[通用]初中數(shù)學知識點總結
總結是對某一特定時間段內(nèi)的學習和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運用這些規(guī)律,讓我們抽出時間寫寫總結吧。我們該怎么去寫總結呢?以下是小編幫大家整理的初中數(shù)學知識點總結,僅供參考,歡迎大家閱讀。
初中數(shù)學知識點總結1
動點與函數(shù)圖象問題常見的四種類型:
1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關系,判斷函數(shù)圖象.
2、四邊形中的動點問題:動點沿四邊形的邊運動,判斷函數(shù)圖象.
3、圓中的動點問題:動點沿圓周運動,判斷函數(shù)圖象.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,判斷函數(shù)圖象.
圖形運動與函數(shù)圖象問題常見的三種類型:
1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,進行分段,判斷函數(shù)圖象.
2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,判斷函數(shù)圖象.
3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,判斷函數(shù)圖象.
動點問題常見的四種類型:
1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構成的新圖形與原圖形的邊或角的關系.
2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構成的`新圖形與原圖形的全等或相似,得出它們的邊或角的關系.
3、圓中的動點問題:動點沿圓周運動,探究構成的新圖形的邊角等關系.
4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構成的三角形是等腰三角形或與已知圖形相似等問題.
總結反思:
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質,等腰直角三角形的性質,平行線的性質等,數(shù)形結合思想的應用是解題的關鍵.
解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達到解題目的
解答函數(shù)的圖象問題一般遵循的步驟:
1、根據(jù)自變量的取值范圍對函數(shù)進行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.
2、自變量變化函數(shù)值也變化的增減變化情況.
3、函數(shù)圖象的最低點和最高點.
初中數(shù)學知識點總結2
1.常量和變量
在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).
2.函數(shù)
設在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數(shù).
3.自變量的取值范圍
(1)整式:自變量取一切實數(shù).(2)分式:分母不為零.
(3)偶次方根:被開方數(shù)為非負數(shù).
(4)零指數(shù)與負整數(shù)指數(shù)冪:底數(shù)不為零.
4.函數(shù)值
對于自變量在取值范圍內(nèi)的一個確定的值,如當x=a時,函數(shù)有唯一確定的對應值,這個對應值,叫做x=a時的函數(shù)值.
5.函數(shù)的表示法
(1)解析法;(2)列表法;(3)圖象法.
6.函數(shù)的圖象
把自變量x的一個值和函數(shù)y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內(nèi)描出一個點,所有這些點的集合,叫做這個函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:
(1)寫出函數(shù)解析式及自變量的取值范圍;
(2)列表:列表給出自變量與函數(shù)的一些對應值;
(3)描點:以表中對應值為坐標,在坐標平面內(nèi)描出相應的點;
(4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.
7.一次函數(shù)
(1)一次函數(shù)
如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).
特別地,當b=0時,一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù).
(2)一次函數(shù)的圖象
一次函數(shù)y=kx+b的.圖象是一條經(jīng)過(0,b)點和點的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過原點的直線.需要說明的是,在平面直角坐標系中,“直線”并不等價于“一次函數(shù)y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數(shù)圖象.
(3)一次函數(shù)的性質
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小.直線y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為.
(4)用函數(shù)觀點看方程(組)與不等式
、偃魏我辉淮畏匠潭伎梢赞D化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當y=0時,求相應的自變量的值,從圖象上看,相當于已知直線y=kx+b,確定它與x軸交點的橫坐標.
、诙淮畏匠探M對應兩個一次函數(shù),于是也對應兩條直線,從“數(shù)”的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)值相等,以及這兩個函數(shù)值是何值;從“形”的角度看,解方程組相當于確定兩條直線的交點的坐標.
、廴魏我辉淮尾坏仁蕉伎梢赞D化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當一次函數(shù)值大于0或小于0時,求自變量相應的取值范圍.
8.反比例函數(shù)(1)反比例函數(shù)
。1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).
(2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.
(3)反比例函數(shù)的性質
、佼攌>0時,圖象的兩個分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減小.
、诋攌<0時,圖象的兩個分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.
、鄯幢壤瘮(shù)圖象關于直線y=±x對稱,關于原點對稱.
(4)k的兩種求法
①若點(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:
若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB
(5)正比例函數(shù)和反比例函數(shù)的交點問題
若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當k1k2<0時,兩函數(shù)圖象無交點;
當k1k2>0時,兩函數(shù)圖象有兩個交點,坐標分別為由此可知,正反比例函數(shù)的圖象若有交點,兩交點一定關于原點對稱.
1.二次函數(shù)
如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).
幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).
2.二次函數(shù)的圖象
二次函數(shù)y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.
3.二次函數(shù)的性質
二次函數(shù)y=ax2+bx+c的性質對應在它的圖象上,有如下性質:
(1)拋物線y=ax2+bx+c的頂點是,對稱軸是直線,頂點必在對稱軸上;
(2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當x<時,y隨x的增大而減。划攛>時,y隨x的增大而增大;當x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當x<,y隨x的增大而增大;當時,y隨x的增大而減;當x=時,y有最大值;
(3)拋物線y=ax2+bx+c與y軸的交點為(0,c);
(4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:
<0時,拋物線y=ax2+bx+c與x軸沒有公共點.=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是和,這兩點的距離為;當當4.拋物線的平移
拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.
初中數(shù)學知識點總結3
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等——補角=180-角度。
4、同角或等角的余角相等——余角=90-角度。
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內(nèi)錯角相等,兩直線平行
11、同旁內(nèi)角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內(nèi)錯角相等
14、兩直線平行,同旁內(nèi)角互補
15、定理
xxx兩邊的和大于第三邊
16、推論
xxx兩邊的差小于第三邊
17、xxx內(nèi)角和定理:
xxx三個內(nèi)角的和等于180°
18、推論1
直角xxx的兩個銳角互余
19、推論2
xxx的一個外角等于和它不相鄰的兩個內(nèi)角的和
20、推論3
xxx的一個外角大于任何一個和它不相鄰的內(nèi)角
21、全等xxx的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個xxx全等
23、角邊角公理(ASA):有兩角和它們的夾邊對應相等的
兩個xxx全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個xxx全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個xxx全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角xxx全等
27、定理1
在角的平分線上的點到這個角的兩邊的距離相等
28、定理2
到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、推論1
等腰xxx頂角的平分線平分底邊并且垂直于底邊
31、推論2
等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊xxx的各角都相等,并且每一個角都等于60°
33、等腰xxx的判定定理
如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
34、等腰xxx的性質定理
等腰xxx的兩個底角相等
(即等邊對等角)
35、推論1
三個角都相等的xxx是等邊xxx
36、推論
有一個角等于60°的等腰xxx是等邊xxx
37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38、直角xxx斜邊上的中線等于斜邊上的一半
39、定理
線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理
和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1
關于某條直線對稱的兩個圖形是全等形
43、定理
如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3
兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理
如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46、勾股定理
直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果xxx的三邊長a、b、c有關系a2+b2=c2,那么這個xxx是直角xxx
48、定理
四邊形的內(nèi)角和等于360°
49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理
n邊形的內(nèi)角的和等于(n-2)×180°
51、推論
任意多邊的外角和等于360°
52、平行四邊形性質定理1
平行四邊形的對角相等
53、平行四邊形性質定理2
平行四邊形的對邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3
平行四邊形的對角線互相平分
56、平行四邊形判定定理1
兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1
矩形的四個角都是直角
61、矩形性質定理2
矩形的對角線相等
62、矩形判定定理1
有三個角是直角的四邊形是矩形
63、矩形判定定理2
對角線相等的平行四邊形是矩形
64、菱形性質定理1
菱形的四條邊都相等
65、菱形性質定理2
菱形的對角線互相垂直,并且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1
正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2
正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71、定理1
關于中心對稱的兩個圖形是全等的
72、定理2
關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理
如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74、等腰梯形性質定理
等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理
在同一底上的兩個角相等的梯
形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經(jīng)過梯形一腰的中點與底平行的.直線,必平分另一腰
80、推論2
經(jīng)過xxx一邊的中點與另一邊平行的直線,必平分第三邊
81、xxx中位線定理
xxx的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理
梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對應線段成比例
87、推論
平行于xxx一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理
如果一條直線截xxx的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于xxx的第三邊
89、平行于xxx的一邊,并且和其他兩邊相交的直線,所截得的xxx的三邊與原xxx三邊對應成比例
90、定理
平行于xxx一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的xxx與原xxx相似
91、相似xxx判定定理1
兩角對應相等,兩xxx相似(ASA)
92、直角xxx被斜邊上的高分成的兩個直角xxx和原xxx相似
93、判定定理2
兩邊對應成比例且夾角相等,兩xxx相似(SAS)
94、判定定理3
三邊對應成比例,兩xxx相似(SSS)
95、定理
如果一個直角xxx的斜邊和一條直角邊與另一個直角xxx的斜邊和一條直角邊對應成比例,那么這兩個直角xxx相似(HL)
96、性質定理1
相似xxx對應高的比,對應中線的比與對應角平分線的比都等于相似比
97、性質定理2
相似xxx周長的比等于相似比
98、性質定理3
相似xxx面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點的距離等于定長的點的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
103、圓的外部可以看作是圓心的距離大于半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點確定一個圓。
110、垂徑定理
垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條。ㄖ睆剑
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理
一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果xxx一邊上的中線等于這邊的一半,那么這個xxx是直角xxx
120、定理
圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
121、①直線L和⊙O相交
0
、谥本L和⊙O相切
d=r
、壑本L和⊙O相離
d>r
122、切線的判定定理
經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123、切線的性質定理
圓的切線垂直于經(jīng)過切點的半徑
124、推論1
經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
125、推論2
經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126、切線長定理
從圓外一點引圓的兩條切線相交與一點,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等于它所夾的弧對的圓周角?
129、推論
如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理
圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑xxx的兩條線段的比例中項
132、切割線定理
從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?
133、推論
從圓外一點引圓的兩條割線,這一點到每條
割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離
d>R+r
、趦蓤A外切
d=R+r
、蹆蓤A相交
R-r<d<R+r(R>r)
、軆蓤A內(nèi)切
d=R-r(R>r)
⑤兩圓內(nèi)含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
、乓来芜B結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理
任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角xxx
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長
142、正xxx面積√3a^2/4
a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內(nèi)公切線長=d-(R-r)
外公切線長=d-(R+r)
初中數(shù)學知識點總結4
常用數(shù)學公式
乘法與因式分a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a
根與系數(shù)的關系X1+X2=-b/aX1*X2=c/a注:韋達定理
判別式
b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根
b2-4ac
某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線標準方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側面積S=c*h斜棱柱側面積S=c"*h
正棱錐側面積S=1/2c*h"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長柱體體積公式V=s*h圓柱體V=pi*r2h
1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短
7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補,兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補
15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的.中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關系a^2+b^2=c^2,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質定理1正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關于中心對稱的兩個圖形是全等的
72定理2關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比
97性質定理2相似三角形周長的比等于相似比
98性質定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點的距離等于定長的點的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理不在同一直線上的三點確定一個圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r
122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)
、軆蓤A內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
、乓来芜B結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2
初中數(shù)學知識點總結5
第一章圖形的變換
考點一、平移(3~5分)
1、定義
把一個圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同,圖形的這種移動叫做平移變換,簡稱平移。
2、性質
(1)平移不改變圖形的大小和形狀,但圖形上的每個點都沿同一方向進行了移動
(2)連接各組對應點的線段平行(或在同一直線上)且相等。
考點二、軸對稱(3~5分)
1、定義
把一個圖形沿著某條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線成軸對稱,該直線叫做對稱軸。
2、性質
(1)關于某條直線對稱的兩個圖形是全等形。
(2)如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線。
(3)兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上。
3、判定
如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。
4、軸對稱圖形
把一個圖形沿著某條直線折疊,如果直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
考點三、旋轉(3~8分)
1、定義
把一個圖形繞某一點o轉動一個角度的圖形變換叫做旋轉,其中o叫做旋轉中心,轉動的角叫做旋轉角。
2、性質
(1)對應點到旋轉中心的距離相等。
(2)對應點與旋轉中心所連線段的夾角等于旋轉角。
考點四、中心對稱(3分)
1、定義
把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質
(1)關于中心對稱的兩個圖形是全等形。
(2)關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉180°,如果旋轉后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標系中對稱點的特征(3分)
1、關于原點對稱的點的特征
兩個點關于原點對稱時,它們的坐標的符號相反,即點p(x,y)關于原點的對稱點為p’(-x,-y)
2、關于x軸對稱的點的特征
兩個點關于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點p(x,y)關于x軸的對稱點為p’(x,-y)
3、關于y軸對稱的點的特征
兩個點關于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點p(x,y)關于y軸的對稱點為p’(-x,y)
第二章圖形的相似
考點一、比例線段(3分)
1、比例線段的相關概念
如果選用同一長度單位量得兩條線段a,b的長度分別為m,n,那么就說這兩條線段的比是,或寫成a:b=m:n
在兩條線段的比a:b中,a叫做比的前項,b叫做比的后項。
在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段,簡稱比例線段
若四條a,b,c,d滿足或a:b=c:d,那么a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內(nèi)項,線段的d叫做a,b,c的第四比例項。
如果作為比例內(nèi)項的是兩條相同的線段,即或a:b=b:c,那么線段b叫做線段a,c的比例中項。
2、比例的性質
(1)基本性質
①a:b=c:dad=bc
、赼:b=b:c
(2)更比性質(交換比例的內(nèi)項或外項)
(交換內(nèi)項)
(交換外項)
(同時交換內(nèi)項和外項)
(3)反比性質(交換比的前項、后項):
(4)合比性質:
(5)等比性質:
3、黃金分割
把線段ab分成兩條線段ac,bc(ac>bc),并且使ac是ab和bc的比例中項,叫做把線段ab黃金分割,點c叫做線段ab的黃金分割點,其中ac=ab0.618ab
考點二、平行線分線段成比例定理(3~5分)
三條平行線截兩條直線,所得的對應線段成比例。
推論:
(1)平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。
逆定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊。
(2)平行于三角形一邊且和其他兩邊相交的直線截得的三角形的三邊與原三角形的三邊對應成比例。
考點三、相似三角形(3~8分)
1、相似三角形的概念
對應角相等,對應邊成比例的三角形叫做相似三角形。相似用符號“∽”來表示,讀作“相似于”。相似三角形對應邊的比叫做相似比(或相似系數(shù))。
2、相似三角形的基本定理
平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似。
用數(shù)學語言表述如下:
∵de∥bc,∴△ade∽△abc
相似三角形的等價關系:
(1)反身性:對于任一△abc,都有△abc∽△abc;
(2)對稱性:若△abc∽△a’b’c’,則△a’b’c’∽△abc
(3)傳遞性:若△abc∽△a’b’c’,并且△a’b’c’∽△a’’b’’c’’,則△abc∽△a’’b’’c’’。
3、三角形相似的判定
(1)三角形相似的判定方法
、俣x法:對應角相等,對應邊成比例的兩個三角形相似
、谄叫蟹ǎ浩叫杏谌切我贿叺闹本和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
③判定定理1:如果一個三角形的`兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似,可簡述為兩角對應相等,兩三角形相似。
、芘卸ǘɡ2:如果一個三角形的兩條邊和另一個三角形的兩條邊對應相等,并且夾角相等,那么這兩個三角形相似,可簡述為兩邊對應成比例且夾角相等,兩三角形相似。
、菖卸ǘɡ3:如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似,可簡述為三邊對應成比例,兩三角形相似
(2)直角三角形相似的判定方法
、僖陨细鞣N判定方法均適用
②定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
③垂直法:直角三角形被斜邊上的高分成的兩個直角三角形與原三角形相似。
4、相似三角形的性質
(1)相似三角形的對應角相等,對應邊成比例
(2)相似三角形對應高的比、對應中線的比與對應角平分線的比都等于相似比
(3)相似三角形周長的比等于相似比
(4)相似三角形面積的比等于相似比的平方。
5、相似多邊形
(1)如果兩個邊數(shù)相同的多邊形的對應角相等,對應邊成比例,那么這兩個多邊形叫做相似多邊形。相似多邊形對應邊的比叫做相似比(或相似系數(shù))
(2)相似多邊形的性質
、傧嗨贫噙呅蔚膶窍嗟,對應邊成比例
、谙嗨贫噙呅沃荛L的比、對應對角線的比都等于相似比
、巯嗨贫噙呅沃械膶切蜗嗨疲嗨票鹊扔谙嗨贫噙呅蔚南嗨票
、芟嗨贫噙呅蚊娣e的比等于相似比的平方
6、位似圖形
如果兩個圖形不僅是相似圖形,而且每組對應點所在直線都經(jīng)過同一個點,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,此時的相似比叫做位似比。
性質:每一組對應點和位似中心在同一直線上,它們到位似中心的距離之比都等于位似比。
由一個圖形得到它的位似圖形的變換叫做位似變換。利用位似變換可以把一個圖形放大或縮小。
初中數(shù)學知識點總結6
1、圓是定點的距離等于定長的點的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合3、圓的外部可以看作是圓心的距離大于半徑的點的集合4、同圓或等圓的半徑相等
5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點的軌跡,是這個角的`平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧11、推論1:
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
20、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質定理圓的切線垂直于經(jīng)過切點的半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點25、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
34、如果兩個圓相切,那么切點一定在連心線上35、①兩圓外離dR+r②兩圓外切d=R+r
、蹆蓤A相交R-rdR+r(Rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
38、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
39、正n邊形的每個內(nèi)角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長
43、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
初中數(shù)學知識點總結7
定義
對應角相等,對應邊成比例的兩個三角形叫做相似三角形
比值與比的概念
比值是一個具體的數(shù)字如:AB/EF=2
而比不是一個具體的數(shù)字如:AB/EF=2:1判定方法
證兩個相似三角形應該把表示對應頂點的字母寫在對應的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應頂點可能沒有寫在對應的位置上,而如果是符號語言的'“△ABC∽△DEF”,那么就說明這兩個三角形的對應頂點寫在了對應的位置上。
方法一(預備定理)
平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎。這個引理的證明方法需要平行線與線段成比例的證明)
方法二
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似。
方法三
如果兩個三角形的兩組對應邊成比例,并且相應的夾角相等,
那么這兩個三角形相似
方法四
如果兩個三角形的三組對應邊成比例,那么這兩個三角形相似
方法五(定義)
對應角相等,對應邊成比例的兩個三角形叫做相似三角形
三個基本型
Z型A型反A型
方法六
兩個直角三角形中,斜邊與直角邊對應成比例,那么兩三角形相似。一定相似的三角形
1、兩個全等的三角形
(全等三角形是特殊的相似三角形,相似比為1:1)
2、兩個等腰三角形
(兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)
3、兩個等邊三角形
(兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)
4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)
圖形的學習需要大家對于知識的詳細了解和滲透,而不是一帶而過。
初中數(shù)學知識點總結8
知識要點:數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復數(shù)。
數(shù)列表示方法
如果數(shù)列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式。如an=(-1)^(n+1)+1。
數(shù)列通項公式的特點:(1)有些數(shù)列的通項公式可以有不同形式,即不唯一。(2)有些數(shù)列沒有通項公式
如果數(shù)列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。如an=2a(n-1)+1 (n>;1)
數(shù)列遞推公式的特點:(1)有些數(shù)列的遞推公式可以有不同形式,即不唯一。(2)有些數(shù)列沒有遞推公式
有遞推公式不一定有通項公式
知識要領總結:數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標軸,它們的公共原點o稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質
下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。
點的坐標的性質
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應點a,b分別叫做點c的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點c的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的.一般步驟內(nèi)容學習,我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉椮撎柗爬ㄌ柾
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。
初中數(shù)學知識點總結9
在初中數(shù)學課堂教學中,小結一般作為總結本課,開啟下一課的鑰匙。但是在具體執(zhí)行過程中,受到時間、學生心態(tài)、教師課堂設計水平等因素的限制,初中數(shù)學課堂小結在運用的過程中呈現(xiàn)出多種問題。究其原因是多方面的,而其最主要的原因則來源于教師對學生心理的把握力度不夠。心理學專家在當代少年兒童的大腦結構分析基礎上所做出的研究表明,在初中階段的學生對課程的關注度主要集中在前15分鐘,個別注意力比較好的學生能堅持到15~25分鐘,隨著時間的推移,從25分鐘到45分鐘之間學生的記憶力和注意力則出現(xiàn)了逐漸下滑的趨勢。由此可見,教師在做初中數(shù)學課程設計時,僅僅按照傳統(tǒng)習慣將課堂小結作為課末總結的方式并不科學,對學生的課堂學習和課下探索延伸起不到推動作用。
由此,在新的知識環(huán)節(jié)講解和學習的過程中,對課堂小結的設計,教師應該通過巧妙的規(guī)劃,實現(xiàn)溫故知新,而這又是對本堂課程的總結和反思的過程,具有極強的邏輯性和漸進性,環(huán)環(huán)相扣,同時要為學生的思考和課下探索的延伸留出獨立的空間。因此,按照具體的操作,本文以浙教版初中數(shù)學“探索多邊形的內(nèi)角和”的課堂學習為例,對課堂小結的運用從以下兩個方面進行闡述。
一、撥迷梳“理”,溫故知新
七年級“探索多邊形的內(nèi)角和”一課的教學重點是讓學生了解什么是多邊形、什么是內(nèi)角、如何求內(nèi)角和、如何在現(xiàn)實生活中利用此種計算方法。新課標要求,學生作為教學主體,對課程重點內(nèi)容的了解和領悟主要是以他們自身的動手操作為主,這也是教師在教案設計時的主要切入點之一。在明確本堂課的教學重點之后,教師需要對以往學習過的知識點進行梳理,并找出與本堂課有關聯(lián)性的知識點,在課程初始時作為引導,通過對以往知識點的回顧,如三角形、相交線等已學知識點引出本堂課的重點。而后面即將學習的課程,如“多姿多彩幾何圖形”等的相應測試,也可以作為學生課堂及課后的延伸知識點,在教師的課程講解過程中予以貫穿。當然,在課程設計初期,教師要尤為注意的是,應根據(jù)本堂課知識點的重點排序,由主到輔、由簡入深地安排好具有節(jié)奏感的講解內(nèi)容及小結,而作為延伸思考的知識點在每個小結部分可以按照其相關性和重要性進行穿插安排。
二、動手操作,注重反思
“探索多邊形的內(nèi)角和”中,多邊形的概念是本課各個難點展開的基礎,按照多邊形的概念,教師可以讓學生用線、卡紙、鐵絲等工具自行制作凹多邊形或凸多變形,以體驗多邊形的曲線美。引導學生嘗試以拉伸和縮小的方式構架出凹多邊形和凸多變形后,教師可以讓學生按照體驗來描述二者的區(qū)別和相同點,并以此作為小結。當學生做完歸納后,根據(jù)本課“多邊形的內(nèi)角和主要以凸多邊形為主”的教學目標要求,教師可提問:“同學們目前已經(jīng)了解了二者的區(qū)別,本堂課要講解的‘多邊形內(nèi)角和’主要以凸多邊形為基礎,但是為什么我們不以凹多邊形為基礎呢?請同學們仔細想想原因!苯處煹倪@種講解模式既可以為下面對“內(nèi)角和”的重點講解作鋪墊,又可以讓學生深入思考之前對凹凸多邊形的'描述是否恰當,是否符合多邊形的數(shù)學性規(guī)律。
在此種引導方法下,學生會按照下一個知識點的內(nèi)容來反思之前的小結是否具有全面性。在反復的思考和對比過程中,學生的邏輯思維可以得到充分的訓練。這對培養(yǎng)學生的數(shù)學思維,以及對知識點的重復性推敲和反思能力的提升具有促進作用。一旦學生在思考和探討的過程中,摸索到數(shù)學本身的規(guī)律,并從復雜多樣的數(shù)學知識點中找到其原本的架構,自然會在頭腦中建立起一個符合自身記憶和領悟需要的數(shù)學知識體系。
三、大道從簡,循環(huán)漸進
大道從簡,按照初中數(shù)學的知識點架構來看,每堂課的每個知識點都可以在被重點提煉之后作為節(jié)點來布置課堂小結。以數(shù)學的邏輯思維傳承性為基礎,課堂上的下一個知識點就可以作為反思和推敲上一個小結的試金石,如此循環(huán)往復后,課末的最終知識點總結則對本課所有知識點小結進行有效的補充和完善,進而延伸出下堂課以及與本堂課重點內(nèi)容相關的其他數(shù)學知識點的探索和思考。
當然,這種教學方法也同樣可以運用到其他學科的教學中。借助教師的漸進式誘導,學生會自主加入到課堂探索中,通過由簡到難、由淺入深的逐層遞進式反思和討論提升在課堂中的興趣度和專注度。
初中數(shù)學知識點總結10
1.有理數(shù):
。1)凡能寫成形式的數(shù),都是有理數(shù)。正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù)。注意:0即不是正數(shù),也不是負數(shù);—a不一定是負數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:① ②
2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線。
3.相反數(shù):
(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0;
。2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù)。
4.絕對值:
。1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離;
。2)絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;
5.有理數(shù)比大小:(1)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)—小數(shù)> 0,小數(shù)—大數(shù)< 0。
6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a≠0,那么的倒數(shù)是;若ab=1?a、b互為倒數(shù);若ab=—1?a、b互為負倒數(shù)。
7.有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
。2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
。3)一個數(shù)與0相加,仍得這個數(shù)。
8.有理數(shù)加法的運算律:
。1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。
9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)。
10.有理數(shù)乘法法則:
。1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
。2)任何數(shù)同零相乘都得零;
。3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定。
11.有理數(shù)乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的`結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac 。
12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),。
13.有理數(shù)乘方的法則:
(1)正數(shù)的任何次冪都是正數(shù);
。2)負數(shù)的奇次冪是負數(shù);負數(shù)的偶次冪是正數(shù);注意:當n為正奇數(shù)時:(—a)n=—an或(a —b)n=—(b—a)n,當n為正偶數(shù)時:(—a)n =an或(a—b)n=(b—a)n 。
14.乘方的定義:
。1)求相同因式積的運算,叫做乘方;
。2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結果叫做冪;
15.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),這種記數(shù)法叫科學記數(shù)法。
16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位。
17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字。
18.混合運算法則:先乘方,后乘除,最后加減。
本章內(nèi)容要求學生正確認識有理數(shù)的概念,在實際生活和學習數(shù)軸的基礎上,理解正負數(shù)、相反數(shù)、絕對值的意義所在。重點利用有理數(shù)的運算法則解決實際問題。
體驗數(shù)學發(fā)展的一個重要原因是生活實際的需要。激發(fā)學生學習數(shù)學的興趣,教師培養(yǎng)學生的觀察、歸納與概括的能力,使學生建立正確的數(shù)感和解決實際問題的能力。教師在講授本章內(nèi)容時,應該多創(chuàng)設情境,充分體現(xiàn)學生學習的主體性地位。
初中數(shù)學知識點總結11
1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關于某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形
48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質定理1正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關于中心對稱的兩個圖形是全等的
72定理2關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73逆定理如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點與底平行的'直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性質如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比97性質定理2相似三角形周長的比等于相似比98性質定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點的距離等于定長的點的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等
105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
、乓来芜B結各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
(n2)180139正n邊形的每個內(nèi)角都等于
n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
pnrn141正n邊形的面積Sn=p表示正n邊形的周長
2142正三角形面積
32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為360°,
k(n2)180360化為(n-2)(k-2)=4因此
n144弧長計算公式:L=
nR180nR2LR145扇形面積公式:S扇形==
3602146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
公式分類及公式表達式
乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根與系數(shù)的關系:X1+X2=-b/aX1*X2=c/a注:韋達定理判別式
b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根b2-4ac
初中數(shù)學知識點總結12
一、平移變換:
1、概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。
2、性質:
。1)平移前后圖形全等;
(2)對應點連線平行或在同一直線上且相等。
3、平移的作圖步驟和方法:
。1)分清題目要求,確定平移的方向和平移的距離。
(2)分析所作的圖形,找出構成圖形的關健點。
。3)沿一定的方向,按一定的距離平移各個關健點。
(4)連接所作的各個關鍵點,并標上相應的字母。
。5)寫出結論。
二、旋轉變換:
1、概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。
說明:
(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;
。2)旋轉過程中旋轉中心始終保持不動。
。3)旋轉過程中旋轉的方向是相同的。
。4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的.。⑤旋轉不改變圖形的大小和形狀。
2、性質:
(1)對應點到旋轉中心的距離相等;
。2)對應點與旋轉中心所連線段的夾角等于旋轉角;
(3)旋轉前、后的圖形全等。
3、旋轉作圖的步驟和方法:
。1)確定旋轉中心及旋轉方向、旋轉角;
(2)找出圖形的關鍵點;
。3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數(shù),得到這些關鍵點的對應點;
(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。
說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。
4、常見考法
。1)把平移旋轉結合起來證明三角形全等;
。2)利用平移變換與旋轉變換的性質,設計一些題目。
誤區(qū)提醒
(1)弄反了坐標平移的上加下減,左減右加的規(guī)律;
(2)平移與旋轉的性質沒有掌握。
初中數(shù)學知識點總結13
一、重要概念
1.總體:考察對象的全體。
2.個體:總體中每一個考察對象。
3.樣本:從總體中抽出的一部分個體。
4.樣本容量:樣本中個體的數(shù)目。
5.眾數(shù):一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。
6.中位數(shù):將一組數(shù)據(jù)按大小依次排列,處在最中間位置的一個數(shù)(或最中間位置的兩個數(shù)據(jù)的平均數(shù))
二、計算方法
1.樣本平均數(shù):⑴;⑵若,…,,則(a—常數(shù),…,接近較整的常數(shù)a);⑶加權平均數(shù):;⑷平均數(shù)是刻劃數(shù)據(jù)的集中趨勢(集中位置)的特征數(shù)。通常用樣本平均數(shù)去估計總體平均數(shù),樣本容量越大,估計越準確。
2.樣本方差:⑴;⑵若,,…,,則(a—接近、、…、的平均數(shù)的較“整”的常數(shù));若、、…、較“小”較“整”,則;⑶樣本方差是刻劃數(shù)據(jù)的離散程度(波動大小)的特征數(shù),當樣本容量較大時,樣本方差非常接近總體方差,通常用樣本方差去估計總體方差。
3.樣本標準差:
三、應用舉例(略)
初三數(shù)學知識點:第四章直線形
★重點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。
☆內(nèi)容提要☆
一、直線、相交線、平行線
1.線段、射線、直線三者的區(qū)別與聯(lián)系
從“圖形”、“表示法”、“界限”、“端點個數(shù)”、“基本性質”等方面加以分析。
2.線段的中點及表示
3.直線、線段的基本性質(用“線段的`基本性質”論證“三角形兩邊之和大于第三邊”)
4.兩點間的距離(三個距離:點-點;點-線;線-線)
5.角(平角、周角、直角、銳角、鈍角)
6.互為余角、互為補角及表示方法
7.角的平分線及其表示
8.垂線及基本性質(利用它證明“直角三角形中斜邊大于直角邊”)
9.對頂角及性質
10.平行線及判定與性質(互逆)(二者的區(qū)別與聯(lián)系)
11.常用定理:①同平行于一條直線的兩條直線平行(傳遞性);②同垂直于一條直線的兩條直線平行。
12.定義、命題、命題的組成
13.公理、定理
14.逆命題
二、三角形
分類:⑴按邊分;
、瓢唇欠
1.定義(包括內(nèi)、外角)
2.三角形的邊角關系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中
3.三角形的主要線段
討論:①定義②x線的交點—三角形的×心③性質
、俑呔②中線③角平分線④中垂線⑤中位線
、乓话闳切微铺厥馊切危褐苯侨切、等腰三角形、等邊三角形
4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質
5.全等三角形
⑴一般三角形全等的判定(sas、asa、aas、sss)
⑵特殊三角形全等的判定:①一般方法②專用方法
6.三角形的面積
、乓话阌嬎愎舰菩再|:等底等高的三角形面積相等。
7.重要輔助線
、胖悬c配中點構成中位線;⑵加倍中線;⑶添加輔助平行線
8.證明方法
、胖苯幼C法:綜合法、分析法
、崎g接證法—反證法:①反設②歸謬③結論
、亲C線段相等、角相等常通過證三角形全等
、茸C線段倍分關系:加倍法、折半法
⑸證線段和差關系:延結法、截余法
⑹證面積關系:將面積表示出來
三、四邊形
分類表:
1.一般性質(角)
、艃(nèi)角和:360°
⑵順次連結各邊中點得平行四邊形。
推論1:順次連結對角線相等的四邊形各邊中點得菱形。
推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。
⑶外角和:360°
2.特殊四邊形
、叛芯克鼈兊囊话惴椒:
、破叫兴倪呅、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定
、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
、葘蔷的紐帶作用:
3.對稱圖形
⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)
4.有關定理:①平行線等分線段定理及其推論1、2
、谌切、梯形的中位線定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結四邊形的對角線;②梯形中!捌揭埔谎薄ⅰ捌揭茖蔷”、“作高”、“連結頂點和對腰中點并延長與底邊相交”轉化為三角形。
6.作圖:任意等分線段。
初中數(shù)學知識點總結14
在初中數(shù)學課堂教學中,教師不僅需要使用引人入勝的導語、精彩絕倫的講課過程,同時還應該為學生營造一個回味無窮的課堂結尾,讓學生學有所思,學有所悟。不過,在具體的初中數(shù)學課堂教學實踐中,不少教師往往忽視結尾的重要性,從而弱化了教學效果,而運用藝術性的課堂結尾,能夠有效提升學習效率。
1、初中數(shù)學課堂結尾的重要意義
初中數(shù)學課堂結尾指的是教師在結束講課過程時,在更高層次方面挖掘數(shù)學知識之際的內(nèi)在聯(lián)系,以及數(shù)學思想方法,同導入環(huán)節(jié)一樣,也是課堂教學的重要一部分。一節(jié)優(yōu)秀的初中數(shù)學課,從開頭直到結尾,教師與學生都應該在思維活躍狀態(tài),師生雙方都是積極的投入者,應該充分利用課堂時間,使課堂教學效果最大化。在課堂結尾時,學生的思想往往比較放松,容易松懈、疲勞,學習注意力不集中,如果教師運用藝術性的課堂結尾,能夠促使學生仍然保持較高的學習熱情,使課堂中學習的數(shù)學知識在歸納中升華,在總結中延續(xù),在練習中鞏固,通過相互比較各個數(shù)學知識點之間的區(qū)別與聯(lián)系,設置懸念激發(fā)學生的求知欲望,使學生對教學成果有更深層次的認知更加加深了學生對已學到的知識的認知。在初中數(shù)學課堂上,結尾與其它環(huán)節(jié)有機整合,可以使整節(jié)數(shù)學課產(chǎn)生和諧美與整體美,讓學生回味悠長,從而提升數(shù)學知識的審美情趣。
2、初中數(shù)學課堂藝術性結尾方法
2.1運用歸納式結尾,訓練思維的發(fā)散性:在初中數(shù)學課堂結束之前,教師可以使用歸納式的結尾方式,訓練學生思維的發(fā)散性與集中性。初中數(shù)學課堂上的歸納式結尾,要求教師使用簡潔、準確的表格、文字和圖示等,對本節(jié)課已經(jīng)前面所學習的數(shù)學知識進行歸納與總結,不僅可以幫助學生掌握數(shù)學知識的重點與系統(tǒng)性,還能夠促使他們集中精力思考問題,以及運用數(shù)學信息綜合分析問題的發(fā)散性思維能力,有利于提升學習效率。例如,在進行《直線、射線、線段》教學時,教師可以讓學生對這三種線的異同點進行歸納和總結,通過對三者之間的對比與總結,對于直線、射線、線段之間的區(qū)別,學生能夠掌握的更加深刻,通過生活中實例,讓學生找出不同類型的直線、射線與線段,使他們的思維得以發(fā)散和集中。
2.2運用懸念式結尾,訓練思維的創(chuàng)造性:在初中數(shù)學課堂教學中,為培養(yǎng)學生的創(chuàng)造性思維,教師可以運用懸念式的課堂結尾模式,促使學生在懸念中活躍思維,然后發(fā)現(xiàn)新的'問題,研究新規(guī)律,并且尋求解決問題的新手段。懸念式的初中數(shù)學課堂結尾意識形式,指的是教師根據(jù)本節(jié)課所講的內(nèi)容,設置一些與本節(jié)或下節(jié)知識相關的問題,然后引發(fā)學生對問題進行思考和分析,促使他們產(chǎn)生積極的學習狀態(tài),引發(fā)學生通過思考和分析探究新知識、得出新方法和總結新規(guī)律,從而培養(yǎng)學生的創(chuàng)造性思維。這個方法也可以通俗的講為“吊胃口”,這個方法的好處在于可以調(diào)動學生的好奇心,引起他們的興趣,再加一些獎勵的措施,可以起到事半功倍的效果,好奇心和興趣是學習的最大動力。例如,在進行《等腰三角形》教學時,為訓練學生的創(chuàng)造性思維,在課堂結尾時教師可以設置這樣一個懸念式問題:為什么等腰三角形會三線合一,讓學生對其進行分析和研究,從而為下一節(jié)課《等邊三角形》做鋪墊,引導他們發(fā)現(xiàn)等邊三角形是最為特殊的等腰三角形,激發(fā)學習動力。
2.3運用討論式結尾,訓練思維的求異性:初中生對于新數(shù)學知識的學習與認識,往往是由區(qū)別它們的性質開始,所以,求異思維在初中數(shù)學教學中十分重要。同時,培養(yǎng)它們的求異思維也是初中數(shù)學教學的主要目標之一。求異思維(DivergentThinking),又稱輻射思維、放射思維、擴散思維或發(fā)散思維,是指大腦在思維時呈現(xiàn)的一種擴散狀態(tài)的思維模式,它表現(xiàn)為思維視野廣闊,思維呈現(xiàn)出多維發(fā)散狀。如“一題多解”、“一事多寫”、“一物多用”等方式,培養(yǎng)發(fā)散思維能力。不少心理學家認為,發(fā)散思維是創(chuàng)造性思維的最主要的特點,是測定創(chuàng)造力的主要標志之一。為訓練學生的求異思維,初中數(shù)學教師可以運用討論式的課堂結尾,讓他們對某一數(shù)學問題進行探討,通過互相討論,彼此分享自己的看法與觀點,然后進行比較和鑒別,發(fā)現(xiàn)數(shù)學知識的不同點與相同點,從而認識正確認識到數(shù)學知識的多元化,訓練學生的求異思維。例如,在進行《正方形》教學時,針對課堂結尾,教師為培養(yǎng)學生的求異思維,可以讓他們根據(jù)本節(jié)課的具體教學內(nèi)容,從定義、性質和判定等方面,討論正方形、菱形和矩形之間異同,促使學生在求異思維中構建數(shù)學知識的縱向聯(lián)系與橫向聯(lián)系,加強對數(shù)學知識點的理解。
2.4運用練習式結尾,訓練思維的系統(tǒng)性:初中數(shù)學教師在課堂教學中運用練習式的結尾藝術,指的是在課堂臨近結尾時,教師給學生布置一些練習作業(yè),通過練習回顧和訓練本節(jié)課的主要教學內(nèi)容,從而訓練他們的系統(tǒng)性思維。學生通過對練習題的分析和解決,可以使本節(jié)知識掌握的更加牢固和更深層次的理解,從而養(yǎng)成熟練的解題技巧;通過有效的課堂練習,可以檢測學生對數(shù)學知識的掌握和運用情況,考察學生的數(shù)學學習能力和知識應用水平。例如,在進行《一次函數(shù)》中“函數(shù)的圖象”教學時,針對課堂結尾,教師可以給學生布置一些課堂練習題,像:y=2x+3、y=7x-4和7=1/4x+8等,讓他們畫出這些一次函數(shù)的圖像,以此來檢測學生對知識的掌握與使用情況,促使他們數(shù)學知識學習的更加整體,訓練學生的系統(tǒng)性思維。
3、總結
總之,在初中數(shù)學課堂教學中,結尾環(huán)節(jié)十分重要,許多初入課堂的教師講課結束得太過突然,對結尾不夠重視,有的虎頭蛇尾、草草結尾,有的拖堂、拖泥帶水啰嗦式的結尾,降低教學效果。他們的結束方法不夠平順,缺乏修飾。正確地說,他們沒有結尾,只是突然而急驟地停止。這種方式造成的效果令人感到不愉快,也顯示教師本人是個十足的外行。教師在具體的教學實踐中對于結尾藝術應該給予特別關照,充分利用課堂結尾,幫助學生鞏固數(shù)學知識,加強對數(shù)學知識的理解與記憶,為下節(jié)課做好鋪墊工作,從而提升學生的學習效率。
初中數(shù)學知識點總結15
初中數(shù)學總復習,是對初中三年來所學數(shù)學知識的回顧,鞏固提高,查漏補缺,它不是對知識的簡單重復,而是引導學生對所學知識進行系統(tǒng)歸納和升華,并用已學的知識解決新問題。進一步加深對數(shù)學概念的理解,弄清各部分知識的內(nèi)在聯(lián)系,熟練掌握重要的數(shù)學方法和數(shù)學思想,從而達到開發(fā)智力、培養(yǎng)能力的目的因此,初中數(shù)學總復習是非常重要的,復習的好壞將決定學生成績的好壞、決定學生掌握知識的牢固程度。一直以來,如何有效提高復習效率,是廣大教師多年來探求的重要課題之一。筆者從1999年以來,一直擔任初中數(shù)學的教學任務,所教班級的數(shù)學中考考試成績一直名列前茅。下面筆者根據(jù)對初中數(shù)學總復習的實踐,總結出的一套較為實用的復習方法。
一、復習基礎知識階段
在初中數(shù)學復習中,第一階段要緊扣課本,疏理教材,使學生在頭腦中形成一個關于初中數(shù)學知識的前后相連、縱橫交錯、融會貫通的知識結構。在第一階段中,一般按初中數(shù)學知識體系把初中數(shù)學知識分成九個單元,即:“數(shù)與式”“方程和不等式(組)”“函數(shù)及其圖像”“統(tǒng)計與概率”“圖形初步認識和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進行復習。每個單元按下面步驟進行。
1、疏理知識結構
首先,引導學生把本單元的知識用文字、圖表等方式編織知識網(wǎng)絡,用簡表式的結構表示本單元的知識結構;其次,引導學生回顧基礎知識;最后,以基本習題的形式再現(xiàn)知識的內(nèi)容,即通過一些判斷題、填空題、選擇題、簡單計算題的訓練達到鞏固基礎知識的目的
2、訓練基本技能和解題技巧
在理順知識結構的基礎上,把每個單元按知識點分成若干課時,然后按知識點精選例題和練習題,引導學生進行多方練習,多角度思考,正反求解,促進學生掌握基礎知識和解題技巧。
精選的例題和練習題最好從課本上尋找,因為中考的命題原則是:“源于教材,高于教材!彼x例題、練習題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進行訓練。
每課時的教學可按“理順知識――嘗試做例題――講解例題――練習――變式練習――作業(yè)”幾個步驟進行。在“理解知識”階段力求簡單明了地揭示本節(jié)課所要復習的知識點,領會概念、定理、公理和數(shù)學思想方法。講解的例題或作業(yè)一般可選擇一部分題進行“一題多變”“一題多解”的題目。在分析、講解例題時切不可就題論題,應注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。
3、單元測試
在上述復習的基礎上,復習完每一個單元后,必須出示至少4份試卷。第一份試卷,以引導學生系統(tǒng)地梳理教材、構建知識結構,歸納和總結各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結本單元的常用結論、解題方法、一題多解、一題多變?yōu)橹鳌W生進行測試,以了解學生掌握知識的情況,及時查漏補缺。
測試題應以教學大綱、考標、教材為依據(jù),要求內(nèi)容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發(fā)性。通過測試,全面衡量復習效果,一般來說,測試題可從以下幾個方面精選題目:(1)全面體現(xiàn)本單元的基礎知識的填空題和選擇題;(2)本單元所反映出的.基本技能和技巧的解答題;(3)綜合運用本單元知識的綜合題。
上面三方面試題的比例為6∶3∶1測試完后,教師進行講評,對學生未弄懂的知識點及時進行補救。
二、綜合訓練,加強重點知識階段
在完成第一階段的基礎上,根據(jù)初中數(shù)學知識的重點,選擇一些較為典型的綜合題,引導學生合作探索和研究,以培養(yǎng)學生綜合運用知識來分析問題和解決問題的能力。選擇的題目一般從本市及全省近5年的中考試題中去精選。
綜合題,一般來說有代數(shù)綜合題、幾何綜合題、代數(shù)和幾何相結合的綜合題。代數(shù)綜合題的重點應是二次方程和二次函數(shù);幾何綜合題的重點是三角形、四邊形和圖;代數(shù)與幾何相結合的綜合題則是方程、函數(shù)與圖像相結合的題。
對于綜合題的訓練,一般采用“嘗試練習――分析――講解――歸納解題方法與技巧――練習”的方式進行。對重點問題進行一題多解、一題多變的訓練。
三、綜合測試,查漏補缺階段
為了進一步鞏固數(shù)學知識,全面考查復習效果,提高學生的心理素質,在第二階段復習結束時,可進行模擬測試。測試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現(xiàn)初中數(shù)學知識和方法,既要有考查雙基的基礎題,又要有考查學生能力的綜合題。有的知識還要與高中知識銜接并拓展。
考完一套,及時講評,與學生一起分析,共同探討,列出知識清單使得每個學生經(jīng)歷知識收集、整理的過程,把書學“薄”,有效地回顧了一章書所學的知識。
【初中數(shù)學知識點總結】相關文章:
初中數(shù)學必備知識點總結03-01
初中數(shù)學幾何知識點總結11-05
初中數(shù)學圓的知識點總結12-05
初中數(shù)學知識點總結07-14
初中數(shù)學知識點總結07-15
數(shù)學初中知識點總結06-10
初中數(shù)學人教知識點總結10-09
初中數(shù)學知識點歸納總結12-02