當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 數(shù)學(xué)初中知識點總結(jié)

數(shù)學(xué)初中知識點總結(jié)

時間:2024-07-17 07:58:17 初中數(shù)學(xué) 我要投稿

數(shù)學(xué)初中知識點總結(jié)15篇(精華)

  總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗或情況加以總結(jié)和概括的書面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚(yáng)成績,為此要我們寫一份總結(jié)?偨Y(jié)一般是怎么寫的呢?下面是小編為大家收集的數(shù)學(xué)初中知識點總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。

數(shù)學(xué)初中知識點總結(jié)15篇(精華)

數(shù)學(xué)初中知識點總結(jié)1

  基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補(bǔ)角相等

  4、同角或等角的余角相等

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理xxx兩邊的和大于第三邊

  16、推論xxx兩邊的差小于第三邊

  17、xxx內(nèi)角和定理xxx三個內(nèi)角的和等于180°

  18、推論1直角xxx的兩個銳角互余

  19、推論2 xxx的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3 xxx的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等xxx的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個xxx全等

  23、角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個xxx全等

  24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個xxx全等

  25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個xxx全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角xxx全等

  27、定理1在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、等腰xxx的性質(zhì)定理等腰xxx的兩個底角相等(即等邊對等角)

  31、推論1等腰xxx頂角的平分線平分底邊并且垂直于底邊

  32、等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合

  33、推論3等邊xxx的各角都相等,并且每一個角都等于60°

  34、等腰xxx的判定定理如果一個xxx有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35、推論1三個角都相等的`xxx是等邊xxx

  36、推論2有一個角等于60°的等腰xxx是等邊xxx

  37、在直角xxx中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角xxx斜邊上的中線等于斜邊上的一半

  39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果xxx的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個xxx是直角xxx

  48、定理四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

數(shù)學(xué)初中知識點總結(jié)2

  一、初中數(shù)學(xué)基本概念

  1.方程:含有未知數(shù)的等式叫做方程。

  2.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程。

  3.方程的解:使方程左右兩邊相等的未知數(shù)的值叫做方程的解。

  4.解方程:求方程的解的過程叫做解方程。

  5.恒等式:兩個含有相同的未知數(shù),并且含未知數(shù)項的系數(shù)都是零的整式方程是一元一次方程。

  二、初中數(shù)學(xué)基本公式

  1.三角形面積的公式:三角形面積=底×高÷2,用字母表示為“S=ah÷2”。

  2.平行四邊形面積的公式:平行四邊形面積=底×高,用字母表示為“S=ah”。

  3.梯形面積的公式:梯形面積=(上底+下底)×高÷2,用字母表示為“S=(a+b)h÷2”。

  4.圓的面積公式:圓面積=半徑×半徑×π,用字母表示為“S=πr2”。

  5.菱形的面積公式:菱形面積=底×高,用字母表示為“S=ab”。

  6.正方形面積公式:正方形面積=邊長×邊長,用字母表示為“S=a2”。

  7.一元一次方程求解公式:ax=b,其中a和b為方程的系數(shù),x為未知數(shù)。當(dāng)a≠0時,有唯一解;當(dāng)a=0且b≠0時,無解;當(dāng)a=0且b=0時,有無數(shù)解。

  三、初中數(shù)學(xué)基本定理

  1.等式的性質(zhì):等式兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式;等式兩邊同時乘以(或除以)同一個不為0的數(shù)或代數(shù)式,所得結(jié)果仍是等式。

  2.方程的解法:通過移項、合并同類項、去括號、去分母等方式,將一元一次方程轉(zhuǎn)化為ax=b的形式,求解得到方程的解。

  3.一元一次不等式的解法:將一元一次不等式轉(zhuǎn)化為ax>b或ax

  4.二元一次方程組的解法:通過代入消元法或加減消元法,將二元一次方程組轉(zhuǎn)化為一個一元一次方程,然后求解得到方程組的解。

  5.菱形的性質(zhì):菱形的四條邊相等,對角線互相垂直平分,并且每一組對角線平分一組對角。

  6.正方形的性質(zhì):正方形具有平行四邊形、矩形、菱形的一切性質(zhì),并且四條邊相等,四個角都是直角。

  7.相似三角形的判定定理:兩個三角形對應(yīng)邊成比例且對應(yīng)角相等,則這兩個三角形相似。

  8.全等三角形的判定定理:兩個三角形三邊相等、兩邊夾角相等、兩角夾邊相等、兩角和一邊相等,則這兩個三角形全等。

  9.垂徑定理:在圓中,直徑平分弦(不是直徑的弦)所對的兩條弧,平分弦所對的圓周弧的'弦垂直平分弦。

  10.圓的切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;經(jīng)過圓的半徑外端且垂直于切線的直線是圓的切線;圓的割線定理:一條直線與一個圓有兩個不同的交點,則這條直線被圓截得的線段長的平方等于這個圓上兩點所對應(yīng)的弦長的平方差。

  11.相交弦定理:圓內(nèi)的兩條相交弦被交點分成的兩條線段長的積相等。

  12.切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的積相等。

  13.圓心角、弧、弦的關(guān)系定理:在同圓或等圓中,相等的圓心角所對的弧相等;相等的弧所對的弦也相等;相等的弦所對的弧也相等;在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等;弧的度數(shù)等于它所對的圓心角度數(shù);一個圓心角等于它所對的弧的度數(shù);半圓(或直徑)所對的圓周角是直角;90°的圓周

數(shù)學(xué)初中知識點總結(jié)3

  定義

  對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

  比值與比的概念

  比值是一個具體的數(shù)字如:AB/EF=2

  而比不是一個具體的數(shù)字如:AB/EF=2:1判定方法

  證兩個相似三角形應(yīng)該把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個三角形的對應(yīng)頂點可能沒有寫在對應(yīng)的位置上,而如果是符號語言的“△ABC∽△DEF”,那么就說明這兩個三角形的對應(yīng)頂點寫在了對應(yīng)的位置上。

  方法一(預(yù)備定理)

  平行于三角形一邊的直線截其它兩邊所在的直線,截得的`三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個引理的證明方法需要平行線與線段成比例的證明)

  方法二

  如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。

  方法三

  如果兩個三角形的兩組對應(yīng)邊成比例,并且相應(yīng)的夾角相等,

  那么這兩個三角形相似

  方法四

  如果兩個三角形的三組對應(yīng)邊成比例,那么這兩個三角形相似

  方法五(定義)

  對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形

  三個基本型

  Z型A型反A型

  方法六

  兩個直角三角形中,斜邊與直角邊對應(yīng)成比例,那么兩三角形相似。一定相似的三角形

  1、兩個全等的三角形

  (全等三角形是特殊的相似三角形,相似比為1:1)

  2、兩個等腰三角形

  (兩個等腰三角形,如果其中的任意一個頂角或底角相等,那么這兩個等腰三角形相似。)

  3、兩個等邊三角形

  (兩個等邊三角形,三角都是60度,且邊邊相等,所以相似)

  4、直角三角形中由斜邊的高形成的三個三角形(母子三角形)

  圖形的學(xué)習(xí)需要大家對于知識的詳細(xì)了解和滲透,而不是一帶而過。

數(shù)學(xué)初中知識點總結(jié)4

  有兩條邊相等的三角形叫等腰三角形

  相等的兩條邊叫腰;兩腰的夾角叫頂角;頂角所對的邊叫底;腰與底的夾角叫底角。

  等腰三角形性質(zhì)

  (1)具有一般三角形的邊角關(guān)系

  (2)等邊對等角;

  (3)底邊上的高、底邊上的中線、頂角平分線互相重合;

  (4)是軸對稱圖形,對稱軸是頂角平分線;

  (5)底邊小于腰長的兩倍并且大于零,腰長大于底邊的一半;

  (6)頂角等于180減去底角的兩倍;

  (7)頂角可以是銳角、直角、鈍角而底角只能是銳角

  等腰三角形分類:可分為腰和底邊不等的等腰三角形及等邊三角形

  等邊三角形性質(zhì)

 、倬邆涞妊切蔚囊磺行再|(zhì)。

 、诘冗吶切稳龡l邊都相等,三個內(nèi)角都相等并且每個都是60。

  等腰三角形的判定

 、倮枚x;②等角對等邊;

  等邊三角形的判定

  ①利用定義:三邊相等的三角形是等邊三角形

 、谟幸粋角是60的.等腰三角形是等邊三角形.

  含30銳角的直角三角形邊角關(guān)系:在直角三角形中,30銳角所對的直角邊等于斜邊的一半。

  三角形邊角的不等關(guān)系;長邊對大角,短邊對小角;大角對長邊,小角對短邊。

數(shù)學(xué)初中知識點總結(jié)5

  1.常量和變量

  在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).

  2.函數(shù)

  設(shè)在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應(yīng),那么就說x是自變量,y是x的函數(shù).

  3.自變量的取值范圍

  (1)整式:自變量取一切實數(shù).(2)分式:分母不為零.

  (3)偶次方根:被開方數(shù)為非負(fù)數(shù).

  (4)零指數(shù)與負(fù)整數(shù)指數(shù)冪:底數(shù)不為零.

  4.函數(shù)值

  對于自變量在取值范圍內(nèi)的一個確定的值,如當(dāng)x=a時,函數(shù)有唯一確定的對應(yīng)值,這個對應(yīng)值,叫做x=a時的函數(shù)值.

  5.函數(shù)的表示法

  (1)解析法;(2)列表法;(3)圖象法.

  6.函數(shù)的圖象

  把自變量x的一個值和函數(shù)y的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),可以在平面直角坐標(biāo)系內(nèi)描出一個點,所有這些點的集合,叫做這個函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:

  (1)寫出函數(shù)解析式及自變量的取值范圍;

  (2)列表:列表給出自變量與函數(shù)的一些對應(yīng)值;

  (3)描點:以表中對應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點;

  (4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.

  7.一次函數(shù)

  (1)一次函數(shù)

  如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).

  特別地,當(dāng)b=0時,一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù).

  (2)一次函數(shù)的圖象

  一次函數(shù)y=kx+b的圖象是一條經(jīng)過(0,b)點和點的直線.特別地,正比例函數(shù)圖象是一條經(jīng)過原點的直線.需要說明的是,在平面直角坐標(biāo)系中,“直線”并不等價于“一次函數(shù)y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數(shù)圖象.

  (3)一次函數(shù)的性質(zhì)

  當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小.直線y=kx+b與y軸的交點坐標(biāo)為(0,b),與x軸的交點坐標(biāo)為.

  (4)用函數(shù)觀點看方程(組)與不等式

  ①任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當(dāng)y=0時,求相應(yīng)的自變量的值,從圖象上看,相當(dāng)于已知直線y=kx+b,確定它與x軸交點的橫坐標(biāo).

 、诙淮畏匠探M對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線,從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)值相等,以及這兩個函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線的交點的坐標(biāo).

 、廴魏我辉淮尾坏仁蕉伎梢赞D(zhuǎn)化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當(dāng)一次函數(shù)值大于0或小于0時,求自變量相應(yīng)的取值范圍.

  8.反比例函數(shù)(1)反比例函數(shù)

 。1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).

  (2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.

  (3)反比例函數(shù)的性質(zhì)

 、佼(dāng)k>0時,圖象的兩個分支分別在第一、三象限內(nèi),在各自的象限內(nèi),y隨x的增大而減小.

 、诋(dāng)k<0時,圖象的兩個分支分別在第二、四象限內(nèi),在各自的象限內(nèi),y隨x的增大而增大.

 、鄯幢壤瘮(shù)圖象關(guān)于直線y=±x對稱,關(guān)于原點對稱.

  (4)k的兩種求法

  ①若點(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:

  若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB

  (5)正比例函數(shù)和反比例函數(shù)的交點問題

  若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當(dāng)k1k2<0時,兩函數(shù)圖象無交點;

  當(dāng)k1k2>0時,兩函數(shù)圖象有兩個交點,坐標(biāo)分別為由此可知,正反比例函數(shù)的圖象若有交點,兩交點一定關(guān)于原點對稱.

  1.二次函數(shù)

  如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的二次函數(shù).

  幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).

  2.二次函數(shù)的圖象

  二次函數(shù)y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的`圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.

  3.二次函數(shù)的性質(zhì)

  二次函數(shù)y=ax2+bx+c的性質(zhì)對應(yīng)在它的圖象上,有如下性質(zhì):

  (1)拋物線y=ax2+bx+c的頂點是,對稱軸是直線,頂點必在對稱軸上;

  (2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當(dāng)x<時,y隨x的增大而減;當(dāng)x>時,y隨x的增大而增大;當(dāng)x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當(dāng)x<,y隨x的增大而增大;當(dāng)時,y隨x的增大而減;當(dāng)x=時,y有最大值;

  (3)拋物線y=ax2+bx+c與y軸的交點為(0,c);

  (4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:

 。0時,拋物線y=ax2+bx+c與x軸沒有公共點.=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當(dāng)=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標(biāo)分別是和,這兩點的距離為;當(dāng)當(dāng)4.拋物線的平移

  拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.

數(shù)學(xué)初中知識點總結(jié)6

  初中數(shù)學(xué)基礎(chǔ)知識點

  平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

  初中數(shù)學(xué)平行四邊形的性質(zhì)知識點

  1.定義:兩組對邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

  (1)平行四邊形的對邊平行且相等;

  (2)平行四邊形的鄰角互補(bǔ),對角相等;

  (3)平行四邊形的對角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類:與四邊形的對邊有關(guān)

  (1)兩組對邊分別平行的四邊形是平行四邊形;

  (2)兩組對邊分別相等的四邊形是平行四邊形;

  (3)一組對邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對角有關(guān)

  (4)兩組對角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對角線有關(guān)

  (5)對角線互相平分的四邊形是平行四邊形

  初中數(shù)學(xué)函數(shù)知識點總結(jié)

  1.一次函數(shù)

  (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

  所以,正比例函數(shù)是特殊的'一次函數(shù)。

  (2)一次函數(shù)的圖像及性質(zhì):

  1在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。

  2一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

  3正比例函數(shù)的圖像總是過原點。

  4k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時,y隨x的增大而增大;當(dāng)k<0時,y隨x的增大而減小。

  當(dāng)k>0,b>0時,直線通過一、二、三象限;

  當(dāng)k>0,b<0時,直線通過一、三、四象限;

  當(dāng)k<0,b>0時,直線通過一、二、四象限;

  當(dāng)k<0,b<0時,直線通過二、三、四象限;

  當(dāng)b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

  這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

  2.二次函數(shù)

  (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

  (2)二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

  頂點式:y=a(x-h)^2+k(拋物線的頂點P(h,k));

  交點式:

  (3)二次函數(shù)的圖像與性質(zhì)

  1二次函數(shù)的圖像是一條拋物線。

  2拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

  特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)。

  3二次項系數(shù)a決定拋物線的開口方向。

  當(dāng)a>0時,拋物線向上開口;

  當(dāng)a<0時,拋物線向下開口。

  4一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。

  當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;

  當(dāng)a與b異號時(即ab<0),對稱軸在y軸右。

  5拋物線與x軸交點個數(shù)

  Δ=b^2-4ac>0時,拋物線與x軸有2個交點;

  Δ=b^2-4ac=0時,拋物線與x軸有1個交點;

  Δ=b^2-4ac<0時,拋物線與x軸沒有交點。

  3.反比例函數(shù)

  (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

  (2)反比例函數(shù)圖像性質(zhì):

  1反比例函數(shù)的圖像為雙曲線;

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

數(shù)學(xué)初中知識點總結(jié)7

  在初中數(shù)學(xué)課堂教學(xué)中,教師不僅需要使用引人入勝的導(dǎo)語、精彩絕倫的講課過程,同時還應(yīng)該為學(xué)生營造一個回味無窮的課堂結(jié)尾,讓學(xué)生學(xué)有所思,學(xué)有所悟。不過,在具體的初中數(shù)學(xué)課堂教學(xué)實踐中,不少教師往往忽視結(jié)尾的重要性,從而弱化了教學(xué)效果,而運(yùn)用藝術(shù)性的課堂結(jié)尾,能夠有效提升學(xué)習(xí)效率。

  1、初中數(shù)學(xué)課堂結(jié)尾的重要意義

  初中數(shù)學(xué)課堂結(jié)尾指的是教師在結(jié)束講課過程時,在更高層次方面挖掘數(shù)學(xué)知識之際的內(nèi)在聯(lián)系,以及數(shù)學(xué)思想方法,同導(dǎo)入環(huán)節(jié)一樣,也是課堂教學(xué)的重要一部分。一節(jié)優(yōu)秀的初中數(shù)學(xué)課,從開頭直到結(jié)尾,教師與學(xué)生都應(yīng)該在思維活躍狀態(tài),師生雙方都是積極的投入者,應(yīng)該充分利用課堂時間,使課堂教學(xué)效果最大化。在課堂結(jié)尾時,學(xué)生的思想往往比較放松,容易松懈、疲勞,學(xué)習(xí)注意力不集中,如果教師運(yùn)用藝術(shù)性的課堂結(jié)尾,能夠促使學(xué)生仍然保持較高的學(xué)習(xí)熱情,使課堂中學(xué)習(xí)的數(shù)學(xué)知識在歸納中升華,在總結(jié)中延續(xù),在練習(xí)中鞏固,通過相互比較各個數(shù)學(xué)知識點之間的區(qū)別與聯(lián)系,設(shè)置懸念激發(fā)學(xué)生的求知欲望,使學(xué)生對教學(xué)成果有更深層次的認(rèn)知更加加深了學(xué)生對已學(xué)到的知識的認(rèn)知。在初中數(shù)學(xué)課堂上,結(jié)尾與其它環(huán)節(jié)有機(jī)整合,可以使整節(jié)數(shù)學(xué)課產(chǎn)生和諧美與整體美,讓學(xué)生回味悠長,從而提升數(shù)學(xué)知識的審美情趣。

  2、初中數(shù)學(xué)課堂藝術(shù)性結(jié)尾方法

  2.1運(yùn)用歸納式結(jié)尾,訓(xùn)練思維的發(fā)散性:在初中數(shù)學(xué)課堂結(jié)束之前,教師可以使用歸納式的結(jié)尾方式,訓(xùn)練學(xué)生思維的發(fā)散性與集中性。初中數(shù)學(xué)課堂上的歸納式結(jié)尾,要求教師使用簡潔、準(zhǔn)確的表格、文字和圖示等,對本節(jié)課已經(jīng)前面所學(xué)習(xí)的數(shù)學(xué)知識進(jìn)行歸納與總結(jié),不僅可以幫助學(xué)生掌握數(shù)學(xué)知識的重點與系統(tǒng)性,還能夠促使他們集中精力思考問題,以及運(yùn)用數(shù)學(xué)信息綜合分析問題的發(fā)散性思維能力,有利于提升學(xué)習(xí)效率。例如,在進(jìn)行《直線、射線、線段》教學(xué)時,教師可以讓學(xué)生對這三種線的異同點進(jìn)行歸納和總結(jié),通過對三者之間的對比與總結(jié),對于直線、射線、線段之間的區(qū)別,學(xué)生能夠掌握的更加深刻,通過生活中實例,讓學(xué)生找出不同類型的直線、射線與線段,使他們的思維得以發(fā)散和集中。

  2.2運(yùn)用懸念式結(jié)尾,訓(xùn)練思維的創(chuàng)造性:在初中數(shù)學(xué)課堂教學(xué)中,為培養(yǎng)學(xué)生的創(chuàng)造性思維,教師可以運(yùn)用懸念式的課堂結(jié)尾模式,促使學(xué)生在懸念中活躍思維,然后發(fā)現(xiàn)新的問題,研究新規(guī)律,并且尋求解決問題的新手段。懸念式的初中數(shù)學(xué)課堂結(jié)尾意識形式,指的是教師根據(jù)本節(jié)課所講的內(nèi)容,設(shè)置一些與本節(jié)或下節(jié)知識相關(guān)的問題,然后引發(fā)學(xué)生對問題進(jìn)行思考和分析,促使他們產(chǎn)生積極的學(xué)習(xí)狀態(tài),引發(fā)學(xué)生通過思考和分析探究新知識、得出新方法和總結(jié)新規(guī)律,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。這個方法也可以通俗的講為“吊胃口”,這個方法的好處在于可以調(diào)動學(xué)生的好奇心,引起他們的興趣,再加一些獎勵的措施,可以起到事半功倍的效果,好奇心和興趣是學(xué)習(xí)的最大動力。例如,在進(jìn)行《等腰三角形》教學(xué)時,為訓(xùn)練學(xué)生的創(chuàng)造性思維,在課堂結(jié)尾時教師可以設(shè)置這樣一個懸念式問題:為什么等腰三角形會三線合一,讓學(xué)生對其進(jìn)行分析和研究,從而為下一節(jié)課《等邊三角形》做鋪墊,引導(dǎo)他們發(fā)現(xiàn)等邊三角形是最為特殊的等腰三角形,激發(fā)學(xué)習(xí)動力。

  2.3運(yùn)用討論式結(jié)尾,訓(xùn)練思維的求異性:初中生對于新數(shù)學(xué)知識的學(xué)習(xí)與認(rèn)識,往往是由區(qū)別它們的性質(zhì)開始,所以,求異思維在初中數(shù)學(xué)教學(xué)中十分重要。同時,培養(yǎng)它們的求異思維也是初中數(shù)學(xué)教學(xué)的主要目標(biāo)之一。求異思維(DivergentThinking),又稱輻射思維、放射思維、擴(kuò)散思維或發(fā)散思維,是指大腦在思維時呈現(xiàn)的一種擴(kuò)散狀態(tài)的思維模式,它表現(xiàn)為思維視野廣闊,思維呈現(xiàn)出多維發(fā)散狀。如“一題多解”、“一事多寫”、“一物多用”等方式,培養(yǎng)發(fā)散思維能力。不少心理學(xué)家認(rèn)為,發(fā)散思維是創(chuàng)造性思維的最主要的特點,是測定創(chuàng)造力的主要標(biāo)志之一。為訓(xùn)練學(xué)生的求異思維,初中數(shù)學(xué)教師可以運(yùn)用討論式的課堂結(jié)尾,讓他們對某一數(shù)學(xué)問題進(jìn)行探討,通過互相討論,彼此分享自己的看法與觀點,然后進(jìn)行比較和鑒別,發(fā)現(xiàn)數(shù)學(xué)知識的不同點與相同點,從而認(rèn)識正確認(rèn)識到數(shù)學(xué)知識的多元化,訓(xùn)練學(xué)生的求異思維。例如,在進(jìn)行《正方形》教學(xué)時,針對課堂結(jié)尾,教師為培養(yǎng)學(xué)生的.求異思維,可以讓他們根據(jù)本節(jié)課的具體教學(xué)內(nèi)容,從定義、性質(zhì)和判定等方面,討論正方形、菱形和矩形之間異同,促使學(xué)生在求異思維中構(gòu)建數(shù)學(xué)知識的縱向聯(lián)系與橫向聯(lián)系,加強(qiáng)對數(shù)學(xué)知識點的理解。

  2.4運(yùn)用練習(xí)式結(jié)尾,訓(xùn)練思維的系統(tǒng)性:初中數(shù)學(xué)教師在課堂教學(xué)中運(yùn)用練習(xí)式的結(jié)尾藝術(shù),指的是在課堂臨近結(jié)尾時,教師給學(xué)生布置一些練習(xí)作業(yè),通過練習(xí)回顧和訓(xùn)練本節(jié)課的主要教學(xué)內(nèi)容,從而訓(xùn)練他們的系統(tǒng)性思維。學(xué)生通過對練習(xí)題的分析和解決,可以使本節(jié)知識掌握的更加牢固和更深層次的理解,從而養(yǎng)成熟練的解題技巧;通過有效的課堂練習(xí),可以檢測學(xué)生對數(shù)學(xué)知識的掌握和運(yùn)用情況,考察學(xué)生的數(shù)學(xué)學(xué)習(xí)能力和知識應(yīng)用水平。例如,在進(jìn)行《一次函數(shù)》中“函數(shù)的圖象”教學(xué)時,針對課堂結(jié)尾,教師可以給學(xué)生布置一些課堂練習(xí)題,像:y=2x+3、y=7x-4和7=1/4x+8等,讓他們畫出這些一次函數(shù)的圖像,以此來檢測學(xué)生對知識的掌握與使用情況,促使他們數(shù)學(xué)知識學(xué)習(xí)的更加整體,訓(xùn)練學(xué)生的系統(tǒng)性思維。

  3、總結(jié)

  總之,在初中數(shù)學(xué)課堂教學(xué)中,結(jié)尾環(huán)節(jié)十分重要,許多初入課堂的教師講課結(jié)束得太過突然,對結(jié)尾不夠重視,有的虎頭蛇尾、草草結(jié)尾,有的拖堂、拖泥帶水啰嗦式的結(jié)尾,降低教學(xué)效果。他們的結(jié)束方法不夠平順,缺乏修飾。正確地說,他們沒有結(jié)尾,只是突然而急驟地停止。這種方式造成的效果令人感到不愉快,也顯示教師本人是個十足的外行。教師在具體的教學(xué)實踐中對于結(jié)尾藝術(shù)應(yīng)該給予特別關(guān)照,充分利用課堂結(jié)尾,幫助學(xué)生鞏固數(shù)學(xué)知識,加強(qiáng)對數(shù)學(xué)知識的理解與記憶,為下節(jié)課做好鋪墊工作,從而提升學(xué)生的學(xué)習(xí)效率。

數(shù)學(xué)初中知識點總結(jié)8

  [關(guān)鍵詞]課堂小結(jié);初中數(shù)學(xué);理解提升

  德國作家、科學(xué)家利希頓堡說過:“當(dāng)你還不能對自己說今天學(xué)到了什么東西時,你就不要去睡覺。 ”這句話從側(cè)面闡明了總結(jié)對于知識學(xué)習(xí)的重要性。課堂小結(jié)作為一項提煉收獲、分析問題、概括經(jīng)驗的學(xué)習(xí)手段,對于初中數(shù)學(xué)課堂教學(xué)具有很好的促進(jìn)作用。這是因為初中數(shù)學(xué)與其他學(xué)科相比,有更強(qiáng)的思維性、邏輯性和綜合性,這使得初中數(shù)學(xué)的知識體系、概念內(nèi)容更龐雜,更不容易消化吸收,這就需要我們尋求一項有效的手段來將這些知識進(jìn)行聚合、鞏固、提升,而課堂小結(jié)恰恰解決了這一問題。課堂教學(xué)形式多變、內(nèi)涵豐富,并非時時刻刻都應(yīng)該總結(jié)、都需要總結(jié),課堂小結(jié)只有在合適的時間運(yùn)用,才能發(fā)揮效果。筆者正是基于此,對初中數(shù)學(xué)如何有效運(yùn)用課堂小結(jié)進(jìn)行策略探析,通過對初中數(shù)學(xué)教學(xué)規(guī)律、學(xué)生數(shù)學(xué)知識吸收特點進(jìn)行整理、分析后,提出如下四點建議。

  在知識講解之后小結(jié),掌握新

  知強(qiáng)調(diào)重點

  我們在進(jìn)行新知識的課堂教學(xué)時,一堂課里一般會有多個小知識點,我們在帶入新知識的同時,還會引入一些老問題,幫助學(xué)生進(jìn)行對比、區(qū)分,增進(jìn)理解。但這同時也加大了課堂容量,容易讓學(xué)生在知識吸收中出現(xiàn)遺漏、錯讀。所以,在新知識教學(xué)完成之后進(jìn)行課堂小結(jié),幫助學(xué)生將所學(xué)的新知識進(jìn)行統(tǒng)一規(guī)整,能夠很好地幫助學(xué)生理清思路,明確知識重點,快速掌握新知。在對新知識進(jìn)行課堂小結(jié)時,我們講究全而美,即小結(jié)涵蓋的內(nèi)容要全,要將本節(jié)課的所有知識都涵蓋進(jìn)來;美是指總結(jié)的語言要生動,要將新知識的特點用趣味的語言表現(xiàn)出來,讓學(xué)生更容易理解,更方便記憶。

  例如,教學(xué)蘇教版初中數(shù)學(xué)“合并同類項”這一部分內(nèi)容時,筆者進(jìn)行了這樣的小結(jié):“同學(xué)們,我們今天學(xué)習(xí)了合并同類項,合并同類項我們要掌握兩個關(guān)鍵,一是什么是同類項,另一個是怎么合并,你們說對不對?”筆者先拋出一個問題,學(xué)生回答:“對。 ”“那你們誰能告訴老師答案呢?”筆者繼續(xù)問,學(xué)生思考后回答:“老師,是同類項的話,首先所含字母要相同!薄巴粋字母的指數(shù)也必須一樣!绷硪粋學(xué)生回答。 “合并同類項就是把同類項的系數(shù)加起來。 ”還有學(xué)生補(bǔ)充。筆者笑著說:“同學(xué)們說得很好呢,其實合并同類項只要掌握兩同、兩無關(guān),常數(shù)也是同類項就可以了。兩同就是字母同、指數(shù)同,兩無關(guān)是字母順序無關(guān)、系數(shù)大小無關(guān)。 ”像這樣,通過教師引導(dǎo)學(xué)生思考,再進(jìn)行總結(jié),能夠有效幫助學(xué)生了解新知識的重點,促進(jìn)學(xué)生理解掌握。

  在答疑解惑之后小結(jié),突出要

  點指明問題

  學(xué)必有疑,學(xué)生在數(shù)學(xué)學(xué)習(xí)過程中,一定會碰到一些麻煩,提出一些問題。對于學(xué)生提出的疑問,教師都會認(rèn)真講解、仔細(xì)分析,直到學(xué)生明白為止,但有時候會出現(xiàn)同一知識點學(xué)生聽了忘、反復(fù)問的現(xiàn)象,出現(xiàn)這種情況的原因是學(xué)生對于教師的講解沒理解透徹。而如何才能讓學(xué)生參透呢?教師在幫學(xué)生答疑解惑之后的課堂小結(jié),很多時候剛好能起到這樣的點撥作用。教師在答疑解惑之后的課堂小結(jié)要注意兩個問題:一是小結(jié)要指明問題,就學(xué)生所出現(xiàn)的問題進(jìn)行分析,讓學(xué)生根據(jù)自身情況認(rèn)領(lǐng)問題,以便對癥下藥;二是小結(jié)要注重方法的啟發(fā),針對學(xué)生的問題闡明解決辦法,引導(dǎo)學(xué)生領(lǐng)會方法,運(yùn)用原則,破獲解題密碼,得到新的收獲與啟發(fā)。

  例如,教學(xué)蘇教版初中數(shù)學(xué)“一元一次方程”時,有一位學(xué)生向筆者提出疑問:“老師,這道題目:+=2,我算了好幾遍,答案都是—1,跟老師給的答案不一樣,這是為什么呢?”筆者稍稍看了學(xué)生的解題步驟后發(fā)現(xiàn),原來這個學(xué)生犯了解一元一次方程非常常見的錯誤,即他去分母的時候,沒有分母的項忘記乘相同的系數(shù)了。于是筆者在向他講解完之后進(jìn)行小結(jié):“同學(xué)們,我們在給一元一次方程去分母的時候,要注意什么呢?方程兩邊要同時乘以所有分母的最小公倍數(shù),只有這么做,方程的大小才會保持不變。一旦你漏乘了誰,特別是沒有分母的項,那就不公平了,等式大小就發(fā)生了改變,那么答案肯定就錯了。 ”像這樣,根據(jù)學(xué)生的問題,直指關(guān)鍵,幫助學(xué)生答疑解惑,能促進(jìn)學(xué)生吃一塹長一智,規(guī)避錯誤,更加進(jìn)步。

  在遷移發(fā)散之后小結(jié),明確關(guān)

  系梳理聯(lián)系

  數(shù)學(xué)知識盤絲錯節(jié),各個知識點之間的聯(lián)系十分多樣、緊密,因此要幫助學(xué)生真正深入掌握知識,明晰知識點間的靈活運(yùn)用,就必須適當(dāng)對這些知識進(jìn)行遷移發(fā)散。遷移發(fā)散是一種舉一反三的教學(xué)手段,通過一個數(shù)學(xué)概念遷移出舊識新知,通過一種方法發(fā)散出多種不同形式。遷移發(fā)散是數(shù)學(xué)萬紫千紅總是春的集中體現(xiàn),是數(shù)學(xué)學(xué)習(xí)的較高階段,同時也是學(xué)生較難理解掌握的部分,因此,在遷移發(fā)散之后進(jìn)行課堂小結(jié)很有必要。教師要注意通過小結(jié)引導(dǎo)學(xué)生明確各個知識點之間的因果先后關(guān)系,梳理多個知識點之間聯(lián)系的條件和影響因素,讓學(xué)生通過小結(jié)可以在腦中形成更為準(zhǔn)確的印象。

  例如,教學(xué)蘇教版初中數(shù)學(xué)“梯形中位線”這部分內(nèi)容時,筆者遷移出三角形中位線的相關(guān)概念,引導(dǎo)學(xué)生進(jìn)行比對、思考、拓展。遷移發(fā)散之后,筆者做了如下總結(jié):“同學(xué)們,通過遷移我們可以得出,三角形中位線是梯形中位線的一種特殊形式,所有梯形通過割補(bǔ)平移都可以轉(zhuǎn)換成一個三角形。另外,通過式子的`轉(zhuǎn)化我們知道,梯形的面積可以看做是中位線乘以梯形高的積,那么作為梯形中位線的特例,三角形的面積同樣也可以是中位線與第三邊上的高的乘積。 ”像這樣,在遷移之后進(jìn)行小結(jié),明確了知識之間的聯(lián)系,能幫助學(xué)生進(jìn)行梳理歸納,有助于學(xué)生理解掌握。

  在整體復(fù)習(xí)之后小結(jié),高屋建

  瓴全面吸收

  復(fù)習(xí)是數(shù)學(xué)學(xué)習(xí)中非常重要的一個環(huán)節(jié),是對學(xué)生一段時間以來學(xué)習(xí)的回顧。整體復(fù)習(xí)一般具有復(fù)習(xí)量大、知識跨度大、知識整合度高等特點,一堂整體復(fù)習(xí)課下來,學(xué)生需要重新理順和溫習(xí)的知識點非常多,初中生注意力容易分散,對于過于繁多的知識概念會出現(xiàn)“消化不良”的現(xiàn)象。整體復(fù)習(xí)之后的課堂小結(jié),是對整個復(fù)習(xí)過程的凝練、概括,起到高屋建瓴的作用,能幫助學(xué)生更為系統(tǒng)、全面地知悉內(nèi)容、吸收知識。

數(shù)學(xué)初中知識點總結(jié)9

  一、平移變換:

  1、概念:在平面內(nèi),將一個圖形沿著某個方向移動一定的距離,這樣的圖形運(yùn)動叫做平移。

  2、性質(zhì):

 。1)平移前后圖形全等;

 。2)對應(yīng)點連線平行或在同一直線上且相等。

  3、平移的作圖步驟和方法:

  (1)分清題目要求,確定平移的方向和平移的距離。

 。2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點。

 。3)沿一定的方向,按一定的距離平移各個關(guān)健點。

 。4)連接所作的各個關(guān)鍵點,并標(biāo)上相應(yīng)的字母。

 。5)寫出結(jié)論。

  二、旋轉(zhuǎn)變換:

  1、概念:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動叫做旋轉(zhuǎn)。

  說明:

 。1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的'角度所決定的;

 。2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動。

 。3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

 。4)旋轉(zhuǎn)過程靜止時,圖形上一個點的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

  2、性質(zhì):

 。1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;

 。2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

 。3)旋轉(zhuǎn)前、后的圖形全等。

  3、旋轉(zhuǎn)作圖的步驟和方法:

 。1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

 。2)找出圖形的關(guān)鍵點;

 。3)將圖形的關(guān)鍵點和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點的對應(yīng)點;

 。4)按原圖形順次連接這些對應(yīng)點,所得到的圖形就是旋轉(zhuǎn)后的圖形。

  說明:在旋轉(zhuǎn)作圖時,一對對應(yīng)點與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

  4、常見考法

  (1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

 。2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計一些題目。

  誤區(qū)提醒

 。1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

 。2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

數(shù)學(xué)初中知識點總結(jié)10

  課題

  3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)

  教學(xué)目標(biāo)

  1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會用待定系數(shù)法確定函數(shù)的解析式

  教學(xué)重點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學(xué)難點

  掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)

  教學(xué)方法

  講練結(jié)合法

  教學(xué)過程

 。↖)知識要點(見下表:)

  第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數(shù),在,-單調(diào)性k0時,在,0,k0時為增函數(shù)0,上為減函數(shù)k0時,為增函數(shù)b上為減函數(shù)2ak0時為減函數(shù)k0時,在,0,k0時,為減函數(shù)0,上為增函數(shù)ba0時,在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時奇函數(shù)b=0時偶函數(shù)a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax

  第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)

  2a2a4a2拋物線與x軸交點坐標(biāo)(m,0),(n,0)(II)例題講解

  例1、求滿足下列條件的.二次函數(shù)的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的頂點為P(1,5)且過點Q(3,3)

  (3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,

  解:(1)設(shè)yax2bxc(a0),將A、B、C三點坐標(biāo)分別代入,可得方程組為

  abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點坐標(biāo)代入,即a(31)253,得

  a2,故y2(x1)252x24x3

 。3)∵拋物線對稱軸為x2;

  ∴拋物線與x軸的兩個交點A、B應(yīng)關(guān)于x2對稱;∴由題設(shè)條件可得兩個交點坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1

  ∴所求二次函數(shù)為yx24x2,

  2,0)、B(222,0)

  2)(x22)a(x2)22a,將(1,7)

  5),例2:二次函數(shù)的圖像過點(0,8),(1,(4,0)

 。1)求函數(shù)圖像的頂點坐標(biāo)、對稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4

  例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值

  113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x

  224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時,函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11

數(shù)學(xué)初中知識點總結(jié)11

  1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等

  5過一點有且只有一條直線和已知直線垂直

  6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊

  17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余

  19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等

  22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

  26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合

  30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°

  34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形

  37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半

  39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形

  43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°

  50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°

  52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

  55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等

  62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等

  65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71定理1關(guān)于中心對稱的兩個圖形是全等的

  72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

  76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

  78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79推論1經(jīng)過梯形一腰的中點與底平行的`直線,必平分另一腰80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半

  L=(a+b)÷2S=L×h

  83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),

  那么(a+c+…+m)/(b+d+…+n)=a/b

  86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長的比等于相似比98性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點的距離等于定長的點的集合

  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103圓的外部可以看作是圓心的距離大于半徑的點的集合104同圓或等圓的半徑相等

  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

  127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等于它所夾的弧對的圓周角

  129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r

  ②兩圓外切d=R+r

 、蹆蓤A相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)

  136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  (n2)180139正n邊形的每個內(nèi)角都等于

  n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  pnrn141正n邊形的面積Sn=p表示正n邊形的周長

  2142正三角形面積

  32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,

  k(n2)180360化為(n-2)(k-2)=4因此

  n144弧長計算公式:L=

  nR180nR2LR145扇形面積公式:S扇形==

  3602146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)

  公式分類及公式表達(dá)式

  乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解

  bb24ac2a

  根與系數(shù)的關(guān)系:X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式

  b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根b2-4ac

數(shù)學(xué)初中知識點總結(jié)12

  1、正數(shù)和負(fù)數(shù)的有關(guān)概念

  (1)正數(shù):

  比0大的數(shù)叫做正數(shù);

  負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

  0既不是正數(shù),也不是負(fù)數(shù)。

  (2)正數(shù)和負(fù)數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關(guān)數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負(fù)數(shù)的點在原點的左側(cè)。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負(fù)數(shù)。

  4、任何數(shù)的絕對值是非負(fù)數(shù)。

  最小的.正整數(shù)是1,最大的負(fù)整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負(fù)數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和。

  (2)符號相反的兩數(shù)相加:當(dāng)兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當(dāng)兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零。

  (3)一個數(shù)同零相加,仍得這個數(shù)。

  加法的交換律:a+b=b+a

  加法的結(jié)合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:

  減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡的形式,負(fù)數(shù)前面的加號可以省略不寫。

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和!

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負(fù),再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為0時,積的符號由負(fù)因數(shù)的個數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);

  當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):

  乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

  初中數(shù)學(xué)知識點總結(jié)2平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:

 、僭谕黄矫

 、趦蓷l數(shù)軸

  ③互相垂直

 、茉c重合

  三個規(guī)定:

  ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向。

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成。

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成。

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

數(shù)學(xué)初中知識點總結(jié)13

  1.相似三角形定義:

  對應(yīng)角相等,對應(yīng)邊成比例的三角形,叫做相似三角形。

  2.相似三角形的表示方法:用符號"∽"表示,讀作"相似于"。

  3.相似三角形的相似比:

  相似三角形的對應(yīng)邊的比叫做相似比。

  4.相似三角形的預(yù)備定理:

  平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所截成的三角形與原三角形相似。

  從表中可以看出只要將全等三角形判定定理中的'"對應(yīng)邊相等"的條件改為"對應(yīng)邊

  成比例"就可得到相似三角形的判定定理,這就是我們數(shù)學(xué)中的用類比的方法,在舊知識的基礎(chǔ)上找出新知識并從中探究新知識掌握的方法。

  6.直角三角形相似:

  (1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似。

  (2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似。

  7.相似三角形的性質(zhì)定理:

  (1)相似三角形的對應(yīng)角相等。

  (2)相似三角形的對應(yīng)邊成比例。

  (3)相似三角形的對應(yīng)高線的比,對應(yīng)中線的比和對應(yīng)角平分線的比都等于相似比。

  (4)相似三角形的周長比等于相似比。

  (5)相似三角形的面積比等于相似比的平方。

  8. 相似三角形的傳遞性

  如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2

數(shù)學(xué)初中知識點總結(jié)14

  知識要點:數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復(fù)數(shù)。

  數(shù)列表示方法

  如果數(shù)列{an}的第n項與序號n之間的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的通項公式。如an=(-1)^(n+1)+1。

  數(shù)列通項公式的特點:(1)有些數(shù)列的通項公式可以有不同形式,即不唯一。(2)有些數(shù)列沒有通項公式

  如果數(shù)列{an}的第n項與它前一項或幾項的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。如an=2a(n-1)+1 (n>;1)

  數(shù)列遞推公式的特點:(1)有些數(shù)列的遞推公式可以有不同形式,即不唯一。(2)有些數(shù)列沒有遞推公式

  有遞推公式不一定有通項公式

  知識要領(lǐng)總結(jié):數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。

  初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系

  下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

  平面直角坐標(biāo)系

  平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

  水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

  平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向

 、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

  ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

  初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成

  對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

  平面直角坐標(biāo)系的構(gòu)成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做y軸或縱軸,_軸或y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點o稱為直角坐標(biāo)系的原點。

  通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

  初中數(shù)學(xué)知識點:點的.坐標(biāo)的性質(zhì)

  下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

  點的坐標(biāo)的性質(zhì)

  建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。

  對于平面內(nèi)任意一點c,過點c分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)點a,b分別叫做點c的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點c的坐標(biāo)。

  一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

  希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。

  初中數(shù)學(xué)知識點:因式分解的一般步驟

  關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運(yùn)用公式法;若是四項或四項以上的多項式,通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。

  初中數(shù)學(xué)知識點:因式分解

  下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

  因式分解與整式乘法的關(guān)系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

  ①確定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 、俨粶(zhǔn)丟字母

 、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)

 、垭p重括號化成單括號

 、芙Y(jié)果按數(shù)單字母單項式多項式順序排列

 、菹嗤蚴綄懗蓛绲男问

 、奘醉椮(fù)號放括號外

  ⑦括號內(nèi)同類項合并。

  通過上面對因式分解內(nèi)容知識的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

數(shù)學(xué)初中知識點總結(jié)15

  一、基本知識

 、、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù)

  有理數(shù):

 、僬麛(shù)→正整數(shù)/0/負(fù)整數(shù)

 、诜?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

  數(shù)軸:

 、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

 、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。

 、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。

  ④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對值:

 、僭跀(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。

 、谡龜(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0、兩個負(fù)數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運(yùn)算:

  加法:

 、偻栂嗉,取相同的符號,把絕對值相加。

  ②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 、垡粋數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。

 、谌魏螖(shù)與0相乘得0、

 、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。

  除法:

 、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。

  ②0不能作除數(shù)。

  乘方:求N個相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù)

  無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

  ①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。

 、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

 、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

  ④求一個數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

  ①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

 、矍笠粋數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

  ②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:

 、偎帜赶嗤,并且相同字母的指數(shù)也相同的項,叫做同類項。

 、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴。

 、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

  ①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運(yùn)算:加減運(yùn)算時,如果遇到括號先去括號,再合并同類項。

  冪的運(yùn)算:AM+AN=A(M+N)

 。ˋM)N=AMN

 。ˋ/B)N=AN/BN除法一樣。

  整式的乘法:

 、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

  ②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

 、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

  ①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0、

  ②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運(yùn)算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜阜质较嗉訙p,分母不變,把分子相加減。

  ②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:

 、俜帜钢泻形粗獢(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

  ①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1、

  二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的'方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。

  一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點式(—b/2a,4ac—b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

 。1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

 。3)公式法

  這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={—b+√[b2—4ac)]}/2a,X2={—b—√[b2—4ac)]}/2a

  3)解一元二次方程的步驟:

 。1)配方法的步驟:

  先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式

 。2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

 。3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c

  4)韋達(dá)定理

  利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a,也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2—4ac,這里可以分為3種情況:

  I當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根;

  II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;

  III當(dāng)△B,A+C>B+C在不等式中,如果減去同一個數(shù)(或加上一個負(fù)數(shù)),不等式符號不改向;例如:A>B,A—C>B—C在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負(fù)數(shù),不等號改向;例如:A>B,A*C系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。

 、谡壤瘮(shù)Y=KX的圖象是經(jīng)過原點的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時,則經(jīng)124象限;當(dāng)K〉0,B〈0時,則經(jīng)134象限;當(dāng)K〉0,B〉0時,則經(jīng)123象限。

 、墚(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。

  ㈡空間與圖形A、圖形的認(rèn)識1、點,線,面

  點,線,面:

  ①圖形是由點,線,面構(gòu)成的。

 、诿媾c面相交得線,線與線相交得點。

 、埸c動成線,線動成面,面動成體。

  展開與折疊:

  ①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。

 、贜棱柱就是底面圖形有N條邊的棱柱。

  截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:

 、儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個扇形。

  2、角

  線:

  ①線段有兩個端點。

  ②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

  ③將線段的兩端無限延長就形成了直線。直線沒有端點。

  ④經(jīng)過兩點有且只有一條直線。

  比較長短:

 、賰牲c之間的所有連線中,線段最短。

 、趦牲c之間線段的長度,叫做這兩點之間的距離。

  角的度量與表示:

 、俳怯蓛蓷l具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

 、谝欢鹊1/60是一分,一分的1/60是一秒。

  角的比較:

  ①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。

 、谝粭l射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。

  ③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

  平行:

 、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。

 、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。

  ③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

 、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。

 、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。

 、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。

  定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出

  現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

  性質(zhì)定理:角平分線上的點到該角兩邊的距離相等

  判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:1、對角線相等的菱形2、鄰邊相等的矩形

  二、基本定理

  1、過兩點有且只有一條直線

  2、兩點之間線段最短

  3、同角或等角的補(bǔ)角相等

  4、同角或等角的余角相等

  5、過一點有且只有一條直線和已知直線垂直

  6、直線外一點與直線上各點連接的所有線段中,垂線段最短

  7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理三角形兩邊的和大于第三邊

  16、推論三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°

  18、推論1直角三角形的兩個銳角互余

  19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和

  20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角

  21、全等三角形的對應(yīng)邊、對應(yīng)角相等

  22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  23、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

  24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

  26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  27、定理1在角的平分線上的點到這個角的兩邊的距離相等

  28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點的集合

  30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)

  31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

  32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  33、推論3等邊三角形的各角都相等,并且每一個角都等于60°

  34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  35、推論1三個角都相等的三角形是等邊三角形

  36、推論2有一個角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  42、定理1關(guān)于某條直線對稱的兩個圖形是全等形

  43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形

  48、定理四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n—2)×180°

  51、推論任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1平行四邊形的對角相等

  53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等

  54、推論夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1矩形的四個角都是直角

  61、矩形性質(zhì)定理2矩形的對角線相等

  62、矩形判定定理1有三個角是直角的四邊形是矩形

  63、矩形判定定理2對角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1菱形的四條邊都相等

  65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角

  66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1四邊都相等的四邊形是菱形

  68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  71、定理1關(guān)于中心對稱的兩個圖形是全等的

  72、定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分

  73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱

  74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等

  75、等腰梯形的兩條對角線相等

  76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

  77、對角線相等的梯形是等腰梯形

  78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰

  80、推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),那么(a+c++m)/(b+d++n)=a/b

  86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例

  87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例

  88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例

  90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

  93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)

  94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)

  95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似

  96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2相似三角形周長的比等于相似比

  98、性質(zhì)定理3相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101、圓是定點的距離等于定長的點的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點的集合

  104、同圓或等圓的半徑相等

  105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

  108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理不在同一直線上的三點確定一個圓。

  110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  112、推論2圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對稱中心的中心對稱圖形

  114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等

  116、定理一條弧所對的圓周角等于它所對的圓心角的一半

  117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

  120、定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角

  121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr

  122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑

  124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點

  125、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心

  126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對邊的和相等

  128、弦切角定理弦切角等于它所夾的弧對的圓周角

  129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

  130、相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等

  131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

  132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

  133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

  134、如果兩個圓相切,那么切點一定在連心線上

  135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R—rdR+r(Rr)④兩圓內(nèi)切d=R—r(Rr)⑤兩圓內(nèi)含dR—r(Rr)

  136、定理相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理把圓分成n(n≥3):

  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形

 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

  138、定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓

  139、正n邊形的每個內(nèi)角都等于(n—2)×180°/n

  140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

  141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長

  142、正三角形面積√3a/4a表示邊長

  143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4

  144、弧長計算公式:L=n兀R/180

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長=d—(R—r)外公切線長=d—(R+r)

  一、常用數(shù)學(xué)公式

  公式分類公式表達(dá)式乘法與因式分解a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b|

  |a|≤b—b≤a≤b|a—b|≥|a|—|b|—|a|≤a≤|a|

  一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a

  根與系數(shù)的關(guān)系X1+X2=—b/aX1*X2=c/a注:韋達(dá)定理判別式

  b2—4ac=0注:方程有兩個相等的實根b2—4ac>0注:方程有兩個不等的實根

  b2—4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

  8、面積法

  平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運(yùn)用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。

  用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。

  9、幾何變換法

  在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。

  10、客觀性題的解題方法

  選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。

  填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。

 。1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。

  (2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。

 。3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。

  (4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。

 。5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。

 。6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。

【數(shù)學(xué)初中知識點總結(jié)】相關(guān)文章:

初中數(shù)學(xué)圓的知識點總結(jié)12-05

數(shù)學(xué)初中知識點總結(jié)06-10

初中數(shù)學(xué)函數(shù)知識點總結(jié)06-14

【經(jīng)典】數(shù)學(xué)初中知識點總結(jié)07-16

初中數(shù)學(xué)必備知識點總結(jié)03-01

初中數(shù)學(xué)函數(shù)知識點總結(jié)11-24

初中數(shù)學(xué)幾何知識點總結(jié)11-05

初中數(shù)學(xué)知識點總結(jié)(精選)06-16

初中數(shù)學(xué)知識點總結(jié)07-15

初中數(shù)學(xué)知識點歸納總結(jié)12-02