個(gè)數(shù)的大。簲(shù)軸上的兩個(gè)數(shù)相比較,左邊的'總比右邊的小;
、评媒^對(duì)值比較兩個(gè)負(fù)數(shù)的大。簝蓚(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小;異號(hào)兩數(shù)比較大小,正數(shù)大于負(fù)數(shù)。
5.絕對(duì)值的化簡(jiǎn)
①當(dāng)a≥0時(shí), |a|=a ; ②當(dāng)a≤0時(shí), |a|=-a
6.已知一個(gè)數(shù)的絕對(duì)值,求這個(gè)數(shù)
一個(gè)數(shù)a的絕對(duì)值就是數(shù)軸上表示數(shù)a的點(diǎn)到原點(diǎn)的距離,一般地,絕對(duì)值為同一個(gè)正數(shù)的有理數(shù)有兩個(gè),它們互為相反數(shù),絕對(duì)值為0的數(shù)是0,沒(méi)有絕對(duì)值為負(fù)數(shù)的數(shù)。
有理數(shù)的加減法
1.有理數(shù)的加法法則
、磐(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;
⑵絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值; ⑶互為相反數(shù)的兩數(shù)相加,和為零;
、纫粋(gè)數(shù)與零相加,仍得這個(gè)數(shù)。
2.有理數(shù)加法的運(yùn)算律
、偶臃ń粨Q律:a+b=b+a
、萍臃ńY(jié)合律:(a+b)+c=a+(b+c)
在運(yùn)用運(yùn)算律時(shí),一定要根據(jù)需要靈活運(yùn)用,以達(dá)到化簡(jiǎn)的目的,通常有下列規(guī)律:
①互為相反數(shù)的兩個(gè)數(shù)先相加——“相反數(shù)結(jié)合法”;
、诜(hào)相同的兩個(gè)數(shù)先相加——“同號(hào)結(jié)合法”;
③分母相同的數(shù)先相加——“同分母結(jié)合法”;
、軒讉(gè)數(shù)相加得到整數(shù),先相加——“湊整法”;
⑤整數(shù)與整數(shù)、小數(shù)與小數(shù)相加——“同形結(jié)合法”。
3.加法性質(zhì)
一個(gè)數(shù)加正數(shù)后的和比原數(shù)大;加負(fù)數(shù)后的和比原數(shù)小;加0后的和等于原數(shù)。即:
、女(dāng)b>0時(shí),a+b>a ⑵當(dāng)b<0時(shí),a+b
4.有理數(shù)減法法則
減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。用字母表示為:a-b=a+(-b)。
5.有理數(shù)加減法統(tǒng)一成加法的意義
在有理數(shù)加減法混合運(yùn)算中,根據(jù)有理數(shù)減法法則,可以將減法轉(zhuǎn)化成加法后,再按照加法法則進(jìn)行計(jì)算。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納2
二次函數(shù)基本知識(shí)點(diǎn)
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)^2+k[拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x)(x-x)[僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a
拋物線的性質(zhì)
1.拋物線是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線
x=-b/2a。
對(duì)稱(chēng)軸與拋物線唯一的`交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱(chēng)軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P[-b/2a,(4ac-b^2;)/4a]。
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向和大小。
當(dāng)a>0時(shí),拋物線向上開(kāi)口;當(dāng)a<0時(shí),拋物線向下開(kāi)口。
|a|越大,則拋物線的開(kāi)口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。
二次函數(shù)的三種表達(dá)式
、僖话闶剑簓=ax^2+bx+c(a,b,c為常數(shù),a≠0)
、陧旤c(diǎn)式[拋物線的頂點(diǎn)P(h,k)]:y=a(x-h)^2+k
③交點(diǎn)式[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線]:y=a(x-x1)(x-x2)
以上3種形式可進(jìn)行如下轉(zhuǎn)化:
、僖话闶胶晚旤c(diǎn)式的關(guān)系
對(duì)于二次函數(shù)y=ax^2+bx+c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即
h=-b/2a=(x1+x2)/2
k=(4ac-b^2)/4a
、谝话闶胶徒稽c(diǎn)式的關(guān)系
x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)
初中數(shù)學(xué)知識(shí)點(diǎn)歸納3
全等三角形的判定:
、龠吔沁吂恚⊿AS)
②角邊角公理(ASA)
、劢墙沁叾ɡ恚ˋAS)
④邊邊邊公理(SSS)
、菪边、直角邊公理(HL)
正方形定理公式
正方形的特征:
、僬叫蔚乃倪呄嗟龋
、谡叫蔚乃膫(gè)角都是直角;
、壅叫蔚膬蓷l對(duì)角線相等,且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;
正方形的判定:
、儆幸粋(gè)角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
平行四邊形
平行四邊形的性質(zhì):
、倨叫兴倪呅蔚膶(duì)邊相等;
、谄叫兴倪呅蔚膶(duì)角相等;
、燮叫兴倪呅蔚.對(duì)角線互相平分;
平行四邊形的判定:
①兩組對(duì)角分別相等的四邊形是平行四邊形;
、趦山M對(duì)邊分別相等的四邊形是平行四邊形;
、蹖(duì)角線互相平分的四邊形是平行四邊形;
④一組對(duì)邊平行且相等的四邊形是平行四邊形。
直角三角形的性質(zhì):
、僦苯侨切蔚膬蓚(gè)銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
、壑苯侨切蔚膬芍苯沁叺钠椒胶偷扔谛边叺钠椒剑ü垂啥ɡ恚;
④直角三角形中30度
角所對(duì)的直角邊等于斜邊的一半;
直角三角形的判定:
、儆袃蓚(gè)角互余的三角形是直角三角形;
、谌绻切蔚娜呴L(zhǎng)a、b 、c有下面關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形(勾股定理的逆定理)。
等腰三角形的性質(zhì):
、俚妊切蔚膬蓚(gè)底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和;
三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
初中數(shù)學(xué)知識(shí)點(diǎn)歸納4
三角形競(jìng)賽要領(lǐng):已知兩條直角邊的長(zhǎng)度 可按公式:c2=a2+b2 (2是平方)
三角形斜邊公式
直角三角形ABC的六個(gè)元素中除直角C外,其余五個(gè)元素有如下關(guān)系
A+B=90度
SinA=角A的對(duì)邊 / 斜邊
CosA=角A的鄰邊 / 斜邊
tgA=角A的對(duì)邊 / 角A的鄰邊
ctgA=角A的鄰邊 / 角A的對(duì)邊
例:角A等于30度,角A的對(duì)邊是4米,計(jì)算斜邊C是多少?
查表sin30度=0.5, C=4/0.5=8
知識(shí)總結(jié):如已知一條直邊和一個(gè)銳角,可用直角三角函數(shù)計(jì)算
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的`規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類(lèi)項(xiàng)合并。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納5
橢圓知識(shí):平面內(nèi)與兩定點(diǎn)F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動(dòng)點(diǎn)P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點(diǎn)F1、F2叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動(dòng)點(diǎn)。
長(zhǎng)軸為 2a; 短軸為 2b。
橢圓的第二定義
平面內(nèi)到定點(diǎn)F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點(diǎn)的集合(定點(diǎn)F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點(diǎn)F為橢圓的焦點(diǎn),定直線稱(chēng)為橢圓的準(zhǔn)線(該定直線的方程是x=±a^2/c[焦點(diǎn)在X軸上];或者y=±a^2/c[焦點(diǎn)在Y軸上])。
橢圓的其他定義
根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點(diǎn)與橢圓短軸兩端點(diǎn)連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點(diǎn)的連線的斜率之積是常數(shù)k的動(dòng)點(diǎn)的軌跡是橢圓,此時(shí)k應(yīng)滿(mǎn)足一定的條件,也就是排除斜率不存在的`情況,還有K應(yīng)滿(mǎn)足<0且不等于-1。
簡(jiǎn)單幾何性質(zhì)
1、范圍
2、對(duì)稱(chēng)性:關(guān)于X軸對(duì)稱(chēng),Y軸對(duì)稱(chēng),關(guān)于原點(diǎn)中心對(duì)稱(chēng)。
3、頂點(diǎn):(當(dāng)中心為原點(diǎn)時(shí))(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率范圍 0
知識(shí)歸納:離心率越大橢圓就越扁,越小則越接近于圓。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫(xiě)成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類(lèi)項(xiàng)合并。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納6
平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開(kāi)方數(shù)。
中被開(kāi)方數(shù)的取值范圍:被開(kāi)方數(shù)a≥0
平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒(méi)有平方根開(kāi)平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方。
平方根與算術(shù)平方根區(qū)別:1、定義不同。2表示方法不同。3、個(gè)數(shù)不同。4、取值范圍不同。
聯(lián)系:1、二者之間存在著從屬關(guān)系。2、存在條件相同。3、0的算術(shù)平方根與平方根都是0
含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的`平方根。
求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類(lèi)型:①想誰(shuí)的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納7
此題可根據(jù)單項(xiàng)式的概念進(jìn)行解答。
(1)不是,因?yàn)榇鷶?shù)式出現(xiàn)了減法運(yùn)算;
(2)不是,因?yàn)榇鷶?shù)式是4與x的商;
(3)是,它的系數(shù)是—π,次數(shù)是2;
(4)是,它的系數(shù)是-π,次數(shù)是4.
例2 若單項(xiàng)式 與 的和仍是單項(xiàng)式,則m與n的值分別是( )
A、2,4 B、4,2 C、1,1 D、1,3
這兩個(gè)單項(xiàng)式的和仍是單項(xiàng)式,也就是說(shuō)這兩個(gè)單項(xiàng)式是同類(lèi)項(xiàng),可得m、n的兩個(gè)方程,解這兩個(gè)方程即可求得m與n的值。2n-3=5,2m+4=8,解得n=4,m=2.
例3 計(jì)算:
(1)2x-(3x-5y)+(7y-x);
(1)由于括號(hào)前面的.系數(shù)分別是-1和1,可以直接利用去括號(hào)法則去掉括號(hào);
(2)去括號(hào)通常是按照從里到外,即先去掉小括號(hào),再去掉中括號(hào),最后去掉大括號(hào)的順序進(jìn)行,但對(duì)于此題來(lái)說(shuō),視小括號(hào)為一個(gè)“整體”由外向里,先去中括號(hào),這樣,小括號(hào)前面的“-”號(hào)變成“+”號(hào),這樣處理較為簡(jiǎn)便。
初中數(shù)學(xué)考試技巧
概念題檢查要點(diǎn)概念題分填空、選擇、判斷三種題型。對(duì)于概念要知道、理解、應(yīng)用。在平時(shí)經(jīng)歷知識(shí)的形成過(guò)程的基礎(chǔ)上,記住是什么,并應(yīng)用這些概念去填空、選擇、判斷。填空、選擇時(shí)最好在草稿紙上寫(xiě)出思考的過(guò)程,需要計(jì)算的地方要反復(fù)計(jì)算。判斷題你認(rèn)為是對(duì)的要寫(xiě)出理論的根據(jù)是什么,如果你認(rèn)為它是錯(cuò)的舉上一個(gè)反例來(lái)說(shuō)明它錯(cuò)就可以了。
如下面的兩道判斷題:
、判(shù)都比0大,比1小( ).
、谱匀粩(shù)不是奇數(shù)就是偶數(shù)( )。
可寫(xiě)分析如下:
、攀清e(cuò)的,舉一個(gè)反例來(lái)說(shuō)明它錯(cuò)。1.1是小數(shù),它比1大.
、祁}是對(duì)的,要說(shuō)出理論的根據(jù).自然數(shù)中除了能被2整除的數(shù),就是不能被2整除的數(shù)。能被2整除的數(shù)是偶數(shù),不能被2整除的數(shù)是奇數(shù)。所以,自然數(shù)不是奇數(shù)就是偶數(shù)。
選擇題可以用排除法、代入計(jì)算法,選擇時(shí)要把所有選項(xiàng)看完后,再做下一題,注意多選的情況,檢查時(shí)要把所選的答案可以代入題中計(jì)算或者判斷是否正確
02 計(jì)算題的答題檢查技巧計(jì)算題,分直接寫(xiě)得數(shù),簡(jiǎn)算,脫式計(jì)算和列式計(jì)算四種題型?傮w來(lái)說(shuō)計(jì)算題要做到四認(rèn)真,即:認(rèn)真抄題、認(rèn)真做題、認(rèn)真列豎式、認(rèn)真檢驗(yàn)。簡(jiǎn)算題的基礎(chǔ)是運(yùn)算定律和性質(zhì)。
如:計(jì)算2.6×37+63×2.6時(shí),可考慮如下:
這個(gè)題是兩邊乘中間加,并且有相同的數(shù)字2.6,所以可以采用乘法的分配律,兩邊乘中間加,相同的數(shù)字往外拉,使計(jì)算簡(jiǎn)便.
即:2.6×37+63×2.6= 2.6×(37+63)= 2.6×100 =2.6。
檢查時(shí)要重新反復(fù)計(jì)算3到5遍,先查數(shù)字和符號(hào)是否抄對(duì)了沒(méi)有,再查運(yùn)算順序、最后查計(jì)算是否正確。
03應(yīng)用題的答題檢查技巧做應(yīng)用題可以采用分析法分析,用綜合法列式解答。考試做題時(shí)要采取先易后難的原則,先做自己比較熟悉有把握的題目,再做中等難度的題目,在遇到題目難度較大的題目時(shí),如長(zhǎng)時(shí)間思考不出,可以轉(zhuǎn)換別的方法去進(jìn)行思考,實(shí)在想不出來(lái)可以先放一放,也許在你思考別的題目的時(shí)候產(chǎn)生靈感。
檢查時(shí)要學(xué)會(huì)將所求問(wèn)題當(dāng)成已知條件,通過(guò)計(jì)算看是否能推算出題中的一個(gè)條件。
解答和檢查圖形題時(shí)要特別注意單位名稱(chēng)是否統(tǒng)一,是否需要換算。同樣應(yīng)用題檢查也要反復(fù)多檢查題中數(shù)字是否抄寫(xiě)正確?計(jì)算是否正確?
04操作題的答題檢查技巧操作題可能是讓你畫(huà)一個(gè)圖形,或者量出圖形的部分長(zhǎng)度,做一些求面積或周長(zhǎng)的計(jì)算,也可能讓你做一個(gè)設(shè)計(jì)等,這些題目一般都是對(duì)我們的教材的原型作一些整合,不會(huì)太難,所以對(duì)這類(lèi)題目一定要在認(rèn)真分析,審清題意的基礎(chǔ)上再下手去做。
注意:畫(huà)圖先用鉛筆,確定沒(méi)有問(wèn)題后再用中性筆描畫(huà)。(帶齊畫(huà)圖工具:圓規(guī)、直尺、三角板)
初中數(shù)學(xué)知識(shí)點(diǎn)歸納8
自然數(shù)的分類(lèi)包括了奇數(shù)和偶數(shù),質(zhì)數(shù)與合數(shù)、1和0。
自然數(shù)的分類(lèi)
①按能否被2整除分
可分為奇數(shù)和偶數(shù)。
1、奇 數(shù):不能被2整除的數(shù)叫奇數(shù)。
2、偶 數(shù):能被2整除的數(shù)叫偶數(shù)。
注:0是偶數(shù)。(20xx年國(guó)際數(shù)學(xué)協(xié)會(huì)規(guī)定,零為偶數(shù).我國(guó)20xx年也規(guī)定零為偶數(shù)。偶數(shù)可以被2整除,0照樣可以,只不過(guò)得數(shù)依然是0而已)。
、诎匆驍(shù)個(gè)數(shù)分
可分為質(zhì)數(shù)、合數(shù)、1和0。
1、質(zhì) 數(shù):只有1和它本身這兩個(gè)因數(shù)的自然數(shù)叫做質(zhì)數(shù)。也稱(chēng)作素?cái)?shù)。
2、合 數(shù):除了1和它本身還有其它的.因數(shù)的自然數(shù)叫做合數(shù)。
3、1:只有1個(gè)因數(shù)。它既不是質(zhì)數(shù)也不是合數(shù)。
4、當(dāng)然0不能計(jì)算因數(shù),和1一樣,也不是質(zhì)數(shù)也不是合數(shù)。
備注:這里是因數(shù)不是約數(shù)。
同學(xué)們對(duì)于“0”,它是否包括在自然數(shù)之內(nèi)存在爭(zhēng)議,其實(shí)學(xué)術(shù)界目前關(guān)于這個(gè)問(wèn)題尚無(wú)一致意見(jiàn)。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納9
數(shù)軸
規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸。
數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的.點(diǎn)來(lái)表達(dá)。
注意事項(xiàng):
、艛(shù)軸的原點(diǎn)、正方向、單位長(zhǎng)度三要素,缺一不可。
⑵同一根數(shù)軸,單位長(zhǎng)度不能改變。
一般地,設(shè)是一個(gè)正數(shù),則數(shù)軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度;表示數(shù)-a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納10
第一章 有理數(shù)
一、有理數(shù)的分類(lèi)
(1)按正負(fù)分,分為正有理數(shù)、零、負(fù)有理數(shù);
(2)按整數(shù)和分?jǐn)?shù)分,分為整數(shù)和分?jǐn)?shù);
二、有關(guān)概念
(1)相反數(shù):代數(shù)意義和幾何意義相結(jié)合,(2)絕對(duì)值:
(3)倒數(shù)
(4)數(shù)軸
三、有理數(shù)大小的比較
主要分為利用數(shù)軸比較和利用絕對(duì)值比較
四、有理數(shù)的運(yùn)算
(1)運(yùn)算法則
、偌臃ǚ▌t
②減法法則
、鄢朔ǚ▌t
、艹ǚ▌t
、莩朔椒▌t
(2)運(yùn)算律
、 交換律:a、加法交換律 a+b=b+a
b、乘法交換律 a×b=b×a
、 結(jié)合律:a、加法結(jié)合律 a+b+c=(a+b)+c
b、乘法結(jié)合律 a×c+b×c=(a+b)×c ③分配律: (a+b)×c=a×c+b×c
五、科學(xué)記數(shù)法的概念
六、近似數(shù)的概念
示例:
例1 某食品包裝袋上標(biāo)有“凈含量386克 4克”,則這包食品的合格凈含量范圍是( )克——390克。
根據(jù)正數(shù)、負(fù)數(shù)的意義可知,這包食品的合格凈含量范圍是(386-4)克——(386+4)克,即382克——390克。
382
例2 (1)如果a與-2互為相反數(shù),那么a等于( )
A、-2 B、2 C、- D、
根據(jù)相反數(shù)的特點(diǎn),即“絕對(duì)值相等,符號(hào)相反”,可知-2的相反數(shù)為2.故正確答案為B。
(2)-5的絕對(duì)值是( )
A、5 B、-5 C、 D、-
有絕對(duì)值的概念可知,表示-5的點(diǎn)到原點(diǎn)的距離為5,故-5的絕對(duì)值為5。
(3)- 的倒數(shù)是( )
A、 B、 C、- D、-
根據(jù)倒數(shù)的定義知- 的倒數(shù)為1÷(- )=-
例3 比較大。- 與-
這是兩個(gè)負(fù)數(shù)比較大小,應(yīng)先比較它們的絕對(duì)值的大小。
= = , = = 。
例4 計(jì)算:
有理數(shù)加減乘除混合運(yùn)算順序:先乘除,后加減,有括號(hào)應(yīng)先算括號(hào)里的。
例5 我國(guó)第六次全國(guó)人口普查數(shù)據(jù)顯示,居住在城鎮(zhèn)的人口總數(shù)達(dá)到665 575 306人,將665 575 306用科學(xué)記數(shù)法表示(精確到百萬(wàn)位)約為( )
A、66.6×10 B、0.666×10 C、6.66×10 D、6.66×10
665 575 306=6.655 753 06×10 ≈6.66×10 故選C
C
例6用四舍五入法,按括號(hào)里的要求對(duì)下列各數(shù)取近似值。
(1)0.069 99(精確到千分位)
(2)826 750(精確到千位)
(3)28 736(精確到千位)
精確到個(gè)位以下的數(shù),用四舍五入或科學(xué)記數(shù)法取近似數(shù)都可以;精確到個(gè)位以上的數(shù),應(yīng)用科學(xué)記數(shù)法取近似數(shù),對(duì)于較大的數(shù),應(yīng)該用科學(xué)記數(shù)法或表示時(shí)在后面加一個(gè)表示數(shù)位的漢字。
(1)0.069 99≈0.070
(2)826 750≈8.27×10 或表示為82.7萬(wàn)
(3)28 736≈2.9×10 或表示為2.9萬(wàn)
第二章 整式的加減
一、整式
1、單項(xiàng)式:有數(shù)字或字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單
項(xiàng)式。如: ab, m , -x
單項(xiàng)式的系數(shù)是指單項(xiàng)式中的數(shù)字因數(shù);單項(xiàng)式的`次數(shù)是指單項(xiàng)式中所有字母的指數(shù)和。
2、多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。在多項(xiàng)式中,不含字母的項(xiàng)叫做常數(shù)項(xiàng)。多項(xiàng)式中次數(shù)最高的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。多項(xiàng)式的次數(shù)是n次,有m個(gè)單項(xiàng)式,我們就把這個(gè)多項(xiàng)式稱(chēng)為n次m項(xiàng)式。
3、整式:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱(chēng)為整式。
二、整式的加減
1、同類(lèi)項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類(lèi)項(xiàng)。所有的常數(shù)項(xiàng)都是同類(lèi)項(xiàng)。
2、合并同類(lèi)項(xiàng):把多項(xiàng)式中的同類(lèi)項(xiàng)合并成一項(xiàng),叫做合并同類(lèi)項(xiàng)。
3、去括號(hào)法則:括號(hào)前面是“+”,把括號(hào)和它前面的“+”去掉后,原括號(hào)里各項(xiàng)的符號(hào)都不改變;括號(hào)前面是“—”,把括號(hào)和它前面的“—”號(hào)去掉后,原括號(hào)里各項(xiàng)的符號(hào)都要改變。
4、添括號(hào)法則:添括號(hào)后,括號(hào)前面是“+”,括號(hào)內(nèi)各項(xiàng)的符號(hào)都不改變;添括號(hào)后,括號(hào)前面是“—”,括號(hào)內(nèi)各項(xiàng)的符號(hào)都要改變。
5、整式的加減運(yùn)算法則:幾個(gè)整式相加減,通常用括號(hào)把每一個(gè)整式括起來(lái),再用加、減號(hào)連接,然后去括號(hào),合并同類(lèi)項(xiàng)。
※ 正式加減的一般步驟:
(1)如果有括號(hào),那么先去括號(hào);
(2)如果有同類(lèi)項(xiàng),那么先去括號(hào);
(3)易錯(cuò)音難點(diǎn):
a、確定單項(xiàng)式的系數(shù)時(shí),應(yīng)先把單項(xiàng)式寫(xiě)成數(shù)字因數(shù)與字母因數(shù)的積的形式,再確定。 b、多項(xiàng)式的項(xiàng)應(yīng)包括它前面的符號(hào),多項(xiàng)式的次數(shù)是多項(xiàng)式中次數(shù)最高項(xiàng)的次數(shù),而不是所有項(xiàng)的次數(shù)之和。
c、判斷兩項(xiàng)是否為同類(lèi)項(xiàng)時(shí),不僅要看兩項(xiàng)所含字母是否相同,還要看相同字母的指數(shù)是否相同,與所含字母的順序無(wú)關(guān)。
d、合并同類(lèi)項(xiàng)時(shí),只是系數(shù)相加減,所得結(jié)果作為系數(shù),字母及字母的指數(shù)保持不變。 e、去括號(hào)時(shí),如果括號(hào)前面是“—”,那么括號(hào)里各項(xiàng)都應(yīng)變號(hào);如果括號(hào)前有數(shù)字因數(shù),那么應(yīng)把數(shù)字因數(shù)乘到括號(hào)里,再去括號(hào)。
f、整式相加減時(shí)應(yīng)加括號(hào),把整式括起來(lái),再加減。
示例
例1 判斷下列代數(shù)式是不是單項(xiàng)式,如果不是,說(shuō)明理由;如果是,指出它的系數(shù)與次數(shù)。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納11
初中數(shù)學(xué)知識(shí)點(diǎn)歸納1
如果一組等距的平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
平行定理
平行定理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行
推論:如果兩條直線都和第三條直線平行,這兩條直線也互相平行
證明兩直線平行定理:
同位角相等,兩直線平行
內(nèi)錯(cuò)角相等,兩直線平行
同旁?xún)?nèi)角互補(bǔ),兩直線平行
兩直線平行推論:
兩直線平行,同位角相等
初中數(shù)學(xué)知識(shí)點(diǎn)歸納2
我們學(xué)習(xí)過(guò)的配方法其實(shí)可解全部的一元二次方程,但基本上的題型是容易配方的試題。
配方法
如:解方程:x2+2x-3=0
解:把常數(shù)項(xiàng)移項(xiàng)得:x2+2x=3
等式兩邊同時(shí)加1(構(gòu)成完全平方式)得:x2+2x+1=4
因式分解得:(x+1)2=4
解得:x1=-3,x2=1
用配方法解一元二次方程小口訣
二次系數(shù)化為一
常數(shù)要往右邊移
一次系數(shù)一半方
兩邊加上最相當(dāng)
解決一元二次方程的方法有很多,是我們經(jīng)常轉(zhuǎn)化運(yùn)用的知識(shí)要領(lǐng)。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納3
簡(jiǎn)單解釋就是,用不等號(hào)可以將兩個(gè)解析式連接起來(lái)所成的式子就是我們這一章節(jié)所說(shuō)的不等式。
不等式
例如2x+2y≥2xy,sinx≤1,ex>0,2xx是超越不等式。
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號(hào)、小于號(hào)“>”“<”連接的不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))
“≥”(大于等于符號(hào))“≤”(小于等于符號(hào))連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號(hào)也可以為中某一個(gè)),兩邊的解析式的公共定義域稱(chēng)為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。
其實(shí)在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式了。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄(xiě)成冪的形式
⑥首項(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類(lèi)項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納4
最簡(jiǎn)單的解釋就是,不等式是指用不等號(hào)可以將兩個(gè)解析式連接起來(lái)所成的式子。
1.概念:在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式.例如2x+2y≥2xy,sinx≤1,ex>0,2xx是超越不等式。
2、分類(lèi):不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)“>”“<”連接的不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))
“≥”(大于等于符號(hào))“≤”(小于等于符號(hào))連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號(hào)也可以為中某一個(gè)),兩邊的解析式的公共定義域稱(chēng)為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。
我們大家在判定不等式時(shí)要記得,在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納5
數(shù)軸
規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸。
數(shù)軸的作用:所有的'有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表達(dá)。
注意事項(xiàng):
⑴數(shù)軸的原點(diǎn)、正方向、單位長(zhǎng)度三要素,缺一不可。
、仆桓鶖(shù)軸,單位長(zhǎng)度不能改變。
一般地,設(shè)是一個(gè)正數(shù),則數(shù)軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度;表示數(shù)-a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納6
菱形
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);
、屏庑蔚乃臈l邊都相等;
、橇庑蔚膬蓷l對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
、攘庑问禽S對(duì)稱(chēng)圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線一半的平方和。
3、菱形的判定方法:
、哦x:一組鄰邊相等的平行四邊形是菱形。
、婆袛喾椒1:對(duì)角線互相垂直的平行四邊形是菱形。
、桥袛喾椒2:四條邊相等的四邊形是菱形。
4、菱形面積的計(jì)算:
菱形面積=底×高=對(duì)角線長(zhǎng)乘積的一半S菱形=1/2×ab(a、b為兩條對(duì)角線)
歸納:對(duì)角線互相垂直的四邊形的面積等于對(duì)角線長(zhǎng)乘積的一半。
希望上面對(duì)菱形知識(shí)點(diǎn)的總結(jié)學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們一定能很好的參加考試工作。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來(lái)學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類(lèi)項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納7
平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開(kāi)方數(shù)。
中被開(kāi)方數(shù)的取值范圍:被開(kāi)方數(shù)a≥0
平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒(méi)有平方根開(kāi)平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開(kāi)平方。
平方根與算術(shù)平方根區(qū)別:1、定義不同。2表示方法不同。3、個(gè)數(shù)不同。4、取值范圍不同。
聯(lián)系:1、二者之間存在著從屬關(guān)系。2、存在條件相同。3、0的算術(shù)平方根與平方根都是0
含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。
求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類(lèi)型:①想誰(shuí)的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納8
全等三角形的判定:
、龠吔沁吂恚⊿AS)
②角邊角公理(ASA)
、劢墙沁叾ɡ恚ˋAS)
④邊邊邊公理(SSS)
、菪边叀⒅苯沁吂恚℉L)
正方形定理公式
正方形的特征:
、僬叫蔚乃倪呄嗟;
、谡叫蔚乃膫(gè)角都是直角;
、壅叫蔚膬蓷l對(duì)角線相等,且互相垂直平分,每一條對(duì)角線平分一組對(duì)角;
正方形的判定:
①有一個(gè)角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
平行四邊形
平行四邊形的性質(zhì):
、倨叫兴倪呅蔚膶(duì)邊相等;
②平行四邊形的對(duì)角相等;
③平行四邊形的對(duì)角線互相平分;
平行四邊形的判定:
①兩組對(duì)角分別相等的四邊形是平行四邊形;
、趦山M對(duì)邊分別相等的四邊形是平行四邊形;
③對(duì)角線互相平分的四邊形是平行四邊形;
④一組對(duì)邊平行且相等的四邊形是平行四邊形。
直角三角形的性質(zhì):
①直角三角形的兩個(gè)銳角互為余角;
②直角三角形斜邊上的中線等于斜邊的一半;
、壑苯侨切蔚膬芍苯沁叺钠椒胶偷扔谛边叺钠椒剑ü垂啥ɡ恚;
、苤苯侨切沃30度
角所對(duì)的直角邊等于斜邊的一半;
直角三角形的判定:
、儆袃蓚(gè)角互余的三角形是直角三角形;
、谌绻切蔚娜呴L(zhǎng)a、b 、c有下面關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形(勾股定理的逆定理)。
等腰三角形的性質(zhì):
①等腰三角形的兩個(gè)底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個(gè)內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)的和;
三角形的外角和定理推理:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(diǎn)(內(nèi)心);
三角形的三邊的垂直平分線交于一點(diǎn)(外心);
三角形中位線定理:三角形兩邊中點(diǎn)的連線平行于第三邊,并且等于第三邊的一半;
初中數(shù)學(xué)知識(shí)點(diǎn)歸納9
方差是實(shí)際值與期望值之差平方的期望值,而標(biāo)準(zhǔn)差是方差算術(shù)平方根。在實(shí)際計(jì)算中,我們用以下公式計(jì)算方差。
方差是各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],其中,x_表示樣本的平均數(shù),n表示樣本的數(shù)量,xn表示個(gè)體,而s^2就表示方差。
而當(dāng)用(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]作為樣本X的方差的估計(jì)時(shí),發(fā)現(xiàn)其數(shù)學(xué)期望并不是X的方差,而是X方差的(n-1)/n倍,[1/(n-1)][(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2]的數(shù)學(xué)期望才是X的方差,用它作為X的方差的估計(jì)具有“無(wú)偏性”,所以我們總是用[1/(n-1)]∑(xi-X~)^2來(lái)估計(jì)X的方差,并且把它叫做“樣本方差”。
方差,通俗點(diǎn)講,就是和中心偏離的程度!用來(lái)衡量一批數(shù)據(jù)的波動(dòng)大小(即這批數(shù)據(jù)偏離平均數(shù)的大小)并把它叫做這組數(shù)據(jù)的方差。記作S。在樣本容量相同的情況下,方差越大,說(shuō)明數(shù)據(jù)的波動(dòng)越大,越不穩(wěn)定。
定義設(shè)X是一個(gè)隨機(jī)變量,若E{[X-E(X)]^2}存在,則稱(chēng)E{[X-E(X)]^2}為X的方差,記為D(X),Var(X)或DX。
即D(X)=E{[X-E(X)]^2}稱(chēng)為方差,而σ(X)=D(X)^0.5(與X有相同的量綱)稱(chēng)為標(biāo)準(zhǔn)差(或均方差)。即用來(lái)衡量一組數(shù)據(jù)的離散程度的統(tǒng)計(jì)量。
方差刻畫(huà)了隨機(jī)變量的取值對(duì)于其數(shù)學(xué)期望的離散程度。(標(biāo)準(zhǔn)差.方差越大,離散程度越大。否則,反之)
若X的取值比較集中,則方差D(X)較小
若X的取值比較分散,則方差D(X)較大。
因此,D(X)是刻畫(huà)X取值分散程度的一個(gè)量,它是衡量X取值分散程度的一個(gè)尺度。
計(jì)算由定義知,方差是隨機(jī)變量X的函數(shù)
g(X)=∑[X-E(X)]^2 pi
數(shù)學(xué)期望。即:
由方差的定義可以得到以下常用計(jì)算公式:
D(X)=∑xipi-E(x)
D(X)=∑(xipi+E(X)pi-2xipiE(X))
=∑xipi+∑E(X)pi-2E(X)∑xipi
=∑xipi+E(X)-2E(X)
=∑xipi-E(x)
方差其實(shí)就是標(biāo)準(zhǔn)差的平方。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納10
橢圓知識(shí):平面內(nèi)與兩定點(diǎn)F1、F2的距離的和等于常數(shù)2a(2a>|F1F2|)的動(dòng)點(diǎn)P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點(diǎn)F1、F2叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離│F1F2│=2c<2a叫做橢圓的焦距。P為橢圓的動(dòng)點(diǎn)。
長(zhǎng)軸為2a;短軸為2b。
橢圓的第二定義
平面內(nèi)到定點(diǎn)F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點(diǎn)的集合(定點(diǎn)F不在定直線上,該常數(shù)為小于1的正數(shù))其中定點(diǎn)F為橢圓的焦點(diǎn),定直線稱(chēng)為橢圓的準(zhǔn)線(該定直線的方程是x=±a^2/c[焦點(diǎn)在X軸上];或者y=±a^2/c[焦點(diǎn)在Y軸上])。
橢圓的其他定義
根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點(diǎn)與橢圓短軸兩端點(diǎn)連線的斜率之積是定值定值為e^2-1可以得出:平面內(nèi)與兩定點(diǎn)的連線的斜率之積是常數(shù)k的動(dòng)點(diǎn)的軌跡是橢圓,此時(shí)k應(yīng)滿(mǎn)足一定的條件,也就是排除斜率不存在的情況,還有K應(yīng)滿(mǎn)足0則有兩個(gè)不相等的實(shí)根,若b?-4ac=0則有兩個(gè)相等的實(shí)根,若b?-4ac<0則無(wú)解
若b?-4ac≥0則用公式X=-b±√b?-4ac/2a注:必須化為一般形式
(3)分解因式法
、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0
平方差公式:a?-b?=0→(a+b)(a-b)=0
、谶\(yùn)用公式法:{
完全平方公式:a?±2ab+b?=0→(a±b)?=0
、凼窒喑朔
例題:X?-2X-3=0
1/111
×}X?的系數(shù)為1則可以寫(xiě)成{常數(shù)項(xiàng)系數(shù)為3則可寫(xiě)成{
1/-31-3
--------
-3+1=-2交叉相乘在相加求值,值必須等于一次項(xiàng)系數(shù)
(X+1)(X-3)=o
初中數(shù)學(xué)知識(shí)點(diǎn)歸納12
最簡(jiǎn)單的解釋就是,不等式是指用不等號(hào)可以將兩個(gè)解析式連接起來(lái)所成的式子。
1.概念:在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
2、分類(lèi):不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)“>”“<”連接的不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))
“≥”(大于等于符號(hào))“≤”(小于等于符號(hào))連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式。
通常不等式中的'數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號(hào)也可以為<,≥,> 中某一個(gè)),兩邊的解析式的公共定義域稱(chēng)為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。
我們大家在判定不等式時(shí)要記得,在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納13
簡(jiǎn)單解釋就是,用不等號(hào)可以將兩個(gè)解析式連接起來(lái)所成的式子就是我們這一章節(jié)所說(shuō)的不等式。
不等式
例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號(hào)、小于號(hào)“>”“<”連接的不等式稱(chēng)為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))
“≥”(大于等于符號(hào))“≤”(小于等于符號(hào))連接的不等式稱(chēng)為非嚴(yán)格不等式,或稱(chēng)廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號(hào)也可以為<,≥,> 中某一個(gè)),兩邊的解析式的公共定義域稱(chēng)為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問(wèn)題。
其實(shí)在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含不等符號(hào)的式子,那它就是一個(gè)不等式了。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫(huà)兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱(chēng)為x軸或橫軸,豎直的數(shù)軸稱(chēng)為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱(chēng)為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)O稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的.內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫(xiě)成積的形式。
分解因式注意;
、俨粶(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄(xiě)成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類(lèi)項(xiàng)合并。
通過(guò)上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納14
全等三角形
一.知識(shí)框架
二.知識(shí)概念
1.全等三角形:兩個(gè)三角形的形狀、大小、都一樣時(shí),其中一個(gè)可以經(jīng)過(guò)平移、旋轉(zhuǎn)、對(duì)稱(chēng)等運(yùn)動(dòng)(或稱(chēng)變換)使之與另一個(gè)重合,這兩個(gè)三角形稱(chēng)為全等三角形。
2.全等三角形的性質(zhì): 全等三角形的對(duì)應(yīng)角相等、對(duì)應(yīng)邊相等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡(jiǎn)稱(chēng)“SAS”
(2)“角邊角”簡(jiǎn)稱(chēng)“ASA”
(3)“邊邊邊”簡(jiǎn)稱(chēng)“SSS”
(4)“角角邊”簡(jiǎn)稱(chēng)“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書(shū)寫(xiě)證明格式(順序和對(duì)應(yīng)關(guān)系從已知推導(dǎo)出要證明的問(wèn)題).
在學(xué)習(xí)三角形的全等時(shí),教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形進(jìn)而引出全等三角形。通過(guò)直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的匯合思維,啟發(fā)他們的靈感,使學(xué)生體會(huì)到匯合的真正魅力。
軸對(duì)稱(chēng)
一.知識(shí)框架
二.知識(shí)概念
1.對(duì)稱(chēng)軸:如果一個(gè)圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱(chēng)圖形;這條直線叫做對(duì)稱(chēng)軸。
2.性質(zhì): (1)軸對(duì)稱(chēng)圖形的對(duì)稱(chēng)軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。
(2)角平分線上的點(diǎn)到角兩邊距離相等。
(3)線段垂直平分線上的任意一點(diǎn)到線段兩個(gè)端點(diǎn)的距離相等。
(4)與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
(5)軸對(duì)稱(chēng)圖形上對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等。
3.等腰三角形的性質(zhì):等腰三角形的兩個(gè)底角相等,(等邊對(duì)等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡(jiǎn)稱(chēng)為“三線合一”。
5.等腰三角形的判定:等角對(duì)等邊。
6.等邊三角形角的特點(diǎn):三個(gè)內(nèi)角相等,等于60°,7.等邊三角形的`判定: 三個(gè)角都相等的三角形是等腰三角形。
有一個(gè)角是60°的等腰三角形是等邊三角形
有兩個(gè)角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對(duì)的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內(nèi)容要求學(xué)生在建立在軸對(duì)稱(chēng)概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,并利用這些性質(zhì)來(lái)解決一些數(shù)學(xué)問(wèn)題。
實(shí)數(shù)
一.知識(shí)框架
二.知識(shí)概念
1.算術(shù)平方根:一般地,如果一個(gè)正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫做a的算術(shù)平方根,記作 。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a≥0時(shí),a才有算術(shù)平方根。
2.平方根:一般地,如果一個(gè)數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a的平方根。
3.正數(shù)有兩個(gè)平方根(一正一負(fù))它們互為相反數(shù);0只有一個(gè)平方根,就是它本身;負(fù)數(shù)沒(méi)有平方根。
4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。
5.數(shù)a的相反數(shù)是-a,一個(gè)正實(shí)數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0
實(shí)數(shù)部分主要要求學(xué)生了解無(wú)理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng),能估算無(wú)理數(shù)的大小;了解實(shí)數(shù)的運(yùn)算法則及運(yùn)算律,會(huì)進(jìn)行實(shí)數(shù)的運(yùn)算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類(lèi);實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。
一次函數(shù)
一.知識(shí)框架
二.知識(shí)概念
1.一次函數(shù):若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k≠0)的形式,則稱(chēng)y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱(chēng)y是x的正比例函數(shù)。
2.正比例函數(shù)一般式:y=kx(k≠0),其圖象是經(jīng)過(guò)原點(diǎn)(0,0)的一條直線。
3.正比例函數(shù)y=kx(k≠0)的圖象是一條經(jīng)過(guò)原點(diǎn)的直線,當(dāng)k>0時(shí),直線y=kx經(jīng)過(guò)第一、三象限,y隨x的增大而增大,當(dāng)k<0時(shí),直線y=kx經(jīng)過(guò)第二、四象限,y隨x的增大而減小,在一次函數(shù)y=kx+b中:當(dāng)k>0時(shí),y隨x的增大而增大; 當(dāng)k<0時(shí),y隨x的增大而減小。
4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法
一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開(kāi)始,也是今后學(xué)習(xí)其它函數(shù)知識(shí)的基石。在學(xué)習(xí)本章內(nèi)容時(shí),教師應(yīng)該多從實(shí)際問(wèn)題出發(fā),引出變量,從具體到抽象的認(rèn)識(shí)事物。培養(yǎng)學(xué)生良好的變化與對(duì)應(yīng)意識(shí),體會(huì)數(shù)形結(jié)合的思想。在教學(xué)過(guò)程中,應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問(wèn)題的同時(shí),讓學(xué)習(xí)體會(huì)到數(shù)學(xué)的實(shí)用價(jià)值和樂(lè)趣。
整式的乘除與分解因式
一.知識(shí)概念
1.同底數(shù)冪的乘法法則: (m,n都是正數(shù))
2.. 冪的乘方法則: (m,n都是正數(shù))
3. 整式的乘法
(1) 單項(xiàng)式乘法法則:單項(xiàng)式相乘,把它們的系數(shù)、相同字母分別相乘,對(duì)于只在一個(gè)單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個(gè)因式。
(2)單項(xiàng)式與多項(xiàng)式相乘:單項(xiàng)式乘以多項(xiàng)式,是通過(guò)乘法對(duì)加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
(3).多項(xiàng)式與多項(xiàng)式相乘
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式中的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6. 同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即 (a≠0,m、n都是正數(shù),且m>n).
在應(yīng)用時(shí)需要注意以下幾點(diǎn):
、俜▌t使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a≠0.
、谌魏尾坏扔0的數(shù)的0次冪等于1,即 ,如 ,(-2.50=1),則00無(wú)意義.
、廴魏尾坏扔0的數(shù)的-p次冪(p是正整數(shù)),等于這個(gè)數(shù)的p的次冪的倒數(shù),即 ( a≠0,p是正整數(shù)), 而0-1,0-3都是無(wú)意義的;當(dāng)a>0時(shí),a-p的值一定是正的; 當(dāng)a<0時(shí),a-p的值可能是正也可能是負(fù)的,如 ,④運(yùn)算要注意運(yùn)算順序.
7.整式的除法
單項(xiàng)式除法單項(xiàng)式:單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式;
多項(xiàng)式除以單項(xiàng)式: 多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加.
8.分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變形叫做把這個(gè)多項(xiàng)式分解因式.
分解因式的一般方法:1. 提公共因式法2. 運(yùn)用公式法3.十字相乘法
分解因式的步驟:(1)先看各項(xiàng)有沒(méi)有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過(guò)分組后提取各組公因式或運(yùn)用公式法來(lái)達(dá)到分解的目的;
(4)因式分解的最后結(jié)果必須是幾個(gè)整式的乘積,否則不是因式分解;
(5)因式分解的結(jié)果必須進(jìn)行到每個(gè)因式在有理數(shù)范圍內(nèi)不能再分解為止.
整式的乘除與分解因式這章內(nèi)容知識(shí)點(diǎn)較多,表面看來(lái)零碎的概念和性質(zhì)也較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時(shí),應(yīng)多準(zhǔn)備些小組合作與交流活動(dòng),培養(yǎng)學(xué)生推理能力、計(jì)算能力。在做題中體驗(yàn)數(shù)學(xué)法則、公式的簡(jiǎn)潔美、和諧美,提高做題效率。
初中數(shù)學(xué)知識(shí)點(diǎn)歸納15
一、閱讀理解目前初中學(xué)生學(xué)習(xí)數(shù)學(xué)存在一個(gè)嚴(yán)重的問(wèn)題就是不善于讀數(shù)學(xué)教材,他們往往是死記硬背。重視閱讀方法對(duì)提高初中學(xué)生的學(xué)習(xí)能力是至關(guān)重要的。新學(xué)一個(gè)章節(jié)內(nèi)容,先粗粗讀一遍,即瀏覽本章節(jié)所學(xué)內(nèi)容的枝干,然后一邊讀一邊勾,粗略懂得教材的內(nèi)容及其重點(diǎn)、難點(diǎn)所在,對(duì)不理解的地方打上記號(hào)。然后細(xì)細(xì)地讀,即根據(jù)每章節(jié)后的學(xué)習(xí)要求,仔細(xì)閱讀教材內(nèi)容,理解數(shù)學(xué)概念、公式、法則、思想方法的實(shí)質(zhì)及其因果關(guān)系,把握重點(diǎn)、突破難點(diǎn)。再次帶著研究者的態(tài)度去讀,即帶著發(fā)展的觀點(diǎn)研討知識(shí)的來(lái)龍去脈、結(jié)構(gòu)關(guān)系、編排意圖,并歸納要點(diǎn),把書(shū)讀懂,并形成知識(shí)網(wǎng)絡(luò),完善認(rèn)識(shí)結(jié)構(gòu),當(dāng)學(xué)生掌握了這三種讀法,形成習(xí)慣之后,就能從本質(zhì)上改變其學(xué)習(xí)方式,提高學(xué)習(xí)效率了。
二、提高聽(tīng)課質(zhì)量要培養(yǎng)會(huì)聽(tīng)課,聽(tīng)懂課的習(xí)慣。注意聽(tīng)教師每節(jié)課強(qiáng)調(diào)的學(xué)習(xí)重點(diǎn),注意聽(tīng)對(duì)定理、公式、法則的引入與推導(dǎo)的'方法和過(guò)程,注意聽(tīng)對(duì)例題關(guān)鍵部分的提示和處理方法,注意聽(tīng)對(duì)疑難問(wèn)題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點(diǎn),沿著知識(shí)的發(fā)生發(fā)展的過(guò)程來(lái)聽(tīng)課,不僅能提高聽(tīng)課效率,而且能由“聽(tīng)會(huì)”轉(zhuǎn)變?yōu)椤皶?huì)聽(tīng)”。
三、有疑必問(wèn)是提高學(xué)習(xí)效率的有效辦法學(xué)習(xí)過(guò)程中,遇到疑問(wèn),抓緊時(shí)間問(wèn)老師和同學(xué),把沒(méi)有弄懂,沒(méi)有學(xué)明白的知識(shí),最短的時(shí)間內(nèi)掌握。建立自己的錯(cuò)題本,經(jīng)常翻閱,提醒自己同樣的錯(cuò)誤不要犯第二次。從而提高學(xué)習(xí)效率。
初中數(shù)學(xué)學(xué)習(xí)建議
一、制定切實(shí)可行的計(jì)劃,家長(zhǎng)與孩子一起討論,合理的羅列出完成某些要事的時(shí)間段及要達(dá)到的目標(biāo)。
二、數(shù)學(xué)學(xué)習(xí)過(guò)程中,要有一個(gè)清醒的復(fù)習(xí)意識(shí),逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會(huì)學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)是一個(gè)反思性學(xué)習(xí)過(guò)程。要反思對(duì)所學(xué)習(xí)的知識(shí)、技能有沒(méi)有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運(yùn)用的,運(yùn)用過(guò)程中有什么特點(diǎn);要反思基本問(wèn)題(包括基本圖形、圖像等),典型問(wèn)題有沒(méi)有真正弄懂弄通了,平時(shí)碰到的問(wèn)題中有哪些問(wèn)題可歸結(jié)為基本問(wèn)題;要反思錯(cuò)誤,找出產(chǎn)生錯(cuò)誤的原因,訂出改正的措施。
三、數(shù)學(xué)不等于做題,千萬(wàn)不要忽視最基本的概念、公理、定理和公式,寒假里要把已經(jīng)學(xué)過(guò)的教科書(shū)中的概念整理出來(lái),通過(guò)讀一讀、抄一抄加深印象,特別是容易混淆的概念更要徹底搞清,不留隱患。
其次,數(shù)學(xué)需要實(shí)踐,需要大量做題,但要“埋下頭去做題,抬起頭來(lái)想題”,在做題中關(guān)注思路、方法、技巧,注重發(fā)現(xiàn)題與題之間的內(nèi)在聯(lián)系,要“苦做”更要“巧做”,絕不能“傻做”。在做一道與以前相似的題目時(shí),要會(huì)通過(guò)比較,發(fā)現(xiàn)規(guī)律,穿透實(shí)質(zhì),以達(dá)到“觸類(lèi)旁通”的境界。此外,大家在平時(shí)做題中就要及時(shí)記錄錯(cuò)題,還要想一想為什么會(huì)錯(cuò)、以後要特別注意哪些地方,這樣就能避免不必要的失分。如果試題中涉及到你的薄弱環(huán)節(jié),一定要通過(guò)短時(shí)間的專(zhuān)題學(xué)習(xí),集中優(yōu)勢(shì)兵力,攻克難關(guān),別留下陷阱。
【初中數(shù)學(xué)知識(shí)點(diǎn)歸納】相關(guān)文章:
初中數(shù)學(xué)圓的知識(shí)點(diǎn)歸納04-15
初中數(shù)學(xué)定理知識(shí)點(diǎn)歸納03-31
初中數(shù)學(xué)知識(shí)點(diǎn)歸納03-31
初中數(shù)學(xué)線角的知識(shí)點(diǎn)歸納03-31
初中數(shù)學(xué)重要知識(shí)點(diǎn)歸納04-03
初中數(shù)學(xué)知識(shí)點(diǎn)的歸納03-22
關(guān)于初中數(shù)學(xué)的知識(shí)點(diǎn)歸納03-26