- 相關(guān)推薦
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)
在我們的學(xué)習(xí)時(shí)代,很多人都經(jīng)常追著老師們要知識(shí)點(diǎn)吧,知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。哪些知識(shí)點(diǎn)能夠真正幫助到我們呢?下面是小編幫大家整理的初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)1
三角形的知識(shí)點(diǎn)
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
4、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。
6、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。
9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°
推論1直角三角形的兩個(gè)銳角互余
推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和
推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質(zhì)
(1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
。2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;
(3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;
。4)三角形的外角和是360°。
四邊形(含多邊形)知識(shí)點(diǎn)、概念總結(jié)
一、平行四邊形的定義、性質(zhì)及判定
1、兩組對(duì)邊平行的四邊形是平行四邊形。
2、性質(zhì):
。1)平行四邊形的對(duì)邊相等且平行
(2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)
。3)平行四邊形的對(duì)角線互相平分
3、判定:
。1)兩組對(duì)邊分別平行的四邊形是平行四邊形
(2)兩組對(duì)邊分別相等的四邊形是平行四邊形
。3)一組對(duì)邊平行且相等的四邊形是平行四邊形
。4)兩組對(duì)角分別相等的四邊形是平行四邊形
(5)對(duì)角線互相平分的四邊形是平行四邊形
4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形
二、矩形的定義、性質(zhì)及判定
1、定義:有一個(gè)角是直角的平行四邊形叫做矩形
2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等
3、判定:
。1)有一個(gè)角是直角的平行四邊形叫做矩形
。2)有三個(gè)角是直角的四邊形是矩形
(3)兩條對(duì)角線相等的平行四邊形是矩形
4、對(duì)稱性:矩形是軸對(duì)稱圖形也是中心對(duì)稱圖形。
三、菱形的定義、性質(zhì)及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
。1)菱形的四條邊都相等
(2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角
。3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形
。4)菱形的面積等于兩條對(duì)角線長的積的一半
2、s菱=爭6(n、6分別為對(duì)角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
。2)四條邊都相等的四邊形是菱形
。3)對(duì)角線互相垂直的平行四邊形是菱形
4、對(duì)稱性:菱形是軸對(duì)稱圖形也是中心對(duì)稱圖形
四、正方形定義、性質(zhì)及判定
1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形
2、性質(zhì):
。1)正方形四個(gè)角都是直角,四條邊都相等
。2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角
(3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形
。4)正方形的對(duì)角線與邊的夾角是45°
。5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形
3、判定:
。1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角
4、對(duì)稱性:正方形是軸對(duì)稱圖形也是中心對(duì)稱圖形
五、梯形的定義、等腰梯形的性質(zhì)及判定
1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形
2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形
4、對(duì)稱性:等腰梯形是軸對(duì)稱圖形
六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。
七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);三角形的`重心是三條中線的交點(diǎn)。
八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。
九、多邊形
1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。
6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質(zhì)
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n—2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等于n·180°—(n—2)·180°=360°
。2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°
10、多邊形對(duì)角線的條數(shù):
。1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n—3)條對(duì)角線,把多邊形分詞(n—2)個(gè)三角形
。2)n邊形共有n(n—3)/2條對(duì)角線
圓知識(shí)點(diǎn)、概念總結(jié)
1、不在同一直線上的三點(diǎn)確定一個(gè)圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧
③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4、圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7、同圓或等圓的半徑相等
8、到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角
12、①直線L和⊙O相交d
、谥本L和⊙O相切d=r
③直線L和⊙O相離d>r
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16、推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17、切線長定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角
19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20、①兩圓外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R—rr)
④兩圓內(nèi)切d=R—r(R>r)⑤兩圓內(nèi)含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
。1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
。2)經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
27、正三角形面積√3a/4a表示邊長
28、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4
29、弧長計(jì)算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)
32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半
33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等
34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑
35、弧長公式l=axra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2xlxr
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)2
一、角的定義:
“靜態(tài)”概念:有公共端點(diǎn)的兩條射線組成的圖形叫做角。
“動(dòng)態(tài)”概念:角可以看作是一條射線繞其端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
如果一個(gè)角的兩邊成一條直線,那么這個(gè)角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:
1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″)。
三、余角、補(bǔ)角的概念和性質(zhì):
概念:如果兩個(gè)角的和是一個(gè)平角,那么這兩個(gè)角叫做互為補(bǔ)角。
如果兩個(gè)角的和是一個(gè)直角,那么這兩個(gè)角叫做互為余角。
說明:互補(bǔ)、互余是指兩個(gè)角的數(shù)量關(guān)系,沒有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補(bǔ)角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
。1)度量法(利用量角器);
。2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:
從一個(gè)角的.頂點(diǎn)引出的一條射線。把這個(gè)角分成相等的兩部分,這條射線叫做這個(gè)角的平分線。
常見考法
。1)考查與時(shí)鐘有關(guān)的問題;(2)角的計(jì)算與度量。
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)3
第一章豐富的圖形世界
1、幾何圖形
從實(shí)物中抽象出來的各種圖形,包括立體圖形和平面圖形。
2、點(diǎn)、線、面、體
。1)幾何圖形的組成
點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。
3、生活中的立體圖形
生活中的立體圖形
柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、……
正有理數(shù)整數(shù)
有理數(shù)零有理數(shù)
負(fù)有理數(shù)分?jǐn)?shù)
2、相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零
3、數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時(shí),三要素缺一不可)。任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。
4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和—1。零沒有倒數(shù)。
5、絕對(duì)值:在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,叫做該數(shù)的絕對(duì)值,(|a|≥0)。若|a|=a,則a≥0;若|a|=—a,則a≤0。
正數(shù)的絕對(duì)值是它本身;負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0;橄喾磾(shù)的兩個(gè)數(shù)的絕對(duì)值相等。
6、有理數(shù)比較大小:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個(gè)點(diǎn)所表示的數(shù),右邊的總比左邊的大;兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
7、有理數(shù)的運(yùn)算:
。1)五種運(yùn)算:加、減、乘、除、乘方
多個(gè)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)數(shù)為零,積就為零。
有理數(shù)加法法則:
同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
異號(hào)兩數(shù)相加,絕對(duì)值值相等時(shí)和為0;絕對(duì)值不相等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
互為相反數(shù)的兩個(gè)數(shù)相加和為0。
有理數(shù)減法法則:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)!
有理數(shù)乘法法則:
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。
任何數(shù)與0相乘,積仍為0。
有理數(shù)除法法則:
兩個(gè)有理數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。
0除以任何非0的數(shù)都得0。
注意:0不能作除數(shù)。
有理數(shù)的乘方:求n個(gè)相同因數(shù)a的積的運(yùn)算叫做乘方。
正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。
。2)有理數(shù)的運(yùn)算順序
先算乘方,再算乘除,最后算加減,如果有括號(hào),先算括號(hào)里面的。
。3)運(yùn)算律
加法交換律加法結(jié)合律
乘法交換律乘法結(jié)合律
乘法對(duì)加法的分配律
8、科學(xué)記數(shù)法
一般地,一個(gè)大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)—1)
第三章整式及其加減
1、代數(shù)式:
用運(yùn)算符號(hào)(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是代數(shù)式。
注意:①代數(shù)式中除了含有數(shù)、字母和運(yùn)算符號(hào)外,還可以有括號(hào);
、诖鷶(shù)式中不含有“=、>、<、≠”等符號(hào)。等式和不等式都不是代數(shù)式,但等號(hào)和不等號(hào)兩邊的式子一般都是代數(shù)式;
、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個(gè)代數(shù)式有意義,是實(shí)際問題的要符合實(shí)際問題的意義。
代數(shù)式的書寫格式:
、俅鷶(shù)式中出現(xiàn)乘號(hào),通常省略不寫,如vt;
②數(shù)字與字母相乘時(shí),數(shù)字應(yīng)寫在字母前面,如4a;
③帶分?jǐn)?shù)與字母相乘時(shí),應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作;
、軘(shù)字與數(shù)字相乘,一般仍用“×”號(hào),即“×”號(hào)不省略;
、菰诖鷶(shù)式中出現(xiàn)除法運(yùn)算時(shí),一般寫成分?jǐn)?shù)的形式,如4÷(a—4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號(hào)和括號(hào)的雙重作用。
⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。
2、整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
、賳雾(xiàng)式:都是數(shù)字和字母乘積的形式的代數(shù)式叫做單項(xiàng)式。單項(xiàng)式中,所有字母的指數(shù)之和叫做這個(gè)單項(xiàng)式的次數(shù);數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式的系數(shù)。
注意:
1)單獨(dú)的一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式;
2)單獨(dú)一個(gè)非零數(shù)的次數(shù)是0;
3)當(dāng)單項(xiàng)式的系數(shù)為1或—1時(shí),這個(gè)“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。
②多項(xiàng)式:幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中,每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng);次數(shù)最高的項(xiàng)的次數(shù)叫做多項(xiàng)式的次數(shù)。
3、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)叫做同類項(xiàng)。
注意:①同類項(xiàng)有兩個(gè)條件:
a、所含字母相同;
b、相同字母的指數(shù)也相同。
②同類項(xiàng)與系數(shù)無關(guān),與字母的排列順序無關(guān);
、蹘讉(gè)常數(shù)項(xiàng)也是同類項(xiàng)。
4、合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。
5、去括號(hào)法則
、俑鶕(jù)去括號(hào)法則去括號(hào):
括號(hào)前面是“+”號(hào),把括號(hào)和它前面的“+”號(hào)去掉,括號(hào)里各項(xiàng)都不改變符號(hào);括號(hào)前面是“—”號(hào),把括號(hào)和它前面的“—”號(hào)去掉,括號(hào)里各項(xiàng)都改變符號(hào)。
、诟鶕(jù)分配律去括號(hào):
括號(hào)前面是“+”號(hào)看成+1,括號(hào)前面是“—”號(hào)看成—1,根據(jù)乘法的分配律用+1或—1去乘括號(hào)里的每一項(xiàng)以達(dá)到去括號(hào)的目的。
6、添括號(hào)法則
添“+”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都不改變;添“—”號(hào)和括號(hào),添到括號(hào)里的各項(xiàng)符號(hào)都要改變。
7、整式的運(yùn)算:
整式的加減法:(1)去括號(hào);(2)合并同類項(xiàng)。
第四章基本平面圖形
2、直線的性質(zhì)
。1)直線公理:經(jīng)過兩個(gè)點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)
(2)過一點(diǎn)的直線有無數(shù)條。
。3)直線是是向兩方面無限延伸的,無端點(diǎn),不可度量,不能比較大小。
3、線段的性質(zhì)
。1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)
。2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長度,叫做這兩點(diǎn)之間的距離。
。3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。
4、線段的中點(diǎn):
點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM=BM=1/2AB(或AB=2AM=2BM)。
5、角:
有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線叫做這個(gè)角的邊。或:角也可以看成是一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。
6、角的表示
角的表示方法有以下四種:
、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。
、谟眯懙南ED字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。
、塾靡粋(gè)大寫英文字母表示一個(gè)獨(dú)立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。
、苡萌齻(gè)大寫英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。
注意:用三個(gè)大寫字母表示角時(shí),一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。
7、角的度量
角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
8、角的平分線
從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
9、角的性質(zhì)
。1)角的大小與邊的`長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較,角可以參與運(yùn)算。
10、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時(shí),所形成的角叫做周角。
11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。
從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(n—3)條對(duì)角線,把這個(gè)n邊形分割成(n—2)個(gè)三角形。
12、圓:平面上,一條線段繞著一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。
圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。
第五章一元一次方程
1、方程
含有未知數(shù)的等式叫做方程。
2、方程的解
能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。
3、等式的性質(zhì)
。1)等式的兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式。
(2)等式的兩邊同時(shí)乘以同一個(gè)數(shù)((或除以同一個(gè)不為0的數(shù)),所得結(jié)果仍是等式。
4、一元一次方程
只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。
5、移項(xiàng):把方程中的某一項(xiàng),改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫做移項(xiàng)。
6、解一元一次方程的一般步驟:
。1)去分母(2)去括號(hào)(3)移項(xiàng)(把方程中的某一項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,這種變形叫移項(xiàng)。)(4)合并同類項(xiàng)(5)將未知數(shù)的系數(shù)化為1
第六章數(shù)據(jù)的收集與整理
1、普查與抽樣調(diào)查
為了特定目的對(duì)全部考察對(duì)象進(jìn)行的全面調(diào)查,叫做普查。其中被考察對(duì)象的全體叫做總體,組成總體的每一個(gè)被考察對(duì)象稱為個(gè)體。
從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個(gè)體叫做總體的一個(gè)樣本。
2、扇形統(tǒng)計(jì)圖
扇形統(tǒng)計(jì)圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖。(各個(gè)扇形所占的百分比之和為1)
圓心角度數(shù)=360°×該項(xiàng)所占的百分比。(各個(gè)部分的圓心角度數(shù)之和為360°)
3、頻數(shù)直方圖
頻數(shù)直方圖是一種特殊的條形統(tǒng)計(jì)圖,它將統(tǒng)計(jì)對(duì)象的數(shù)據(jù)進(jìn)行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。
4、各種統(tǒng)計(jì)圖的特點(diǎn)
條形統(tǒng)計(jì)圖:能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目。
折線統(tǒng)計(jì)圖:能清楚地反映事物的變化情況。
扇形統(tǒng)計(jì)圖:能清楚地表示出各部分在總體中所占的百分比。
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)4
初中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)
平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)
有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。
立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的`運(yùn)算叫開立方,其中A叫做被開方數(shù)。
實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。
初中數(shù)學(xué)平行四邊形的性質(zhì)知識(shí)點(diǎn)
1、定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形
2、平行四邊形的性質(zhì)
。1)平行四邊形的對(duì)邊平行且相等;
。2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;
。3)平行四邊形的對(duì)角線互相平分;
3、平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對(duì)平行四邊形的五種判定方法,進(jìn)行劃分:
第一類:與四邊形的對(duì)邊有關(guān)
(1)兩組對(duì)邊分別平行的四邊形是平行四邊形;
。2)兩組對(duì)邊分別相等的四邊形是平行四邊形;
(3)一組對(duì)邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對(duì)角有關(guān)
(4)兩組對(duì)角分別相等的四邊形是平行四邊形;
第三類:與四邊形的對(duì)角線有關(guān)
。5)對(duì)角線互相平分的四邊形是平行四邊形
初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)
一次函數(shù)
。1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)
所以,正比例函數(shù)是特殊的一次函數(shù)。
(2)一次函數(shù)的圖像及性質(zhì):
1、在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。
2、一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)。
3、正比例函數(shù)的圖像總是過原點(diǎn)。
4、k,b與函數(shù)圖像所在象限的關(guān)系:
當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。
當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;
當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;
當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;
當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;
當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。
二次函數(shù)
(1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。
(2)二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);
頂點(diǎn)式:y=a(x—h)^2+k(拋物線的頂點(diǎn)P(h,k));
交點(diǎn)式:
(3)二次函數(shù)的圖像與性質(zhì)
1、二次函數(shù)的圖像是一條拋物線。
2、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=—b/2a。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)。
3、二次項(xiàng)系數(shù)a決定拋物線的開口方向。
當(dāng)a>0時(shí),拋物線向上開口;
當(dāng)a<0時(shí),拋物線向下開口。
4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5、拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b^2—4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);
Δ=b^2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);
Δ=b^2—4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。
反比例函數(shù)
。1)定義:形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。
。2)反比例函數(shù)圖像性質(zhì):
1、反比例函數(shù)的圖像為雙曲線;
當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);
當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);
反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
2、由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)5
一、平移變換:
1、概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。
2、性質(zhì):(1)平移前后圖形全等;
。2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。
3、平移的作圖步驟和方法:
(1)分清題目要求,確定平移的方向和平移的距離;
。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn);
。3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn);
。4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母;
。5)寫出結(jié)論。
二、旋轉(zhuǎn)變換:
1、概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。
說明:
。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;
(2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動(dòng)。
(3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。
(4)旋轉(zhuǎn)過程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。
。5)旋轉(zhuǎn)不改變圖形的大小和形狀。
2、性質(zhì):
。1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
。2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
。3)旋轉(zhuǎn)前、后的.圖形全等。
3、旋轉(zhuǎn)作圖的步驟和方法:
。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;
。2)找出圖形的關(guān)鍵點(diǎn);
(3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);
(4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。
說明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。
常見考法
。1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;
。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。
誤區(qū)提醒
。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;
(2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)6
1、一元二次方程解法
。1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1
。2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2—4ac≥0
若b2—4ac>0則有兩個(gè)不相等的實(shí)根,若b2—4ac=0則有兩個(gè)相等的實(shí)根,若b2—4ac<0則無解
若b2—4ac≥0則用公式X=—b±√b2—4ac/2a注:必須化為一般形式
。3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a2—b2=0→(a+b)(a—b)=0
、谶\(yùn)用公式法:
完全平方公式:a2±2ab+b2=0→(a±b)2=0
③十字相乘法
2、銳角三角函數(shù)定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的`銳角三角函數(shù)。
正弦(sin):對(duì)邊比斜邊,即sinA=a/c;
余弦(cos):鄰邊比斜邊,即cosA=b/c;
正切(tan):對(duì)邊比鄰邊,即tanA=a/b;
余切(cot):鄰邊比對(duì)邊,即cotA=b/a。
3、積的關(guān)系
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
4、倒數(shù)關(guān)系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
5、兩角和差公式
sin(A+B)=sinAcosB+cosAsinB
sin(A—B)=sinAcosB—cosAsinB
cos(A+B)=cosAcosB—sinAsinB
cos(A—B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1—tanAtanB)
tan(A—B)=(tanA—tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB—1)/(cotB+cotA)
cot(A—B)=(cotAcotB+1)/(cotB—cotA)
初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)7
平面直角坐標(biāo)系:
在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合
三個(gè)規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成
對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成:
在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)
下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。
點(diǎn)的坐標(biāo)的性質(zhì):
建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。
對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。
一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。
希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。
因式分解的一般步驟:
如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,
通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的`因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。
相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績。
初中數(shù)學(xué)知識(shí)點(diǎn):因式分解
下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
因式分解定義:
把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
因式分解要素:
、俳Y(jié)果必須是整式
、诮Y(jié)果必須是積的形式
③結(jié)果是等式
、芤蚴椒纸馀c整式乘法的關(guān)系:m(a+b+c)
公因式:
一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。
公因式確定方法:
①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。
②相同字母取最低次冪
、巯禂(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
提取公因式步驟:
、俅_定公因式。
②確定商式
、酃蚴脚c商式寫成積的形式。
分解因式注意:
、俨粶(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)
、垭p重括號(hào)化成單括號(hào)
、芙Y(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列
、菹嗤蚴綄懗蓛绲男问
、奘醉(xiàng)負(fù)號(hào)放括號(hào)外
、呃ㄌ(hào)內(nèi)同類項(xiàng)合并。
通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。
【初中數(shù)學(xué)人教知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初中數(shù)學(xué)人教版知識(shí)點(diǎn)總結(jié)04-27
初中數(shù)學(xué)人教版知識(shí)點(diǎn)整理02-17
數(shù)學(xué)人教版初中知識(shí)點(diǎn)04-25
初中數(shù)學(xué)數(shù)與代數(shù)知識(shí)點(diǎn)歸納03-21
初中數(shù)學(xué)相反數(shù)知識(shí)點(diǎn)03-24
有關(guān)初中數(shù)學(xué):數(shù)與代數(shù)的知識(shí)點(diǎn)07-18
初中數(shù)學(xué)相反數(shù)的知識(shí)點(diǎn)03-30