【推薦】初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15篇
總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對(duì)學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書面材料,它能幫我們理順知識(shí)結(jié)構(gòu),突出重點(diǎn),突破難點(diǎn),讓我們好好寫一份總結(jié)吧?偨Y(jié)怎么寫才能發(fā)揮它的作用呢?下面是小編幫大家整理的初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin):對(duì)邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對(duì)邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對(duì)邊,即cotA=b/a;
正割(sec):斜邊比鄰邊,即secA=c/b;
余割(csc):斜邊比對(duì)邊,即cscA=c/a。
三角函數(shù)關(guān)系
1、互余角的關(guān)系
sin(90°—α)=cosα,cos(90°—α)=sinα,tan(90°—α)=cotα,cot(90°—α)=tanα。
2、平方關(guān)系
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
兩角和差公式
sin(A+B)= sinAcosB+cosAsinB
sin(A—B)= sinAcosB—cosAsinB
cos(A+B)= cosAcosB—sinAsinB
cos(A—B)= cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7、同圓或等圓的半徑相等。
8、到定點(diǎn)的距離等于定長(zhǎng)的.點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。
13、切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。
14、切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。
15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
1過(guò)兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等
5過(guò)一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短7平行公理經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°18推論1直角三角形的兩個(gè)銳角互余
19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角21全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)
35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形
43定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線44定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上
45逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形
48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對(duì)角相等53平行四邊形性質(zhì)定理2平行四邊形的對(duì)邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對(duì)角線互相平分
56平行四邊形判定定理1兩組對(duì)角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對(duì)邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對(duì)角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對(duì)邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對(duì)角線相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對(duì)角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角66菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對(duì)角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
71定理1關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的
72定理2關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分
73逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對(duì)角線相等
76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對(duì)角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的.直線,必平分另一腰80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對(duì)應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)94判定定理3三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似
96性質(zhì)定理1相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長(zhǎng)的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
114定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
116定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
117推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等118推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126切線長(zhǎng)定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對(duì)邊的和相等128弦切角定理弦切角等于它所夾的弧對(duì)的圓周角
129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r
、趦蓤A外切d=R+r
③兩圓相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
(n2)180139正n邊形的每個(gè)內(nèi)角都等于
n140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
pnrn141正n邊形的面積Sn=p表示正n邊形的周長(zhǎng)
2142正三角形面積
32aa表示邊長(zhǎng)4143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,
k(n2)180360化為(n-2)(k-2)=4因此
n144弧長(zhǎng)計(jì)算公式:L=
nR180nR2LR145扇形面積公式:S扇形==
3602146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
公式分類及公式表達(dá)式
乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根與系數(shù)的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根b2-4ac
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
1、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
3、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
4、同圓或等圓的半徑相等
5、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
6、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
8、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
11、推論1:①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
12、推論2:圓的兩條平行弦所夾的弧相等
13、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
16、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
17、推論:1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
18、推論:2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
20、定理:圓的.內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
22、切線的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑24、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)25、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
26、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等圓心和這一點(diǎn)的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對(duì)邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對(duì)的圓周角
29、推論:如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
32、切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
33、推論:從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
34、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
35、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦
37、定理:把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
38、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
39、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)42、正三角形面積√3a/4a表示邊長(zhǎng)
43、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n—2)180°/n=360°化為(n—2)(k—2)=444、弧長(zhǎng)計(jì)算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長(zhǎng)=d—(R—r)外公切線長(zhǎng)=d—(R+r)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
一、在創(chuàng)新中培養(yǎng)學(xué)生的歸納意?R
在初中數(shù)學(xué)教學(xué)中,重點(diǎn)是對(duì)學(xué)生的創(chuàng)新精神和實(shí)踐能力的培養(yǎng),體現(xiàn)出現(xiàn)代素質(zhì)教育。學(xué)生創(chuàng)新能力的培養(yǎng)在學(xué)習(xí)中占據(jù)非常重要的作用,在創(chuàng)新中學(xué)生可以鞏固自身所學(xué)的知識(shí),使數(shù)學(xué)知識(shí)在自己的頭腦中根深蒂固,各類知識(shí)點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識(shí)的培養(yǎng)。歸納意識(shí)的培養(yǎng),可以減輕學(xué)生的學(xué)習(xí)負(fù)擔(dān),提升學(xué)生對(duì)知識(shí)的理解能力。
初中生在學(xué)習(xí)數(shù)學(xué)的環(huán)節(jié)中,常常會(huì)接觸到大量的圖像,在數(shù)學(xué)學(xué)習(xí)中,老師應(yīng)該鼓勵(lì)學(xué)生大膽創(chuàng)新,在創(chuàng)新環(huán)節(jié)中完成對(duì)知識(shí)點(diǎn)的歸納。數(shù)學(xué)學(xué)習(xí)并不死板,不僅僅學(xué)習(xí)教科書上的知識(shí),還應(yīng)該學(xué)習(xí)書本以外的知識(shí),從而創(chuàng)新自己的思維。例如在進(jìn)行函數(shù)的學(xué)習(xí)中,老師可以讓學(xué)生繪制函數(shù)圖像,對(duì)函數(shù)進(jìn)行分類討論,從而掌握遞增函數(shù)和遞減函數(shù)的定義,在分類討論后,學(xué)生結(jié)合圖像進(jìn)行歸納。在數(shù)學(xué)教學(xué)中,老師不僅僅要重視書本上的邏輯內(nèi)容,而且在把握邏輯內(nèi)容的基礎(chǔ)上,將圖像和數(shù)學(xué)知識(shí)有機(jī)結(jié)合起來(lái),使學(xué)生可以大膽創(chuàng)新。
很多學(xué)生在數(shù)學(xué)學(xué)習(xí)中存在困難,認(rèn)為數(shù)學(xué)的學(xué)習(xí)就是解答大量的難題,他們?cè)诖罅康念}海戰(zhàn)術(shù)后不善于歸納,導(dǎo)致數(shù)學(xué)學(xué)習(xí)的效率不高。
二、在交流中歸納知識(shí)點(diǎn)
在數(shù)學(xué)學(xué)習(xí)中,如果學(xué)生只是自己探究,那么在學(xué)習(xí)中不會(huì)得到靈感。數(shù)學(xué)學(xué)習(xí)不僅僅要求學(xué)生具有認(rèn)真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養(yǎng)成歸納的意識(shí)。溝通和交流不僅僅在語(yǔ)言的學(xué)習(xí)中發(fā)揮非常重要的作用,而且在數(shù)學(xué)學(xué)習(xí)中同樣非常重要。學(xué)生在解答數(shù)學(xué)問(wèn)題中,常常會(huì)遇到一些問(wèn)題,學(xué)生自己探究會(huì)陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。
為了切實(shí)在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的歸納意識(shí),老師可以將班級(jí)內(nèi)的學(xué)生分成幾個(gè)不同的小組,組內(nèi)的同學(xué)可以通過(guò)合作的方式,對(duì)知識(shí)點(diǎn)進(jìn)行歸納,在數(shù)學(xué)的學(xué)習(xí)中更加變通,將數(shù)學(xué)這門學(xué)科應(yīng)用到生活中。
例如,在進(jìn)行二次函數(shù)的學(xué)習(xí)中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對(duì)知識(shí)點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結(jié)論,如果函數(shù)有兩個(gè)解,那么函數(shù)與數(shù)軸會(huì)有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數(shù)與數(shù)軸只有一個(gè)交點(diǎn),如果方程沒(méi)有解,那么函數(shù)與數(shù)軸沒(méi)有交點(diǎn)。學(xué)生通過(guò)分組討論的方式得到結(jié)論,通過(guò)歸納,學(xué)生對(duì)二次函數(shù)知識(shí)點(diǎn)的.印象非常深刻。
三、學(xué)會(huì)正確歸納
在數(shù)學(xué)學(xué)習(xí)中,歸納思想非常重要,數(shù)學(xué)這門學(xué)科的知識(shí)非常細(xì)碎,是一門系統(tǒng)性很強(qiáng)的學(xué)科。數(shù)學(xué)知識(shí)錯(cuò)綜復(fù)雜,很多學(xué)生在學(xué)習(xí)數(shù)學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數(shù)學(xué)成績(jī)。初中生的思維還不是特別完善,在進(jìn)行數(shù)學(xué)學(xué)習(xí)環(huán)節(jié)中,對(duì)知識(shí)點(diǎn)進(jìn)行合理的歸納,是每位老師應(yīng)該采取的方法。如果學(xué)生不懂得歸納,那么在數(shù)學(xué)考試中,學(xué)生會(huì)將知識(shí)點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應(yīng)該將一些容易混淆和容易出現(xiàn)錯(cuò)誤的習(xí)題讓學(xué)生總結(jié)。
例如,在學(xué)習(xí)圓和直線這部分內(nèi)容中,老師都會(huì)將重點(diǎn)內(nèi)容,圓和圓的位置關(guān)系,直線和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書目和資料,總結(jié)一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對(duì)這部分知識(shí)點(diǎn)進(jìn)行總結(jié),從而加深對(duì)這部分知識(shí)的理解。歸納思想在數(shù)學(xué)學(xué)習(xí)中應(yīng)用非常多,在進(jìn)行初中數(shù)學(xué)教學(xué)環(huán)節(jié)中,學(xué)生應(yīng)該花更多的時(shí)間進(jìn)行歸納。
在進(jìn)行初中數(shù)學(xué)的學(xué)習(xí)中,學(xué)生歸納意識(shí)的養(yǎng)成可以完善學(xué)生的數(shù)學(xué)思維,學(xué)生學(xué)會(huì)歸納,在學(xué)習(xí)中就會(huì)如魚得水,在考試中取得好成績(jī)。
四、在反思中完成知識(shí)點(diǎn)的歸納
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
初中數(shù)學(xué)的學(xué)科地位很高,一直以來(lái)是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。
圓心角
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。
推理過(guò)程
根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠a'ob'的'位置時(shí),顯然∠aob=∠a'ob',射線oa與oa'重合,ob與ob'重合,而同圓的半徑相等,oa=oa',ob=ob',從而點(diǎn)a與a'重合,b與b'重合。
因此,弧ab與弧a'b'重合,ab與a'b'重合。即
弧ab=弧a'b',ab=a'b'。
則得到上面定理。
同樣還可以得到:
在同圓或等圓中,如果兩條弧相等,那么他們所對(duì)的圓心角相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。
在同圓或等圓中,如果兩條弦相等,那么他們所對(duì)的圓心角相等,所對(duì)的弧相等,所對(duì)的弦心距也相等。
所以,在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,它們所對(duì)應(yīng)的其余各組量也相等。
圓的圓心角知識(shí)要領(lǐng)很容易掌握,經(jīng)常會(huì)出現(xiàn)在關(guān)于圓的證明題中。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
一、初中數(shù)學(xué)基本概念
1.方程:含有未知數(shù)的等式叫做方程。
2.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。
3.方程的解:使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
4.解方程:求方程的解的過(guò)程叫做解方程。
5.恒等式:兩個(gè)含有相同的未知數(shù),并且含未知數(shù)項(xiàng)的系數(shù)都是零的整式方程是一元一次方程。
二、初中數(shù)學(xué)基本公式
1.三角形面積的公式:三角形面積=底×高÷2,用字母表示為“S=ah÷2”。
2.平行四邊形面積的公式:平行四邊形面積=底×高,用字母表示為“S=ah”。
3.梯形面積的公式:梯形面積=(上底+下底)×高÷2,用字母表示為“S=(a+b)h÷2”。
4.圓的面積公式:圓面積=半徑×半徑×π,用字母表示為“S=πr2”。
5.菱形的面積公式:菱形面積=底×高,用字母表示為“S=ab”。
6.正方形面積公式:正方形面積=邊長(zhǎng)×邊長(zhǎng),用字母表示為“S=a2”。
7.一元一次方程求解公式:ax=b,其中a和b為方程的系數(shù),x為未知數(shù)。當(dāng)a≠0時(shí),有唯一解;當(dāng)a=0且b≠0時(shí),無(wú)解;當(dāng)a=0且b=0時(shí),有無(wú)數(shù)解。
三、初中數(shù)學(xué)基本定理
1.等式的性質(zhì):等式兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式;等式兩邊同時(shí)乘以(或除以)同一個(gè)不為0的數(shù)或代數(shù)式,所得結(jié)果仍是等式。
2.方程的.解法:通過(guò)移項(xiàng)、合并同類項(xiàng)、去括號(hào)、去分母等方式,將一元一次方程轉(zhuǎn)化為ax=b的形式,求解得到方程的解。
3.一元一次不等式的解法:將一元一次不等式轉(zhuǎn)化為ax>b或ax
4.二元一次方程組的解法:通過(guò)代入消元法或加減消元法,將二元一次方程組轉(zhuǎn)化為一個(gè)一元一次方程,然后求解得到方程組的解。
5.菱形的性質(zhì):菱形的四條邊相等,對(duì)角線互相垂直平分,并且每一組對(duì)角線平分一組對(duì)角。
6.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì),并且四條邊相等,四個(gè)角都是直角。
7.相似三角形的判定定理:兩個(gè)三角形對(duì)應(yīng)邊成比例且對(duì)應(yīng)角相等,則這兩個(gè)三角形相似。
8.全等三角形的判定定理:兩個(gè)三角形三邊相等、兩邊夾角相等、兩角夾邊相等、兩角和一邊相等,則這兩個(gè)三角形全等。
9.垂徑定理:在圓中,直徑平分弦(不是直徑的弦)所對(duì)的兩條弧,平分弦所對(duì)的圓周弧的弦垂直平分弦。
10.圓的切線的判定定理:經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線;經(jīng)過(guò)圓的半徑外端且垂直于切線的直線是圓的切線;圓的割線定理:一條直線與一個(gè)圓有兩個(gè)不同的交點(diǎn),則這條直線被圓截得的線段長(zhǎng)的平方等于這個(gè)圓上兩點(diǎn)所對(duì)應(yīng)的弦長(zhǎng)的平方差。
11.相交弦定理:圓內(nèi)的兩條相交弦被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。
12.切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的積相等。
13.圓心角、弧、弦的關(guān)系定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等;相等的弧所對(duì)的弦也相等;相等的弦所對(duì)的弧也相等;在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等;弧的度數(shù)等于它所對(duì)的圓心角度數(shù);一個(gè)圓心角等于它所對(duì)的弧的度數(shù);半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
定義
對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形
比值與比的概念
比值是一個(gè)具體的數(shù)字如:AB/EF=2
而比不是一個(gè)具體的數(shù)字如:AB/EF=2:1判定方法
證兩個(gè)相似三角形應(yīng)該把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上。如果是文字語(yǔ)言的“△ABC與△DEF相似”,那么就說(shuō)明這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)可能沒(méi)有寫在對(duì)應(yīng)的位置上,而如果是符號(hào)語(yǔ)言的“△ABC∽△DEF”,那么就說(shuō)明這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)寫在了對(duì)應(yīng)的位置上。
方法一(預(yù)備定理)
平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線與線段成比例的.證明)
方法二
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。
方法三
如果兩個(gè)三角形的兩組對(duì)應(yīng)邊成比例,并且相應(yīng)的夾角相等,
那么這兩個(gè)三角形相似
方法四
如果兩個(gè)三角形的三組對(duì)應(yīng)邊成比例,那么這兩個(gè)三角形相似
方法五(定義)
對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形
三個(gè)基本型
Z型A型反A型
方法六
兩個(gè)直角三角形中,斜邊與直角邊對(duì)應(yīng)成比例,那么兩三角形相似。一定相似的三角形
1、兩個(gè)全等的三角形
(全等三角形是特殊的相似三角形,相似比為1:1)
2、兩個(gè)等腰三角形
(兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)
3、兩個(gè)等邊三角形
(兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)
4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)
圖形的學(xué)習(xí)需要大家對(duì)于知識(shí)的詳細(xì)了解和滲透,而不是一帶而過(guò)。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
一次函數(shù)的圖象與性質(zhì)的口訣:
一次函數(shù)是直線,圖象經(jīng)過(guò)三象限;
正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;
兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;
k為負(fù)來(lái)左下展,變化規(guī)律正相反;
k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
拓展閱讀:一次函數(shù)的解題方法
理解一次函數(shù)和其它知識(shí)的聯(lián)系
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
掌握一次函數(shù)的解析式的特征
一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒(méi)有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。
應(yīng)用一次函數(shù)解決實(shí)際問(wèn)題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);
3、在實(shí)際問(wèn)題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說(shuō),距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);
4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。
數(shù)形結(jié)合
方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來(lái)理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來(lái)認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。
如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無(wú)窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無(wú)交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問(wèn)題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問(wèn)題的方法。我們通常稱未知或變?cè)。用新的參?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來(lái)確定根的性質(zhì),還作為一個(gè)問(wèn)題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問(wèn)題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問(wèn)題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問(wèn)題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問(wèn)題,這種問(wèn)題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問(wèn)題時(shí),我們通常通過(guò)分析條件和結(jié)論來(lái)使用這些方法來(lái)構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問(wèn)題,這種解決問(wèn)題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問(wèn)題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問(wèn)題。
數(shù)學(xué)經(jīng)常遇到的問(wèn)題解答
1、要提高數(shù)學(xué)成績(jī)首先要做什么?
這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺(jué)得基礎(chǔ)知識(shí)過(guò)于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺(jué)良好”其實(shí)是一種錯(cuò)覺(jué),而真正考試時(shí)又覺(jué)得無(wú)從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。
2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?
對(duì)于基礎(chǔ)差的同學(xué)來(lái)說(shuō),課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。
3、是否要采用題海戰(zhàn)術(shù)?
方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。
4、做題總是粗心怎么辦?
很多學(xué)生成績(jī)不好,會(huì)說(shuō)自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒(méi)有清晰的.解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒(méi)有“粗心”只有“不用心”。
為什么要學(xué)習(xí)數(shù)學(xué)
作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無(wú)味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥?lái)的職業(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。
首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過(guò)程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問(wèn)題,而這些問(wèn)題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過(guò)長(zhǎng)期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問(wèn)題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭绕涫窃诮鉀Q復(fù)雜問(wèn)題時(shí)更能得心應(yīng)手。
其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測(cè)趨勢(shì),并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒(méi)有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過(guò)程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。
除此之外,數(shù)學(xué)也是一種普遍使用的語(yǔ)言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語(yǔ)言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語(yǔ)言來(lái)描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。
最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來(lái)廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問(wèn)題,使其在各自領(lǐng)域脫穎而出。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
二元一次方程(組)
1、二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程。
2、二元一次方程組:含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的一組方程,叫做二元一次方程組。
3、二元一次方程組的解:二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。
4、二元一次方程組的解法。
(1)代人消元法:解方程組的基本思路是“消元”一把“二元”變?yōu)椤耙辉,主要步驟是,將其中一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代人另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程,這種解方程組的方法稱為代人消元法,簡(jiǎn)稱代人法。
。2)加減消元法:通過(guò)方程兩邊分別相加(減)消去其中一個(gè)未知數(shù),這種解二元一次方程組的方法叫做加減消元法,簡(jiǎn)稱加減法。
提醒大家:二元一次方程組的解法包括代人消元法和加減消元法。
平面直角坐標(biāo)系
下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:
、僭谕黄矫
②兩條數(shù)軸
、刍ハ啻怪
④原點(diǎn)重合
三個(gè)規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L(zhǎng)度的規(guī)定;一般情況,橫軸、縱軸單位長(zhǎng)度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
平面直角坐標(biāo)系的構(gòu)成
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡(jiǎn)稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過(guò)上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
點(diǎn)的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過(guò)來(lái),對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過(guò)點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績(jī)的。
因式分解的一般步驟
如果多項(xiàng)式有公因式就先提公因式,沒(méi)有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒(méi)有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的'結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績(jī)。
因式分解
因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:
、俳Y(jié)果必須是整式
②結(jié)果必須是積的形式
③結(jié)果是等式
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:
、傧禂(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。
、谙嗤帜溉∽畹痛蝺
③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
①確定公因式。
②確定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
③雙重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
⑤相同因式寫成冪的形式
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
⑦括號(hào)內(nèi)同類項(xiàng)合并。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
三角形的知識(shí)點(diǎn)
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
6、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
推論1直角三角形的兩個(gè)銳角互余
推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和
推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線的夾角,叫做三角形的外角。
11、三角形外角的性質(zhì)
(1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(zhǎng)線;
(2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;
(3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識(shí)點(diǎn)、概念總結(jié)
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對(duì)邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對(duì)邊相等且平行
(2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)
(3)平行四邊形的對(duì)角線互相平分
3、判定:
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形
(2)兩組對(duì)邊分別相等的四邊形是平行四邊形
(3)一組對(duì)邊平行且相等的四邊形是平行四邊形
(4)兩組對(duì)角分別相等的四邊形是平行四邊形
(5)對(duì)角線互相平分的四邊形是平行四邊形
4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等
3、判定:
(1)有一個(gè)角是直角的'平行四邊形叫做矩形
(2)有三個(gè)角是直角的四邊形是矩形
(3)兩條對(duì)角線相等的平行四邊形是矩形
4、對(duì)稱性:矩形是軸對(duì)稱圖形也是中心對(duì)稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
(3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形
(4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半
2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對(duì)角線互相垂直的平行四邊形是菱形
4、對(duì)稱性:菱形是軸對(duì)稱圖形也是中心對(duì)稱圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個(gè)角都是直角,四條邊都相等
(2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
(3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形
(4)正方形的對(duì)角線與邊的夾角是45°
(5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形
3、判定:
(1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角
4、對(duì)稱性:正方形是軸對(duì)稱圖形也是中心對(duì)稱圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形
4、對(duì)稱性:等腰梯形是軸對(duì)稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);三角形的重心是三條中線的交點(diǎn)。
八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
九、多邊形
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°
10、多邊形對(duì)角線的條數(shù):
(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形
(2)n邊形共有n(n-3)/2條對(duì)角線
圓知識(shí)點(diǎn)、概念總結(jié)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
、壑本L和⊙O相離d>r
13、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20、①兩圓外離d>R+r
②兩圓外切d=R+r
、蹆蓤A相交R-rr)
④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)
27、正三角形面積√3a/4a表示邊長(zhǎng)
28、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長(zhǎng)計(jì)算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
35、弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對(duì)邊平行的四邊形是平行四邊形。
2、性質(zhì):
(1)平行四邊形的對(duì)邊相等且平行
(2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)
(3)平行四邊形的對(duì)角線互相平分
3、判定:
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形
(2)兩組對(duì)邊分別相等的四邊形是平行四邊形
(3)一組對(duì)邊平行且相等的四邊形是平行四邊形
(4)兩組對(duì)角分別相等的四邊形是平行四邊形
(5)對(duì)角線互相平分的四邊形是平行四邊形
4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等
3、判定:
(1)有一個(gè)角是直角的平行四邊形叫做矩形
(2)有三個(gè)角是直角的四邊形是矩形
(3)兩條對(duì)角線相等的平行四邊形是矩形
4、對(duì)稱性:矩形是軸對(duì)稱圖形也是中心對(duì)稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
(3)菱形被兩條對(duì)角線分成四個(gè)全等的直角xxx
(4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半
2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對(duì)角線互相垂直的平行四邊形是菱形
4、對(duì)稱性:菱形是軸對(duì)稱圖形也是中心對(duì)稱圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形
2、性質(zhì):
(1)正方形四個(gè)角都是直角,四條邊都相等
(2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
(3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角xxx
(4)正方形的對(duì)角線與邊的夾角是45°
(5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角xxx
3、判定:
(1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角
4、對(duì)稱性:正方形是軸對(duì)稱圖形也是中心對(duì)稱圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形
4、對(duì)稱性:等腰梯形是軸對(duì)稱圖形
六、xxx的中位線平行于xxx的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);xxx的重心是三條中線的交點(diǎn)。
八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
九、多邊形
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。
4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°-(n-2)·180°=360°
(2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°
10、多邊形對(duì)角線的條數(shù):
(1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)xxx
(2)n邊形共有n(n-3)/2條對(duì)角線
圓知識(shí)點(diǎn)、概念總結(jié)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4、圓是定點(diǎn)的距離等于定長(zhǎng)的'點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
、壑本L和⊙O相離d>r
13、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20、①兩圓外離d>R+r
、趦蓤A外切d=R+r
③兩圓相交R-rr)
、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
(2)經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角xxx
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)
27、正xxx面積√3a/4a表示邊長(zhǎng)
28、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長(zhǎng)計(jì)算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
35、弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
第二章整式的加減
2、1整式
1、單項(xiàng)式:由數(shù)字和字母乘積組成的式子。系數(shù),單項(xiàng)式的次數(shù)、單項(xiàng)式指的是數(shù)或字母的積的代數(shù)式、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式、因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運(yùn)算關(guān)系,其也不是單項(xiàng)式、
2、單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);
3、單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的指數(shù)的和、
4、多項(xiàng)式:幾個(gè)單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式、每個(gè)單項(xiàng)式稱項(xiàng),常數(shù)項(xiàng),多項(xiàng)式的次數(shù)就是多項(xiàng)式中次數(shù)的次數(shù)。多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),這里是次數(shù)項(xiàng),其次數(shù)是6;多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中,每一個(gè)單項(xiàng)式、特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號(hào)、
5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào)。
6、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
2、2整式的加減
1、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)。與字母前面的系數(shù)(≠0)無(wú)關(guān)。
2、同類項(xiàng)必須同時(shí)滿足兩個(gè)條件:
。1)所含字母相同;
。2)相同字母的次數(shù)相同,二者缺一不可、同類項(xiàng)與系數(shù)大小、字母的排列順序無(wú)關(guān)
3、合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)?梢赃\(yùn)用交換律,結(jié)合律和分配律。
4、合并同類項(xiàng)法則:合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變;
5、去括號(hào)法則:去括號(hào),看符號(hào):是正號(hào),不變號(hào);是負(fù)號(hào),全變號(hào)。
6、整式加減的一般步驟:
一去、二找、三合
(1)如果遇到括號(hào)按去括號(hào)法則先去括號(hào)
。2)結(jié)合同類項(xiàng)
(3)合并同類項(xiàng)葫蘆島
1、一元二次方程解法:
(1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1
(2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2-4ac≥0
若b2-4ac>0則有兩個(gè)不相等的實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac
若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式
(3)分解因式法
、偬峁蚴椒ǎ簃a+mb=0→m(a+b)=0
平方差公式:a2-b2=0→(a+b)(a-b)=0
②運(yùn)用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
、凼窒喑朔
2、銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。
正弦(sin):對(duì)邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對(duì)邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對(duì)邊,即cotA=b/a;
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、兩角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
20xx年的工作臨近尾聲,回首本年度真是忙碌而充實(shí),本年度我即擔(dān)任教導(dǎo)處主任一職又擔(dān)任班主任工作,經(jīng)常是忙的喝口水的時(shí)間都沒(méi)有。雖然在教導(dǎo)處主任的崗位上我只有不到一年的工作經(jīng)驗(yàn),但是在李校長(zhǎng)的關(guān)心和培養(yǎng)下,在全體領(lǐng)導(dǎo)、老師、家長(zhǎng)的熱情支持和幫助下,各項(xiàng)工作得以順利開(kāi)展并在一些方面有了較為明顯的進(jìn)步,F(xiàn)對(duì)自己一年來(lái)所做工作加以梳理和反思,力求在總結(jié)中發(fā)現(xiàn)不足,在反思中縮中差距,在創(chuàng)新中不斷提升。
一、思想品德方面
我熱愛(ài)教育事業(yè),始初不忘人民教師職責(zé),愛(ài)學(xué)校、愛(ài)學(xué)生。作為一名名師,我從自身嚴(yán)格要求自己,通過(guò)政治思想、學(xué)識(shí)水平、教育教學(xué)能力等方面的不斷提高來(lái)塑造自己的行為,使自己在教育行業(yè)中不斷成長(zhǎng),為社會(huì)培養(yǎng)出優(yōu)秀的人才,打下堅(jiān)實(shí)的基礎(chǔ)。
二、主要成績(jī)
今年是我到工作的第五個(gè)年頭,幾年來(lái)我一直擔(dān)任班主任和年級(jí)的組長(zhǎng),同時(shí)又負(fù)責(zé)學(xué)校教導(dǎo)處工作,一直以來(lái),我始初牢記"踏實(shí)工作、真心待人"的原則,在工作中嚴(yán)格要求自己,刻苦鉆研業(yè)務(wù),不斷提高業(yè)務(wù)水平,不斷學(xué)習(xí)新知識(shí),探索教育教學(xué)規(guī)律,改進(jìn)教育教學(xué)方法,努力使自己成為專家型教師。
1、在班主任工作方面:我投入了極強(qiáng)的責(zé)任心,關(guān)注每一名學(xué)生,及時(shí)發(fā)現(xiàn)他們的各種心理或行為動(dòng)態(tài),還有學(xué)習(xí)的心態(tài)與學(xué)習(xí)情況,用愛(ài)心與耐心澆灌每一個(gè)孩子,并且及時(shí)與家長(zhǎng)、科任老師進(jìn)行溝通,使孩子在各個(gè)方面得到發(fā)展,幾年來(lái),與學(xué)生形成了亦師亦友的和諧師生關(guān)系,在18年被評(píng)為省級(jí)師德先進(jìn)個(gè)人,19年被評(píng)為省級(jí)優(yōu)秀教師。加強(qiáng)學(xué)習(xí),努力提升自身修為。
2、在教學(xué)方面:我嚴(yán)格要求自己,用心備課上課,每一節(jié)課都精心準(zhǔn)備課件,仔細(xì)研究每一道習(xí)題,真正做到講練結(jié)合,學(xué)以致用,形成了趣實(shí)活新的教學(xué)風(fēng)格,同時(shí),在教研方面,我積極去聽(tīng)課評(píng)課,認(rèn)真學(xué)習(xí)別人上課的長(zhǎng)處,為己所用。在17年被評(píng)為市級(jí)名師工作室主持人,18年被評(píng)為省級(jí)學(xué)科帶頭人。
3、在教導(dǎo)方面:在做好班主任工作的同時(shí),我作為校長(zhǎng)助理、教導(dǎo)主任,我能正確定位,努力做好校長(zhǎng)的助手,協(xié)調(diào)各種工作。
一直以來(lái)我總是以飽滿的熱情對(duì)待本職工作,兢兢業(yè)業(yè),忠于職守,凡是要求老師們做到的,自己首先做到。我始初認(rèn)真落實(shí)學(xué)校制定的教學(xué)教研常規(guī),不斷規(guī)范教師教學(xué)行為。從學(xué)期初開(kāi)始,認(rèn)真執(zhí)行教學(xué)教研工作計(jì)劃和工作記錄,嚴(yán)格按照學(xué)校修訂的規(guī)章制度去要求師生,定期檢查教師教案及作業(yè)批改情況,發(fā)現(xiàn)問(wèn)題及時(shí)反饋及時(shí)做好總結(jié)并進(jìn)行跟蹤檢查,期末對(duì)教案進(jìn)行歸納整理。規(guī)范日常巡課制度,定時(shí)巡課與不定時(shí)巡課相結(jié)合,不定時(shí)跟班聽(tīng)課,與執(zhí)教教師共同切磋存在的問(wèn)題,加強(qiáng)對(duì)教學(xué)工作的監(jiān)控,促進(jìn)教學(xué)質(zhì)量的提高。
學(xué)校要發(fā)展、要生存必須有一批高素質(zhì)的教師隊(duì)伍,同樣教師今后要生存要發(fā)展必須具有過(guò)硬的本領(lǐng)。我清楚的認(rèn)識(shí)到必須加強(qiáng)骨干教師、青年教師的培養(yǎng)力度,也借助各種機(jī)遇,為教師搭建自我展示的.平臺(tái)。加大新教師的培養(yǎng)力度,開(kāi)展“師徒結(jié)對(duì)子”活動(dòng),通過(guò)推門聽(tīng)課,領(lǐng)導(dǎo)聽(tīng)課、一課三研、師傅引領(lǐng)課、新教師展示課等,鼓勵(lì)教師參加各級(jí)各類比賽、培訓(xùn)活動(dòng)等形式,促進(jìn)新教師的迅速成長(zhǎng)。我精心制定了以人為本的校本培訓(xùn)計(jì)劃,每學(xué)期開(kāi)展十多次骨干培訓(xùn)活動(dòng),并進(jìn)行讀書交流活動(dòng),活動(dòng)做到人人有準(zhǔn)備,人人有發(fā)言,人人有反思,老師們一同感悟,一起分享,在探索和交流中,不斷提升教學(xué)水準(zhǔn)。
通過(guò)開(kāi)展語(yǔ)、數(shù)集體備課—上課—聽(tīng)課——評(píng)課研討這樣的教研活動(dòng)觀摩,讓更多的教師參與到校本教研活動(dòng)中來(lái),增強(qiáng)了教研活動(dòng)的實(shí)效性,提高了教師的課堂教學(xué)水平。新教師展示課活動(dòng),“中荷才露尖尖角”,新教師在歷練中成長(zhǎng);常態(tài)化的研討課,“萬(wàn)紫千紅總是春”,老師們?nèi)¢L(zhǎng)補(bǔ)短,共同促進(jìn);名師、骨干教師的精品課,“萬(wàn)綠叢中一點(diǎn)紅”,起了引領(lǐng)示范的作用。
教科研是教學(xué)的源泉,是教改的先導(dǎo),我十分重視課題研究、管理。18年獨(dú)立承擔(dān)了省級(jí)重點(diǎn)課題研究已經(jīng)結(jié)題,并被評(píng)為科研課題先進(jìn)個(gè)人,19年又獨(dú)立承擔(dān)了中課題的研究,已經(jīng)接近尾聲。
4、自身提高方面:我能利用課余時(shí)間閱讀一些教育名著及教育教學(xué)刊物,并及時(shí)做好讀書筆記,建立個(gè)人博客,發(fā)表自己原創(chuàng)的教學(xué)感想、教案設(shè)計(jì)、學(xué)習(xí)心得、教育理念等文章。一份耕耘,一份收獲”,一年來(lái),我積極參加各級(jí)各類比賽,多次獲獎(jiǎng),還被評(píng)為縣級(jí)學(xué)科帶頭人。
三、存在的不足
回顧一年來(lái)的工作,我雖然取得了一些成績(jī),積累了一些經(jīng)驗(yàn),但是,實(shí)事求是地說(shuō),與領(lǐng)導(dǎo)的要求和自己的期待還有差距,主要表現(xiàn)在:
1、對(duì)教導(dǎo)處管理工作還須腳踏實(shí)地地去做,謙虛認(rèn)真地去學(xué),以使自己取得更好的成績(jī)。
2、教學(xué)方面對(duì)差生主要是采取開(kāi)中灶、嚴(yán)要求的方式進(jìn)行強(qiáng)化管理,對(duì)其心理攻堅(jiān)尚不到位,所以見(jiàn)效慢,容易激化師生間的矛盾,還得在實(shí)踐中多摸索。課堂教學(xué)水平有待提高,要與同事們多切磋,多學(xué)習(xí)。
3、教研方面,仍需強(qiáng)化、深化、細(xì)化地系統(tǒng)學(xué)習(xí)相關(guān)理論知識(shí),所寫隨感不能僅僅停留在表面現(xiàn)象,還應(yīng)善于總結(jié)提升,以形成有一定深度的,并具有自我指導(dǎo)意義的理論型文字。
另外,意志仍不夠堅(jiān)強(qiáng),堅(jiān)持還不夠徹底,實(shí)是欠缺“鐵杵磨成針”的精神。總之,回顧取得的成績(jī),固然可喜,值得欣慰,但面對(duì)未來(lái),仍感任重道遠(yuǎn)、不敢懈怠。
最后,用一句話作為本年度的工作總結(jié),下一年度的開(kāi)始,也就是:既然選擇了遠(yuǎn)方,必然風(fēng)雨兼程。我將某某,繼續(xù)前行!
關(guān)于數(shù)學(xué)常見(jiàn)誤區(qū)有哪些
1、被動(dòng)學(xué)習(xí)
許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒(méi)有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師要上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到“門道”,沒(méi)有真正理解所學(xué)內(nèi)容。
2、學(xué)不得法
老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微。
3、不重視基礎(chǔ)
一些“自我感覺(jué)良好”的同學(xué),常輕視基本知識(shí)、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對(duì)難題很感興趣,以顯示自己的“水平”,好高鶩遠(yuǎn),重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯(cuò)就是中途“卡殼”。
4、進(jìn)一步學(xué)習(xí)條件不具備
高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識(shí)的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識(shí)與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。
如二次函數(shù)在閉區(qū)間上的最值問(wèn)題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問(wèn)題等。客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1: ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧 ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2 :圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形。
4.圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合。
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
7.同圓或等圓的半徑相等。
8.到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓。
9.定理 在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦 相等,所對(duì)的弦的弦心距相等。
10.推論 在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11定理 圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它 的內(nèi)對(duì)角。
12.①直線L和⊙O相交 d 、谥本L和⊙O相切 d=r 、壑本L和⊙O相離 d>r
13.切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線。
14.切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑。
15.推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)。
16.推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心。
17.切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等, 圓心和這一點(diǎn)的連線平分兩條切線的夾角。
18.圓的外切四邊形的兩組對(duì)邊的和相等 外角等于內(nèi)對(duì)角。
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。
20.①兩圓外離 d>R+r ②兩圓外切 d=R+r 、.兩圓相交 R-rr) ④.兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦。
22.定理 把圓分成n(n≥3): 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形 ⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。
23.定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。
24.正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n。
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形。
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)。
27.正三角形面積√3a/4 a表示邊長(zhǎng)。
28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的`角,由于這些角的和應(yīng)為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4。
29.弧長(zhǎng)計(jì)算公式:L=n兀R/180。
30.扇形面積公式:S扇形=n兀R^2/360=LR/2。
31.內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)。
32.定理 一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。
33.推論1 同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。
34.推論2 半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所 對(duì)的弦是直徑。
35.弧長(zhǎng)公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r。
1.直接法:根據(jù)選擇題的題設(shè)條件,通過(guò)計(jì)算、推理或判斷,最后得到題目的所求。
2.特殊值法:(特殊值淘汰法)有些選擇題所涉及的數(shù)學(xué)命題與字母的取值范圍有關(guān);
在解這類選擇題時(shí),可以考慮從取值范圍內(nèi)選取某幾個(gè)特殊值,代入原命題進(jìn)行驗(yàn)證,然后淘汰錯(cuò)誤的,保留正確的。
3.淘汰法:把題目所給的四個(gè)結(jié)論逐一代回原題的題干中進(jìn)行驗(yàn)證,把錯(cuò)誤的淘汰掉,直至找到正確的答案。
4.逐步淘汰法:如果我們?cè)谟?jì)算或推導(dǎo)的過(guò)程中不是一步到位,而是逐步進(jìn)行,既采用“走一走、瞧一瞧”的策略;
每走一步都與四個(gè)結(jié)論比較一次,淘汰掉不可能的,這樣也許走不到最后一步,三個(gè)錯(cuò)誤的結(jié)論就被全部淘汰掉了。
5.數(shù)形結(jié)合法:根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;
使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解題思路,使問(wèn)題得到解決。
常用的數(shù)學(xué)思想方法
1.數(shù)形結(jié)合思想:就是根據(jù)數(shù)學(xué)問(wèn)題的條件和結(jié)論之間的內(nèi)在聯(lián)系,既分析其代數(shù)含義,又揭示其幾何意義;
使數(shù)量關(guān)系和圖形巧妙和諧地結(jié)合起來(lái),并充分利用這種結(jié)合,尋求解體思路,使問(wèn)題得到解決。
2.聯(lián)系與轉(zhuǎn)化的思想:事物之間是相互聯(lián)系、相互制約的,是可以相互轉(zhuǎn)化的。數(shù)學(xué)學(xué)科的各部分之間也是相互聯(lián)系,可以相互轉(zhuǎn)化的。
在解題時(shí),如果能恰當(dāng)處理它們之間的相互轉(zhuǎn)化,往往可以化難為易,化繁為簡(jiǎn)。
如:代換轉(zhuǎn)化、已知與未知的轉(zhuǎn)化、特殊與一般的轉(zhuǎn)化、具體與抽象的轉(zhuǎn)化、部分與整體的轉(zhuǎn)化、動(dòng)與靜的轉(zhuǎn)化等等。
3.分類討論的思想:在數(shù)學(xué)中,我們常常需要根據(jù)研究對(duì)象性質(zhì)的差異,分各種不同情況予以考查;
這種分類思考的方法,是一種重要的數(shù)學(xué)思想方法,同時(shí)也是一種重要的解題策略。
4.待定系數(shù)法:當(dāng)我們所研究的數(shù)學(xué)式子具有某種特定形式時(shí),要確定它,只要求出式子中待確定的字母得值就可以了。
為此,把已知條件代入這個(gè)待定形式的式子中,往往會(huì)得到含待定字母的方程或方程組,然后解這個(gè)方程或方程組就使問(wèn)題得到解決。
5.配方法:就是把一個(gè)代數(shù)式設(shè)法構(gòu)造成平方式,然后再進(jìn)行所需要的變化。
配方法是初中代數(shù)中重要的變形技巧,配方法在分解因式、解方程、討論二次函數(shù)等問(wèn)題,都有重要的作用。
6.換元法:在解題過(guò)程中,把某個(gè)或某些字母的式子作為一個(gè)整體,用一個(gè)新的字母表示,以便進(jìn)一步解決問(wèn)題的一種方法。
換元法可以把一個(gè)較為復(fù)雜的式子化簡(jiǎn),把問(wèn)題歸結(jié)為比原來(lái)更為基本的問(wèn)題,從而達(dá)到化繁為簡(jiǎn),化難為易的目的。
7.分析法:在研究或證明一個(gè)命題時(shí),又結(jié)論向已知條件追溯,既從結(jié)論開(kāi)始,推求它成立的充分條件,這個(gè)條件的成立還不顯然;
則再把它當(dāng)作結(jié)論,進(jìn)一步研究它成立的充分條件,直至達(dá)到已知條件為止,從而使命題得到證明。這種思維過(guò)程通常稱為“執(zhí)果尋因”
8.綜合法:在研究或證明命題時(shí),如果推理的方向是從已知條件開(kāi)始,逐步推導(dǎo)得到結(jié)論,這種思維過(guò)程通常稱為“由因?qū)Ч?/p>
9.演繹法:由一般到特殊的推理方法。
10.歸納法:由一般到特殊的推理方法。
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
初中生經(jīng)過(guò)中考的奮力拼搏,剛跨入高中,都有十足的信心,旺盛的求知欲,都有把高中課程學(xué)好的愿望。但經(jīng)過(guò)一段時(shí)間,他們普遍感覺(jué)高中數(shù)學(xué)并非想象中那么簡(jiǎn)單易學(xué),而是太枯燥,泛味,抽象,晦澀,有些章節(jié)如聽(tīng)天書。在做習(xí)題,課外練習(xí)時(shí),又是磕磕碰碰,跌跌撞撞,常常感到茫然一片,不知從何下手。造成這種現(xiàn)象的原因是多方面的,但最主要的根源還在于初,高中數(shù)學(xué)教學(xué)上的銜接問(wèn)題。下面就這個(gè)問(wèn)題進(jìn)行分析,探討其原因,尋找解決對(duì)策。
一、高一學(xué)生學(xué)習(xí)數(shù)學(xué)產(chǎn)生困難是造成數(shù)學(xué)成績(jī)下降的主要原因
。ㄒ唬┙滩牡脑颉
由于實(shí)行九年制義務(wù)教育和倡導(dǎo)全面提高學(xué)生素質(zhì),現(xiàn)行初中數(shù)學(xué)教材在內(nèi)容上進(jìn)行了較大幅度的調(diào)整,難度,深度和廣度大大降低了,那些在高中學(xué)習(xí)中經(jīng)常應(yīng)用到的知識(shí),如:對(duì)數(shù),二次不等式,解斜三角形,分?jǐn)?shù)指數(shù)冪等內(nèi)容,都轉(zhuǎn)移到高一階段補(bǔ)充學(xué)習(xí)。這樣初中教材就體現(xiàn)了"淺,少,易"的特點(diǎn),但卻加重了高一數(shù)學(xué)的份量。另外,初中數(shù)學(xué)教材中每一新知識(shí)的引入往往與學(xué)生日常生活實(shí)際很貼近,比較形象,并遵循從感性認(rèn)識(shí)上升到理性認(rèn)識(shí)的規(guī)律,學(xué)生一般都容易理解,接受和掌握。且目前初中教材敘述方法比較簡(jiǎn)單,語(yǔ)言通俗易懂,直觀性,趣味性強(qiáng),結(jié)論容易記憶,應(yīng)試效果也比較理想。
相對(duì)而言,高中數(shù)學(xué)一開(kāi)始,概念抽象,定理嚴(yán)謹(jǐn),邏輯性強(qiáng),教材敘述比較嚴(yán)謹(jǐn),規(guī)范,抽象思維和空間想象明顯提高,知識(shí)難度加大,且習(xí)題類型多,解題技巧靈活多變,計(jì)算繁冗復(fù)雜,體現(xiàn)了"起點(diǎn)高,難度大,容量多"的特點(diǎn)。
。ǘ┙谭ǖ脑颉
初中數(shù)學(xué)教學(xué)內(nèi)容少,知識(shí)難度不大,教學(xué)要求較低,因而教學(xué)進(jìn)度較慢,對(duì)于某些重點(diǎn),難點(diǎn),教師可以有充裕的時(shí)間反復(fù)講解,多次演練,從而各個(gè)擊破、另外,為了應(yīng)付中考,初中教師大多數(shù)采用"滿堂灌"填鴨式的教學(xué)模式,單純地向?qū)W生傳授知識(shí),并讓學(xué)生通過(guò)機(jī)械模仿式的重復(fù)練習(xí)以達(dá)到熟能生巧的程度,結(jié)果造成"重知識(shí),輕能力","重局部,輕整體","重試卷(復(fù)習(xí)資料),輕書本"的不良傾向。這種封閉被動(dòng)的傳統(tǒng)教學(xué)方式嚴(yán)重束縛了學(xué)生思維的發(fā)展,影響了學(xué)生發(fā)現(xiàn)意識(shí)的形成,創(chuàng)新思維受到了扼制。但是進(jìn)入高中以后,教材內(nèi)涵豐富,教學(xué)要求高,進(jìn)度快,知識(shí)信息廣泛,題目難度加深,知識(shí)的重點(diǎn)和難點(diǎn)也不可能象初中那樣通過(guò)反復(fù)強(qiáng)調(diào)來(lái)排難釋疑。而且高中教學(xué)往往通過(guò)設(shè)導(dǎo),設(shè)問(wèn),設(shè)陷,設(shè)變,啟發(fā)引導(dǎo),開(kāi)拓思路,然后由學(xué)生自己去思考,去解答,比較注意知識(shí)的發(fā)生過(guò)程,傾重對(duì)學(xué)生思想方法的滲透和思維品質(zhì)的培養(yǎng)。這使得剛進(jìn)入高中的學(xué)生不容易適應(yīng)這種教學(xué)方法。聽(tīng)課時(shí)就存在思維障礙,不容易跟上教師的思維,從而產(chǎn)生學(xué)習(xí)障礙,影響數(shù)學(xué)的學(xué)習(xí)。
。ㄈ⿲W(xué)生自身的原因。
①被動(dòng)學(xué)習(xí)
在初中,教師講得細(xì),類型歸納得全,反復(fù)練習(xí)?荚嚂r(shí),學(xué)生只要記憶概念,公式,及例題類型,一般都可以對(duì)號(hào)入座取得好成績(jī)。因此,學(xué)生習(xí)慣于圍著教師轉(zhuǎn),不需要獨(dú)立思考和對(duì)規(guī)律進(jìn)行歸納總結(jié)。學(xué)生滿足于你講我聽(tīng),你放我錄,缺乏學(xué)習(xí)主動(dòng)性。表現(xiàn)在不定計(jì)劃,坐等上課,課前沒(méi)有預(yù)習(xí),對(duì)老師上課的內(nèi)容不了解,上課忙于記筆記,沒(méi)聽(tīng)到"門道",沒(méi)有真正理解所學(xué)內(nèi)容。而到了高中,數(shù)學(xué)學(xué)習(xí)要求學(xué)生勤于思考,善于歸納總結(jié)規(guī)律,掌握數(shù)學(xué)思想方法,做到舉一反三,觸類旁通。所以,剛?cè)雽W(xué)的高一新生,往往沿用初中學(xué)法,致使學(xué)習(xí)出現(xiàn)困難,完成當(dāng)天作業(yè)都很困難,更沒(méi)有預(yù)習(xí),復(fù)習(xí),總結(jié)等自我消化,自我調(diào)整的時(shí)間。這顯然不利于良好學(xué)法的形成和學(xué)習(xí)質(zhì)量的提高。造成高一學(xué)生數(shù)學(xué)學(xué)習(xí)的困難。
②學(xué)不得法
老師上課一般都要講清知識(shí)的來(lái)龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專心聽(tīng)課,對(duì)要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固,總結(jié),尋找知識(shí)間的聯(lián)系,只是趕做作業(yè),亂套題型,對(duì)概念,法則,公式,定理一知半解,機(jī)械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結(jié)果是事倍功半,收效甚微。
二、搞好初高中數(shù)學(xué)教學(xué)銜接,幫助學(xué)生渡過(guò)學(xué)習(xí)數(shù)學(xué)"困難期"的對(duì)策
(一)做好準(zhǔn)備工作,為搞好銜接打好基礎(chǔ)。
1、搞好入學(xué)教育。這是搞好銜接的基礎(chǔ)工作,也是首要工作。
通過(guò)入學(xué)教育提高學(xué)生對(duì)初高中銜接重要性的認(rèn)識(shí),增強(qiáng)緊迫感,消除松懈情緒,初步了解高中數(shù)學(xué)學(xué)習(xí)的特點(diǎn),為其它措施的落實(shí)奠定基礎(chǔ)。這里主要做好四項(xiàng)工作:一是給學(xué)生講清高一數(shù)學(xué)在整個(gè)中學(xué)數(shù)學(xué)中所占的位置和作用;二是結(jié)合實(shí)例,采取與初中對(duì)比的方法,給學(xué)生講清高中數(shù)學(xué)內(nèi)容體系特點(diǎn)和課堂教學(xué)特點(diǎn);三是結(jié)合實(shí)例給學(xué)生講明初高中數(shù)學(xué)在學(xué)法上存在的本質(zhì)區(qū)別,并向?qū)W生介紹一些優(yōu)秀學(xué)法,指出注意事項(xiàng);四是請(qǐng)高年級(jí)學(xué)生談體會(huì)講感受,引導(dǎo)學(xué)生少走彎路,盡快適應(yīng)高中學(xué)習(xí)。
2、摸清底數(shù),規(guī)劃教學(xué)。為了搞好初高中銜接,教師首先要摸清學(xué)生的學(xué)習(xí)基礎(chǔ),然后以此來(lái)規(guī)劃自己的教學(xué)和落實(shí)教學(xué)要求,以提高教學(xué)的.針對(duì)性。在教學(xué)實(shí)際中,一方面通過(guò)進(jìn)行摸底測(cè)試和對(duì)入學(xué)成績(jī)的分析,了解學(xué)生的基礎(chǔ);另一方面,認(rèn)真學(xué)習(xí)和比較初高中教學(xué)大綱和教材,以全面了解初高中數(shù)學(xué)知識(shí)體系,找出初高中知識(shí)的銜接點(diǎn),區(qū)別點(diǎn)和需要鋪路搭橋的知識(shí)點(diǎn),以使備課和講課更符合學(xué)生實(shí)際,更具有針對(duì)性。
(二)優(yōu)化課堂教學(xué)環(huán)節(jié),搞好初高中數(shù)學(xué)知識(shí)銜接教學(xué)。
1、立足于大綱和教材,尊重學(xué)生實(shí)際,實(shí)行層次教學(xué)。
高一數(shù)學(xué)中有許多難理解和掌握的知識(shí)點(diǎn),如集合,映射等,對(duì)高一新生來(lái)講確實(shí)困難較大。因此,在教學(xué)中,應(yīng)從高一學(xué)生實(shí)際出發(fā),采用低起點(diǎn),小梯度,多訓(xùn)練,分層次"的方法,將教學(xué)目標(biāo)分解成若干遞進(jìn)層次逐層落實(shí)。在速度上,放慢起始進(jìn)度,逐步加快教學(xué)節(jié)奏。在知識(shí)導(dǎo)入上,多由實(shí)例和已知引入。在知識(shí)落實(shí)上,先落實(shí)"死"課本,后變通延伸用活課本。在難點(diǎn)知識(shí)講解上,從學(xué)生理解和掌握的實(shí)際出發(fā),對(duì)教材作必要層次處理和知識(shí)鋪墊,并對(duì)知識(shí)的理解要點(diǎn)和應(yīng)用注意點(diǎn)作必要總結(jié)及舉例說(shuō)明。
2、重視新舊知識(shí)的聯(lián)系與區(qū)別,建立知識(shí)網(wǎng)絡(luò)。
初高中數(shù)學(xué)有很多銜接知識(shí)點(diǎn),如函數(shù)概念,平面幾何與立體幾何相關(guān)知識(shí)等,到高中,它們有的加深了,有的研究范圍擴(kuò)大了,有些在初中成立的結(jié)論到高中可能不成立。因此,在講授新知識(shí)時(shí),應(yīng)當(dāng)有意引導(dǎo)學(xué)生聯(lián)系舊知識(shí),復(fù)習(xí)和區(qū)別舊知識(shí),特別注重對(duì)那些易錯(cuò)易混的知識(shí)加以分析,比較和區(qū)別。這樣可達(dá)到溫故知新,溫故而探新的效果。
3、重視展示知識(shí)的形成過(guò)程和方法探索過(guò)程,培養(yǎng)學(xué)生創(chuàng)造能力。
高中數(shù)學(xué)比初中數(shù)學(xué)抽象性強(qiáng),應(yīng)用靈活,這就要求學(xué)生對(duì)知識(shí)理解要透,應(yīng)用要活,不能只停留在對(duì)知識(shí)結(jié)論的死記硬套上,這就要求教師應(yīng)向?qū)W生展示新知識(shí)和新解法的產(chǎn)生背景,形成和探索過(guò)程,不僅使學(xué)生掌握知識(shí)和方法的本質(zhì),提高應(yīng)用的靈活性,而且還使學(xué)生學(xué)會(huì)如何質(zhì)疑和釋疑的思想方法,促進(jìn)創(chuàng)造性思維能力的提高。
4、重視培養(yǎng)學(xué)生自我反思自我總結(jié)的良好習(xí)慣,提高學(xué)習(xí)的自覺(jué)性。
高中數(shù)學(xué)概括性強(qiáng),題目靈活多變,課上聽(tīng)懂是不夠的,需要課后進(jìn)行認(rèn)真消化,認(rèn)真總結(jié)歸納。這就要求學(xué)生應(yīng)具備善于自我反思和自我總結(jié)的能力。因此,在教學(xué)中,應(yīng)當(dāng)抓住時(shí)機(jī)積極培養(yǎng)。在單元結(jié)束時(shí),幫助學(xué)生進(jìn)行自我章節(jié)小結(jié),在解題后,積極引導(dǎo)學(xué)生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規(guī)律的總結(jié)。由此培養(yǎng)學(xué)生善于進(jìn)行自我反思的習(xí)慣,擴(kuò)大知識(shí)和方法的應(yīng)用范圍,提高學(xué)習(xí)效率。
(三)加強(qiáng)學(xué)法指導(dǎo),培養(yǎng)良好學(xué)習(xí)習(xí)慣
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
關(guān)鍵詞:初一數(shù)學(xué);基礎(chǔ)知識(shí);教學(xué)策略
初中數(shù)學(xué)是一個(gè)整體,相對(duì)而言,初一數(shù)學(xué)知識(shí)點(diǎn)很多,注重基礎(chǔ),初一數(shù)學(xué)是對(duì)學(xué)數(shù)學(xué)的適當(dāng)深入,也為后續(xù)的學(xué)習(xí)打下良好的基礎(chǔ)。在初一數(shù)學(xué)的教學(xué)中,注重學(xué)生基礎(chǔ)知識(shí)的掌握是非常必要的。如今的現(xiàn)狀是,剛?cè)氤踔械膶W(xué)生并沒(méi)有對(duì)打好數(shù)學(xué)基礎(chǔ)有足夠的重視。一些學(xué)生剛進(jìn)入初中,在數(shù)學(xué)學(xué)習(xí)中感受不到壓力,沒(méi)有投入足夠的精力,因而漸漸地就積累了很多關(guān)于基礎(chǔ)知識(shí)的小問(wèn)題,這些小問(wèn)題在學(xué)生進(jìn)入后續(xù)的學(xué)習(xí)中,慢慢就越來(lái)越多,形成大問(wèn)題,大問(wèn)題漸漸就會(huì)凸顯出來(lái),學(xué)生漸漸就會(huì)感到力不從心。下面就針對(duì)初一學(xué)生學(xué)習(xí)中的問(wèn)題,具體談?wù)勅绾未蚝贸跻粩?shù)學(xué)的基礎(chǔ)。
一、打好初一數(shù)學(xué)基礎(chǔ)的重要性
進(jìn)入中學(xué),學(xué)生的科目增加,內(nèi)容拓展,知識(shí)深入,數(shù)學(xué)這門學(xué)科由具體到抽象,從文字發(fā)展成了符號(hào),從靜態(tài)逐漸發(fā)展成了動(dòng)態(tài)。初一數(shù)學(xué)學(xué)習(xí)是很重要的一年,能夠讓學(xué)生感受到初中數(shù)學(xué)與小學(xué)的不同,并能感受到數(shù)學(xué)學(xué)習(xí)帶來(lái)的快樂(lè),然而,一些學(xué)生對(duì)數(shù)學(xué)產(chǎn)生厭惡情緒也大都是從初中開(kāi)始的,由于基礎(chǔ)沒(méi)打好對(duì)數(shù)學(xué)產(chǎn)生厭惡是很多學(xué)生的通病;A(chǔ)知識(shí)是進(jìn)行深入學(xué)習(xí)的根基,它為數(shù)學(xué)學(xué)習(xí)的深入做鋪墊,然而基礎(chǔ)知識(shí)卻并沒(méi)有得到初一學(xué)生應(yīng)有的足夠重視。初中的數(shù)學(xué)知識(shí)相對(duì)小學(xué)來(lái)說(shuō),已有了很大的深入,如果初一的基礎(chǔ)知識(shí)沒(méi)有打好,學(xué)生會(huì)漸漸感到吃力,從而跟不上教學(xué)步伐,導(dǎo)致產(chǎn)生厭學(xué)情緒。不利于學(xué)生的發(fā)展。因此,教師在教學(xué)中必須注重初一學(xué)生基礎(chǔ)知識(shí)的培養(yǎng),并使學(xué)生認(rèn)識(shí)到打好基礎(chǔ)知識(shí)的重要性。
二、初一數(shù)學(xué)學(xué)習(xí)中常出現(xiàn)的問(wèn)題
1、知識(shí)點(diǎn)理解不透徹
初一學(xué)生剛?cè)氤踔校廊槐A糁W(xué)生的一些習(xí)慣,愛(ài)玩并且厭煩課本上的基礎(chǔ)知識(shí)點(diǎn)。對(duì)知識(shí)點(diǎn)的理解停留在一知半解的層次上。并且,學(xué)生并沒(méi)有對(duì)基礎(chǔ)知識(shí)有足夠的重視,沒(méi)有認(rèn)識(shí)到基礎(chǔ)知識(shí)的重要性,從而導(dǎo)致基礎(chǔ)知識(shí)越來(lái)越差,產(chǎn)生對(duì)數(shù)學(xué)的厭煩,進(jìn)入惡性循環(huán)。
2、解答題目小錯(cuò)誤多,無(wú)法完整地解決問(wèn)題
學(xué)生由于不重視基礎(chǔ),導(dǎo)致一些題目無(wú)法完整地進(jìn)行解決,無(wú)論簡(jiǎn)單的題型還是難的題型,都是建立在基礎(chǔ)知識(shí)點(diǎn)上的。學(xué)生的問(wèn)題是無(wú)法把握其中的基礎(chǔ)技巧,忽視基礎(chǔ)知識(shí),始終不能完整地解決問(wèn)題。
3、沒(méi)有養(yǎng)成歸納總結(jié)的好習(xí)慣
學(xué)生在平時(shí)的練習(xí)中會(huì)有許多解錯(cuò)的題型和忽視了的知識(shí)點(diǎn),然而大都都是錯(cuò)了就錯(cuò)了,并沒(méi)有進(jìn)行歸納總結(jié),導(dǎo)致對(duì)錯(cuò)誤的題型沒(méi)有進(jìn)行反思,從而一錯(cuò)再錯(cuò)。對(duì)一些基礎(chǔ)知識(shí)點(diǎn),也沒(méi)有進(jìn)行很好的歸納,腦海里沒(méi)有一個(gè)系統(tǒng)的基礎(chǔ)知識(shí)網(wǎng)。
三、打好學(xué)生數(shù)學(xué)基礎(chǔ)的策略
1、明確教學(xué)目標(biāo),突出重點(diǎn)
每一堂課的教學(xué),都有它的重點(diǎn)內(nèi)容,每一堂課,作為教師,首先都需要明確這堂課的教學(xué)目標(biāo),并要突出重點(diǎn),讓學(xué)生對(duì)這堂課所學(xué)的知識(shí)點(diǎn)有一個(gè)清晰的輪廓。教師可以在黑板的一角把重點(diǎn)內(nèi)容簡(jiǎn)短地寫出來(lái),并保持一節(jié)課,引起學(xué)生的關(guān)注和重視。教師要通過(guò)不斷強(qiáng)調(diào)和引用,使學(xué)生對(duì)重點(diǎn)知識(shí)點(diǎn)留下深刻的印象,并可以出一個(gè)引用了重點(diǎn)知識(shí)的題目讓學(xué)生解答。例如,學(xué)習(xí)《數(shù)軸》這一節(jié)時(shí),教師可先對(duì)重點(diǎn)基礎(chǔ)知識(shí)點(diǎn)進(jìn)行講解,讓學(xué)生了解數(shù)軸的基本定義,在腦海里留下一個(gè)概念,再讓學(xué)生上講臺(tái)到黑板上按要求畫下來(lái)。畫完后,讓學(xué)生自己做必要的講解,比如畫數(shù)軸的三要素原點(diǎn)、正方向、單位長(zhǎng)度。這樣,學(xué)生對(duì)數(shù)軸的基礎(chǔ)知識(shí)點(diǎn)就會(huì)有一個(gè)深刻的印象。
2、精講例題,多做課堂練習(xí)
針對(duì)基礎(chǔ)知識(shí),教師可在課堂上多設(shè)置一些例題,使學(xué)生能夠把基礎(chǔ)知識(shí)應(yīng)用到題目中去解答,從而認(rèn)識(shí)到基礎(chǔ)知識(shí)的重要性。教師要精選例題,按照這節(jié)課的重點(diǎn)基礎(chǔ)內(nèi)容進(jìn)行選題,從結(jié)構(gòu)特征、思維方式等各個(gè)方面進(jìn)行對(duì)題型的剖析,從而讓學(xué)生在解題的基礎(chǔ)之上掌握基礎(chǔ)知識(shí)的關(guān)鍵。知識(shí)點(diǎn)講得再多也是抽象空洞的,只有與題目進(jìn)行結(jié)合,讓學(xué)生靈活運(yùn)用,才能夠使學(xué)生對(duì)知識(shí)點(diǎn)有一個(gè)深刻的理解。課堂上需根據(jù)實(shí)際情況布置課堂練習(xí),練習(xí)量針對(duì)知識(shí)點(diǎn)的難易程度可多可少,重要的是要讓學(xué)生有一個(gè)思考解答的過(guò)程。教師可讓學(xué)生自主進(jìn)行解答,若解答不出教師則做必要的指點(diǎn)進(jìn)行幫助,并且要鼓勵(lì)學(xué)生不懂就要問(wèn)。還可以讓學(xué)生共同討論一些難點(diǎn)問(wèn)題,促進(jìn)學(xué)生勤學(xué)好問(wèn)的習(xí)慣培養(yǎng)。
3、形象教學(xué),變抽象為具體
教師在實(shí)際課堂教學(xué)中,可以運(yùn)用很多種教學(xué)方式,每一堂課都有其教學(xué)目標(biāo),教學(xué)需根據(jù)教學(xué)內(nèi)容的變化選擇適當(dāng)?shù)慕虒W(xué)方式,形象教學(xué)是很重要并且很有效的教學(xué)方式。例如,進(jìn)行幾何的教學(xué),教師可以進(jìn)行具體演示,向?qū)W生展示幾何模型,運(yùn)用幾何模型來(lái)驗(yàn)證幾何結(jié)論。
4、讓學(xué)生收集題目,制作錯(cuò)題集
基礎(chǔ)是在無(wú)數(shù)次練習(xí)的基礎(chǔ)之上總結(jié)出來(lái)的`,做題如同挖金礦,對(duì)待錯(cuò)題就如同對(duì)待發(fā)掘冶煉金礦一樣。學(xué)生在做題時(shí),會(huì)遇到很多難題和易錯(cuò)題,對(duì)于做錯(cuò)了的題目,學(xué)生看看就丟到一邊,是沒(méi)有起到練習(xí)應(yīng)有的效果的。教師要促使學(xué)生制作一個(gè)錯(cuò)題集,專門收集自己做錯(cuò)或者不會(huì)做的題目,讓學(xué)生自己分析做錯(cuò)的原因,為什么會(huì)做錯(cuò),下次如何避免,學(xué)生在總結(jié)反思的過(guò)程中,自然而然就對(duì)知識(shí)進(jìn)行了一次梳理。例如,用科學(xué)計(jì)數(shù)法計(jì)數(shù)是學(xué)生經(jīng)常容易犯錯(cuò)的知識(shí)點(diǎn),學(xué)生的粗心導(dǎo)致很簡(jiǎn)單的問(wèn)題經(jīng)常犯錯(cuò),通過(guò)錯(cuò)題集,學(xué)生收集表示錯(cuò)的科學(xué)計(jì)數(shù)法,不斷總結(jié)、強(qiáng)化,從而做到更細(xì)心。
初一數(shù)學(xué)學(xué)習(xí)對(duì)剛進(jìn)入初中的學(xué)生來(lái)說(shuō)是非常重要的,其既是對(duì)小學(xué)數(shù)學(xué)知識(shí)的必要深入,也為后續(xù)更深層次的學(xué)習(xí)打下關(guān)鍵的基礎(chǔ)。然而,初一學(xué)生往往并沒(méi)有認(rèn)識(shí)到進(jìn)入初中打好數(shù)學(xué)基礎(chǔ)的重要性。本文針對(duì)學(xué)好初一數(shù)學(xué)的重要性和初一數(shù)學(xué)學(xué)習(xí)面臨的一些問(wèn)題進(jìn)行了具體討論,最后總結(jié)出提高學(xué)生數(shù)學(xué)基礎(chǔ)知識(shí)的幾條教學(xué)策略,給以后的數(shù)學(xué)教學(xué)提供參考。
參考文獻(xiàn):
[1]吳遠(yuǎn),學(xué)生數(shù)學(xué)自主能力的培養(yǎng)[J]。巨人教學(xué)資源,20xx。
【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24
初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05
初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-14
初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精)05-15
初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(推薦)05-15