初中數(shù)學(xué)知識點總結(jié)15篇
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性結(jié)論的書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯誤,提高工作效益,快快來寫一份總結(jié)吧?偨Y(jié)怎么寫才是正確的呢?下面是小編幫大家整理的初中數(shù)學(xué)知識點總結(jié),僅供參考,希望能夠幫助到大家。
初中數(shù)學(xué)知識點總結(jié)1
知識點總結(jié)
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
(1)平行四邊形的對邊平行且相等;
(2)平行四邊形的鄰角互補,對角相等;
。3)平行四邊形的對角線互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個四邊形是平行四邊形是個重點,下面就對平行四邊形的五種判定方法,進行劃分:
第一類:與四邊形的對邊有關(guān)
。1)兩組對邊分別平行的四邊形是平行四邊形;
。2)兩組對邊分別相等的四邊形是平行四邊形;
。3)一組對邊平行且相等的四邊形是平行四邊形;
第二類:與四邊形的對角有關(guān)
。4)兩組對角分別相等的四邊形是平行四邊形;
第三類:與四邊形的對角線有關(guān)
。5)對角線互相平分的四邊形是平行四邊形
常見考法
。1)利用平行四邊形的`性質(zhì),求角度、線段長、周長;
。2)求平行四邊形某邊的取值范圍;
(3)考查一些綜合計算問題;
。4)利用平行四邊形性質(zhì)證明角相等、線段相等和直線平行;
。5)利用判定定理證明四邊形是平行四邊形。
誤區(qū)提醒
。1)平行四邊形的性質(zhì)較多,易把對角線互相平分,錯記成對角線相等;
。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個等腰梯形。
初中數(shù)學(xué)知識點總結(jié)2
第十一章三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
2.三邊關(guān)系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.
3.高:從三角形的一個頂點向它的對邊所在直線作,頂點和間的線段叫做三角形的高.4.中線:在三角形中,連接一個頂點和它對邊的線段叫做三角形的中線.
5.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點和之間的線段叫做三角形的角平分線.
6.三角形的穩(wěn)定性:三角形的形狀是,三角形的這個性質(zhì)叫三角形的穩(wěn)定性.
7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內(nèi)角:多邊形兩邊組成的角叫做它的內(nèi)角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的線組成的角叫做多邊形的外角.
10.多邊形的對角線:連接多邊形的兩個頂點的線段,叫做多邊形的對角線.
11.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質(zhì):
⑴三角形的內(nèi)角和:三角形的內(nèi)角和為度。
⑵三角形外角的性質(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的的和.
性質(zhì)2:三角形的一個外角大于任何一個和它的內(nèi)角.
、嵌噙呅蝺(nèi)角和公式:n邊形的內(nèi)角和等于。
學(xué)無慮課后輔導(dǎo)中心編制
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.
⑸多邊形對角線的條數(shù):
、購膎邊形的一個頂點出發(fā)可以引條對角線,把多邊形分成個三角形.
、趎邊形共有條對角線.
第十二章全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
⑴全等形:能夠完全的兩個圖形叫做全等形.
、迫热切危耗軌蛲耆膬蓚三角形叫做全等三角形.
⑶對應(yīng)頂點:全等三角形中互相的頂點叫做對應(yīng)頂點.
、葘(yīng)邊:全等三角形中互相的邊叫做對應(yīng)邊.
、蓪(yīng)角:全等三角形中互相的角叫做對應(yīng)角.
2.基本性質(zhì):
⑴三角形的穩(wěn)定性:三角形三邊的確定了,這個三角形的形狀、大小就全確定,這個性質(zhì)叫做三角形的穩(wěn)定性.
、迫热切蔚男再|(zhì):全等三角形的相等,對應(yīng)角相等.
3.全等三角形的判定定理:
⑴邊邊邊(SSS):。
、七吔沁叄⊿AS):。
⑶角邊角(ASA):。
⑷角角邊(AAS):。
⑸斜邊、直角邊(HL):。
4.角平分線:⑴畫法:⑵性質(zhì)定理:角平分線上的`點到角的兩邊的距離.⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點在角的上.
5.證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)⑵根據(jù)題意,畫出圖形,并用數(shù)字符號表示已知和求證.⑶經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程.
第十三章軸對稱
一、知識框架:
二、知識概念:
1.基本概念:
、泡S對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相,這個圖形就叫做軸對稱圖形.
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱.⑶線段的垂直平分線:經(jīng)過線段中點并且這條線段的直線,叫做這條線段的垂直平分線.
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:都相等的三角形叫做等邊三角形.2.基本性質(zhì):⑴對稱的性質(zhì):①不管是軸對稱圖形還是兩個圖形關(guān)于某條直線對稱,對稱軸都是任何一對對應(yīng)點所連線段的垂直平分線.②對稱的圖形都全等.⑵線段垂直平分線的性質(zhì):①線段垂直平分線上的點與這條線段的距離相等.②與一條線段兩個端點距離相等的點在這條線段的上.⑶關(guān)于坐標(biāo)軸對稱的點的坐標(biāo)性質(zhì)①點P(x,y)關(guān)于x軸對稱的點的坐標(biāo)為P"(,).②點P(x,y)關(guān)于y軸對稱的點的坐標(biāo)為P"(,).⑷等腰三角形的性質(zhì):
、俚妊切蝺裳.
②等腰三角形兩底角相等(等邊對等角).
、鄣妊切蔚、,相互重合.④等腰三角形是圖形,對稱軸是三線合一(1條).⑸等邊三角形的性質(zhì):
①等邊三角形三邊都相等.
、诘冗吶切稳齻內(nèi)角都相等,都等于度。③等邊三角形每條邊上都存在三線合一.
、艿冗吶切问禽S對稱圖形,對稱軸是三線合一(3條).3.基本判定:
、诺妊切蔚呐卸ǎ
、傧嗟鹊娜切问堑妊切.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也(等角對等邊).
⑵等邊三角形的判定:
、俣枷嗟鹊娜切问堑冗吶切.②三個角都相等的三角形是三角形.
③有一個角是度。的等腰三角形是等邊三角形.
4.基本方法:
、抛鲆阎本的垂線:
⑵做已知線段的垂直平分線:
、亲鲗ΨQ軸:連接兩個對應(yīng)點,作所連線段的垂直平分線.
⑷作已知圖形關(guān)于某直線的對稱圖形:
、稍谥本上做一點,使它到該直線同側(cè)的兩個已知點的距離之和最短.
第十四章整式的乘除與分解因式
一、知識框架:
整式乘法乘法法則整式除法因式分解
二、知識概念:
基本運算:⑴同底數(shù)冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。
2.整式的乘法:⑴單項式單項式:系數(shù),同字母,不同字母為積的因式.⑵單項式多項式:。⑶多項式多項式:.
3.計算公式:
、牌椒讲罟剑篴babab
222222⑵完全平方公式:aba2abb;aba2abb
224.整式的除法:
、磐讛(shù)冪的除法:aaamnmn
⑵單項式單項式:系數(shù),同字母,不同字母作為商的因式.⑶多項式單項式:.⑷多項式多項式:用豎式.
5.因式分解:把一個多項式化成的積的形式,這種變形叫做把這個式子因式分解.
6.因式分解方法:
、盘峁蚴椒ǎ赫页鲎畲蠊蚴.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項法⑸添項法第十五章分式一、知識框架:
二、知識概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質(zhì):分式的分子和分母同時乘以(或除以)同一個不為的整式,分式的值不變.4.約分:把一個分式的分子和分母的(不為1的數(shù))約去,這種變形稱為約分.5.通分:異分母的分式可以化成的分式,這一過程叫做通分.
6.最簡分式:一個分式的分子和分母沒有時,這個分式稱為最簡分式,約分時,一般將一個分式化為最簡分式.7.分式的四則運算:
、磐帜阜质郊訙p法則:同分母的分式相加減,分母,把相加減.用字
母表示
為:。
⑵異分母分式加減法則:異分母的分式相加減,先,化為同分母的分
式,然后再按同分母分式的加減法法則進行計算.用字母表示為:。
、欠质降某朔ǚ▌t:兩個分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。
、确质降某ǚ▌t:兩個分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數(shù)指數(shù)冪:⑴aaam⑵amnmn(m、n是正整數(shù))namn(m、n是正整數(shù))nn⑶abab(n是正整數(shù))n⑷aaanmnmn(a0,m、n是正整數(shù),mn)ana⑸n(n是正整數(shù))bb⑹an1(a0,n是正整數(shù))na9.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.10.分式方程的解法:
、(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;
、(求出未知數(shù)的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數(shù)的取值范圍,可能產(chǎn)生增根).
初中數(shù)學(xué)知識點總結(jié)3
關(guān)鍵詞:數(shù)學(xué);總復(fù)習(xí);初中;方法
中圖分類號:G633。6文獻標(biāo)識碼:B文章編號:1672—1578(20xx)12—0217—01
初中數(shù)學(xué)是義務(wù)教育階段一門主要課程,它是進一步學(xué)習(xí)工作的基礎(chǔ)。因此,進行初三數(shù)學(xué)總復(fù)習(xí),使學(xué)生具有一定的數(shù)學(xué)素質(zhì),合格畢業(yè),對于提高全民族素質(zhì),為培養(yǎng)改革人才奠定基礎(chǔ)是十分必要的。本文將要探討的就是搞好初三數(shù)學(xué)總復(fù)習(xí)的一些體會。
1、明確總復(fù)習(xí)的目的
中考是總結(jié)性的檢驗,考試成績也必然會促使我們認真地總結(jié)檢查自己的教學(xué)工作,改進教學(xué)方法,提高教學(xué)質(zhì)量。因此,中考的需要是初三總復(fù)習(xí)的重要目的,但不是唯一的目的。在復(fù)習(xí)方面要從單純面向升學(xué)的需要,轉(zhuǎn)變?yōu)槊嫦驅(qū)W生終身學(xué)習(xí)的需要。通過初三數(shù)學(xué)總復(fù)習(xí),要使學(xué)生全面而系統(tǒng)地掌握初中數(shù)學(xué)的基礎(chǔ)知識加深理解這些知識,進一步提高運用這些動知識的分析和解決問題的能力,從而大面積地扎扎實實的提高教學(xué)質(zhì)量,為學(xué)生升入高一級學(xué)校打下必要的基礎(chǔ)。
2、在《課標(biāo)》和《考試說明》的指導(dǎo)下開展復(fù)習(xí)工作
"人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上得到不同的發(fā)展"。這是新課程標(biāo)準(zhǔn)努力倡導(dǎo)的目標(biāo)。也是我們總復(fù)習(xí)工作的出發(fā)點。20xx年版的《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》(以下簡稱《課程標(biāo)準(zhǔn)》)以及歷年的《河北省文化課考試說明》(以下簡稱《考試說明》)中所確定的必學(xué)內(nèi)容是要求所有學(xué)生都應(yīng)當(dāng)學(xué)習(xí)的,一定要教好學(xué)好,降低難度、減輕學(xué)生過重的學(xué)習(xí)負擔(dān),正是為了使學(xué)生掌握那些最基本、最重要的內(nèi)容,使絕大多數(shù)同學(xué)能學(xué)得好,增強信心,大面積提高教學(xué)質(zhì)量。另一方面,對學(xué)有余力的同學(xué)也要創(chuàng)造條件,指導(dǎo)他們進一步學(xué)習(xí),充分發(fā)揮他們的數(shù)學(xué)才能,做到既面向全體學(xué)生又因材施教。這一重要的教學(xué)指導(dǎo)思想,也是我們初三數(shù)學(xué)總復(fù)習(xí)必須遵循的方針。
3、從學(xué)生的實際出發(fā),有序地進行初三數(shù)學(xué)總復(fù)習(xí)
教學(xué)是師生雙方的.共同活動,教師的教是為學(xué)生積極主動地學(xué)。初三總復(fù)習(xí)時間短,內(nèi)容多,要想取得較好的復(fù)習(xí)效果,除教師鉆研《課標(biāo)》與《考試說明》,通曉教材,突出重點之外,還要調(diào)查研究、了解學(xué)生、明確難點,從學(xué)生實際出發(fā),進行復(fù)習(xí)。否則,課的起點高了,學(xué)生接受有困難,起點低了,講得太容易了,學(xué)生聽起來乏味厭煩,使復(fù)習(xí)課不能有的放矢,對癥下藥、因材施教。因此,要了解學(xué)生的思想狀況,復(fù)習(xí)的學(xué)習(xí)態(tài)度和方法;要了解學(xué)生對哪些知識是掌握提比較好的,哪些知識理解得不夠深透,還有哪些知識是應(yīng)當(dāng)補缺的,哪些知識是普遍性的問題,哪些知識是個別性問題,充分估計學(xué)生的實際水平究竟如何。
4、突出數(shù)學(xué)思想方法,狠抓"四基"的落實
數(shù)學(xué)思想方法是數(shù)學(xué)知識的精髓,是溝通數(shù)學(xué)知識與運算能力的橋梁。教師應(yīng)在平時教學(xué)中不斷引導(dǎo)學(xué)生從數(shù)學(xué)知識中提煉數(shù)學(xué)思想,注重運用數(shù)學(xué)思想去分析問題與解決問題,并有意識、有目的地結(jié)合教材逐步滲透給學(xué)生:轉(zhuǎn)化的思想、數(shù)形結(jié)合的思想、分類討論的思想、方程的思想、函數(shù)的思想,要求學(xué)生理解待定系數(shù)法、消元法、降次法、配方法、換元法。對學(xué)習(xí)成績好的學(xué)生,還應(yīng)激發(fā)他們?nèi)タ偨Y(jié)帶全局性的數(shù)學(xué)思想方法。
20xx年版初中數(shù)學(xué)課程標(biāo)準(zhǔn)明確提出"四基",即基礎(chǔ)知識、基本技能、基本思想和基本活動經(jīng)驗。要使學(xué)生復(fù)習(xí)好基礎(chǔ)知識和掌握基本技能,首先要使學(xué)生正確理解概念,對易混的概念抓住它們之間的區(qū)別與聯(lián)系,同時要抓基本運算、抓基本數(shù)學(xué)方法和思維方法;靖拍、基本運算必須反復(fù)地練習(xí),才能達到純熟和鞏固。凡屬這方面的錯誤,必復(fù)習(xí)一段、練習(xí)一段、檢查一段。務(wù)求落實"段段清",以掌握知識的本質(zhì)為標(biāo)準(zhǔn)。當(dāng)然還要注意因材施教,逐步深入。
初中數(shù)學(xué)知識點總結(jié)4
1、定理1:關(guān)于中心對稱的兩個圖形是全等的
2、定理2:關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
3、逆定理:如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱
4、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個角相等
5、等腰梯形的兩條對角線相等
6、等腰梯形判定定理:在同一底上的兩個角相等的梯:形是等腰梯形
7、對角線相等的梯形是等腰梯形
8、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
9、推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
10、推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊
11、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半
12、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半:L=(a+b)÷2:S=L×h
13、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc:如果:ad=bc:,那么a:b=c:d
14、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d
15、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
16、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應(yīng)線段成比例
17、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
18、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
19、平行于三角形的一邊,并且和其他兩邊相交的直線,:所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
20、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
21、相似三角形判定定理1:兩角對應(yīng)相等,兩三角形相似(ASA)
22、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
23、判定定理2:兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
24、判定定理3:三邊對應(yīng)成比例,兩三角形相似(SSS)
25、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
26、性質(zhì)定理1:相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
27、性質(zhì)定理2:相似三角形周長的比等于相似比
28、性質(zhì)定理3:相似三角形面積的比等于相似比的平方
29、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
30、任意銳角的正切值等于它的余角的.余切值,任意銳角的余切值等于它的余角的正切值
31、圓是定點的距離等于定長的點的集合
32、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
33、圓的外部可以看作是圓心的距離大于半徑的點的集合
34、同圓或等圓的半徑相等
35、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
36、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
37、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
38、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
39、定理:不在同一直線上的三點確定一個圓。
40、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
41、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
42、推論2:圓的兩條平行弦所夾的弧相等
43、圓是以圓心為對稱中心的中心對稱圖形
44、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
45、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
46、定理:一條弧所對的圓周角等于它所對的圓心角的一半
47、推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
48、推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
49、推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
50、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
51、①直線L和⊙O相交:d
、谥本L和⊙O相切:d=r
③直線L和⊙O相離:d>r
52、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
53、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
54、推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
55、推論2:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
56、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
57、圓的外切四邊形的兩組對邊的和相等
58、弦切角定理:弦切角等于它所夾的弧對的圓周角
59、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
60、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
61、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
62、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
63、推論:從圓外一點引圓的兩條割線,這一點到每條:割線與圓的交點的兩條線段長的積相等
64、如果兩個圓相切,那么切點一定在連心線上
65、①兩圓外離:d>R+r:②兩圓外切:d=R+r③兩圓相交:R-rr)
、軆蓤A內(nèi)切:d=R-r(R>r):⑤兩圓內(nèi)含:dr)
66、定理:相交兩圓的連心線垂直平分兩圓的公共弦
67、定理:把圓分成n(n≥3):
、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
68、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
69、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
70、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
71、正n邊形的面積Sn=pnrn/2:p表示正n邊形的周長
72、正三角形面積√3a/4:a表示邊長
73、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
74、弧長計算公式:L=n兀R/180
75、扇形面積公式:S扇形=n兀R^2/360=LR/2
76、內(nèi)公切線長=:d-(R-r):外公切線長=:d-(R+r):本回答被提問者采納
初中數(shù)學(xué)知識點總結(jié)5
一、基本知識
、、數(shù)與代數(shù)A、數(shù)與式:
1、有理數(shù)
有理數(shù):
、僬麛(shù)→正整數(shù)/0/負整數(shù)
②分數(shù)→正分數(shù)/負分數(shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方
向為正方向,就得到數(shù)軸。
、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。
③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。
、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。
絕對值:
①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。②正數(shù)的絕對值是他的本身、負數(shù)的
絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
、垡粋數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。
、谌魏螖(shù)與0相乘得0。
、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。2、實數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
、賹崝(shù)分有理數(shù)和無理數(shù)。
、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。
②把同類項合并成一項就叫做合并同類項。
、墼诤喜⑼愴棔r,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算:AM+AN=A(M+N)
。ˋM)N=AMN
。ˋ/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作
為積的因式。
②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則
連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數(shù)的方程叫分式方程。②使方程的分母為0的解稱為原方程的增根。B、方程與不等式1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的.方程叫做二元一次方程。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程1)一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了2)一元二次方程的解法
大家知道,二次函數(shù)有頂點式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解(1)配方法
利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的
形式去解(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根;II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;
III當(dāng)△B,A+C>B+C在不等式中,如果減去同一個數(shù)(或加上一個負數(shù)),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個負數(shù),不等號改向;例如:A>B,A*C系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。
③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時,則經(jīng)124象限;當(dāng)K〉0,B〈0時,則經(jīng)134象限;當(dāng)K〉0,B〉0時,則經(jīng)123象限。
、墚(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。
、婵臻g與圖形A、圖形的認識1、點,線,面
點,線,面:①圖形是由點,線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相
等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。弧、扇形:①由一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個扇形。
2、角
線:①線段有兩個端點。
、趯⒕段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經(jīng)過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。
、趦牲c之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。
②一條射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內(nèi),不相交的兩條直線叫做平行線。
、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。
、燮矫鎯(nèi),過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;判定定理:到線段2端點距離相等的點在這線段的垂直平分線上角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出
現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線2、兩點之間線段最短
3、同角或等角的補角相等4、同角或等角的余角相等
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連接的所有線段中,垂線段最短
7、平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內(nèi)錯角相等,兩直線平行11、同旁內(nèi)角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內(nèi)錯角相等14、兩直線平行,同旁內(nèi)角互補
15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊
17、三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18、推論1直角三角形的兩個銳角互余
19、推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20、推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21、全等三角形的對應(yīng)邊、對應(yīng)角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24、推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25、邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27、定理1在角的平分線上的點到這個角的兩邊的距離相等
28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個角都等于60°
34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1三個角都相等的三角形是等邊三角形
36、推論2有一個角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊上的一半
5
39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1關(guān)于某條直線對稱的兩個圖形是全等形
43、定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線
44、定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上45、逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形48、定理四邊形的內(nèi)角和等于360°49、四邊形的外角和等于360°
50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等54、推論夾在兩條平行線間的平行線段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個角都是直角61、矩形性質(zhì)定理2矩形的對角線相等
62、矩形判定定理1有三個角是直角的四邊形是矩形63、矩形判定定理2對角線相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積=對角線乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71、定理1關(guān)于中心對稱的兩個圖形是全等的
72、定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分
73、逆定理如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊81、三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82、梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),
那么(a+c++m)/(b+d++n)=a/b
86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87、推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90、定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91、相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94、判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96、性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97、性質(zhì)定理2相似三角形周長的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點的距離等于定長的點的集合
102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合103、圓的外部可以看作是圓心的距離大于半徑的點的集合104、同圓或等圓的半徑相等
105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理不在同一直線上的三點確定一個圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120、定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角121、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
122、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的半徑
124、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點125、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130、相交弦定理圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)
、軆蓤A內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)136、定理相交兩圓的連心線垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):
、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139、正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142、正三角形面積√3a/4a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
一、常用數(shù)學(xué)公式
公式分類公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|
|a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式
b2-4ac=0注:方程有兩個相等的實根b2-4ac>0注:方程有兩個不等的實根
b2-4ac歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴謹。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對稱。10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
。4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
。5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。
初中數(shù)學(xué)知識點總結(jié)6
一次函數(shù):一次函數(shù)圖像與性質(zhì)是中考必考的內(nèi)容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應(yīng)用性強。甚至有存在探究題目出現(xiàn)。
主要考察內(nèi)容:
、贂嬕淮魏瘮(shù)的圖像,并掌握其性質(zhì)。
、跁鶕(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。
、勰苡靡淮魏瘮(shù)解決實際問題。
④考察一ic函數(shù)與二元一次方程組,一元一次不等式的關(guān)系。
突破方法:
、僬_理解掌握一次函數(shù)的概念,圖像和性質(zhì)。
、谶\用數(shù)學(xué)結(jié)合的思想解與一次函數(shù)圖像有關(guān)的問題。
、壅莆沼么ㄏ禂(shù)法球一次函數(shù)解析式。
④做一些綜合題的訓(xùn)練,提高分析問題的能力。
函數(shù)性質(zhì):
1.y的變化值與對應(yīng)的x的`變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當(dāng)x增加m,k(x+m)+b=y+km,km/m=k。
2.當(dāng)x=0時,b為函數(shù)在y軸上的點,坐標(biāo)為(0,b)。
3當(dāng)b=0時(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
4.在兩個一次函數(shù)表達式中:
當(dāng)兩一次函數(shù)表達式中的k相同,b也相同時,兩一次函數(shù)圖像重合;當(dāng)兩一次函數(shù)表達式中的k相同,b不相同時,兩一次函數(shù)圖像平行;當(dāng)兩一次函數(shù)表達式中的k不相同,b不相同時,兩一次函數(shù)圖像相交;當(dāng)兩一次函數(shù)表達式中的k不相同,b相同時,兩一次函數(shù)圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關(guān)系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質(zhì)
1、作法與圖形:通過如下3個步驟:
。1)列表.
。2)描點;[一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。
正比例函數(shù)y=kx(k≠0)的圖象是過坐標(biāo)原點的一條直線,一般。0,0)和(1,k)兩點。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點,并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點分別是-k分之b與0,0與b).
2、性質(zhì):
。1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
。2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點。
3、函數(shù)不是數(shù),它是指某一變化過程中兩個變量之間的關(guān)系。
4、k,b與函數(shù)圖像所在象限:
y=kx時(即b等于0,y與x成正比例):
當(dāng)k>0時,直線必通過第一、三象限,y隨x的增大而增大;當(dāng)k0,b>0,這時此函數(shù)的圖象經(jīng)過第一、二、三象限;當(dāng)k>0,b
初中數(shù)學(xué)知識點總結(jié)7
1、圓是定點的距離等于定長的點的集合
2、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合3、圓的外部可以看作是圓心的距離大于半徑的點的集合4、同圓或等圓的半徑相等
5、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓6、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線7、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
8、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
9、定理不在同一直線上的三點確定一個圓。
10、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧11、推論1:
①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧12、推論2:圓的兩條平行弦所夾的弧相等13、圓是以圓心為對稱中心的中心對稱圖形
14、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
15、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
16、定理:一條弧所對的圓周角等于它所對的圓心角的一半
17、推論:1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
18、推論:2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
19、推論:3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形
20、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
21、①直線L和⊙O相交dr②直線L和⊙O相切d=r③直線L和⊙O相離dr
22、切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線23、切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點的.半徑24、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點25、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
26、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等圓心和這一點的連線平分兩條切線的夾角
27、圓的外切四邊形的兩組對邊的和相等
28、弦切角定理:弦切角等于它所夾的弧對的圓周角
29、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等30、相交弦定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等31、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
32、切割線定理:從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
33、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
34、如果兩個圓相切,那么切點一定在連心線上35、①兩圓外離dR+r②兩圓外切d=R+r
③兩圓相交R-rdR+r(Rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dR-r(Rr)
36、定理:相交兩圓的連心線垂直平分兩圓的公共弦37、定理:把圓分成n(n≥3):
、乓来芜B結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形
⑵經(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
38、定理:任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
39、正n邊形的每個內(nèi)角都等于(n-2)×180°/n40、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
41、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長42、正三角形面積√3a/4a表示邊長
43、如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k(n-2)180°/n=360°化為(n-2)(k-2)=444、弧長計算公式:L=n兀R/180
45、扇形面積公式:S扇形=n兀R^2/360=LR/246、內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
初中數(shù)學(xué)知識點總結(jié)8
第一部分 概率論基本知識
隨機事件與樣本空間 ?事件的關(guān)系與運算(和,積,差,相等,對立,互斥和逆事件)
事件的關(guān)系圖
概率的概念和基本性質(zhì)
古典型概率 幾何型概率
條件概率 乘法公式 ?全概率公式和貝葉斯公式 事件的劃分
事件的獨立性 ?相互獨立和兩兩獨立 ?獨立重復(fù)試驗
第二部分 一維隨機變量
離散型隨機變量的定義和概率分布 ?三種重要的`離散型隨機變量
隨機變量的分布函數(shù)的概念及其性質(zhì)
連續(xù)型隨機變量的定義 ?概率密度函數(shù)的概念 均勻分布,指數(shù)分布和正態(tài)分布的概念及密度函數(shù)
隨機變量函數(shù)的分布
第三部分 二維隨機變量
二維隨機變量及其分布函數(shù)的概念 ?二維離散型、連續(xù)型隨機變量的概率分布
邊緣分布函數(shù) 分布率 ?概率密度 二維正態(tài)分布
二維離散型條件分布率,二維連續(xù)型條件概率密度 ?二維均勻分布
相互獨立的隨機變量
兩個隨機變量的函數(shù)的分布 和、積、商、最大、最小值分布
第四部分 隨機變量數(shù)字特征
隨機變量的數(shù)學(xué)期望的概念和性質(zhì) ?常見分布函數(shù)的數(shù)學(xué)期望的計算方法及結(jié)果 ?隨機變量函數(shù)的數(shù)學(xué)期望及求解方法
隨機變量方差的概念和性質(zhì) ?常見分布函數(shù)的方差 ?切比雪夫不等式
相關(guān)系數(shù) ?協(xié)方差的概念和性質(zhì) ?隨機變量的不相關(guān)性 ?不相關(guān)性與獨立性的關(guān)系
第五部分 大數(shù)定律和中心極限定理
切比雪夫大數(shù)定律 ?辛欽大數(shù)定律 ? 伯努利大數(shù)定律
獨立同分布中心極限定理(列維—林德伯格中心極限定理)
棣莫弗—拉普拉斯中心極限定理
第六部分 統(tǒng)計基礎(chǔ)
統(tǒng)計量 ?樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數(shù) 正態(tài)總體的常用抽樣分布
第七部分 估參數(shù)估計
點估計的概念 估計量與估計值 矩估計法 ?矩估計量和估計值 最大似然估計法 ?似然函數(shù) ?對數(shù)似然方程 最大似然估計量和估計值
估計量的評選標(biāo)準(zhǔn)(無偏性、有效性和相合性)及其相關(guān)概念(只數(shù)一要求)
初中數(shù)學(xué)知識點總結(jié)9
課題
3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)
教學(xué)目標(biāo)
1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會用待定系數(shù)法確定函數(shù)的解析式
教學(xué)重點
掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)
教學(xué)難點
掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的.概念及其圖形和性質(zhì)
教學(xué)方法
講練結(jié)合法
教學(xué)過程
。↖)知識要點(見下表:)
第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時,y,4aR值域R4acb2a0時,y,4aba0時,在-,上為增2a函數(shù),在,-單調(diào)性k0時,在,0,k0時為增函數(shù)0,上為減函數(shù)k0時,為增函數(shù)b上為減函數(shù)2ak0時為減函數(shù)k0時,在,0,k0時,為減函數(shù)0,上為增函數(shù)ba0時,在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時奇函數(shù)b=0時偶函數(shù)a0且x-ymin最值無無無b時,2a24acb4ab時,2a24acb4aa0且x-ymax
第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對稱軸x,頂點(,)
2a2a4a2拋物線與x軸交點坐標(biāo)(m,0),(n,0)(II)例題講解
例1、求滿足下列條件的二次函數(shù)的解析式:(1)拋物線過點A(1,1),B(2,2),C(4,2)(2)拋物線的頂點為P(1,5)且過點Q(3,3)
。3)拋物線對稱軸是x2,它在x軸上截出的線段AB長為2且拋物線過點(1,7)。2,
解:(1)設(shè)yax2bxc(a0),將A、B、C三點坐標(biāo)分別代入,可得方程組為
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點坐標(biāo)代入,即a(31)253,得
a2,故y2(x1)252x24x3
。3)∵拋物線對稱軸為x2;
∴拋物線與x軸的兩個交點A、B應(yīng)關(guān)于x2對稱;∴由題設(shè)條件可得兩個交點坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1
∴所求二次函數(shù)為yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,將(1,7)
5),例2:二次函數(shù)的圖像過點(0,8),(1,(4,0)
。1)求函數(shù)圖像的頂點坐標(biāo)、對稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時,①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值
113x1(x)2,知函數(shù)的圖像開口向上,對稱軸為x
224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時,函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11
初中數(shù)學(xué)知識點總結(jié)10
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設(shè)為任意角,的.三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數(shù)學(xué)知識點總結(jié)11
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
、(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2
圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等于定長的點的集合
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合
6、圓的外部可以看作是圓心的距離大于半徑的.點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
11、定理:圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角
12、①直線L和⊙O相交d
、谥本L和⊙O相切d=r
③直線L和⊙O相離d>r
13、切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點的半徑
15、推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
16、推論2經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等于內(nèi)對角
19、如果兩個圓相切,那么切點一定在連心線上
20、
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交R-rr)
、軆蓤A內(nèi)切d=R-r(R>r)
、輧蓤A內(nèi)含dr)
初中數(shù)學(xué)知識點總結(jié)12
一、特殊的平行四邊形:
1.矩形:
。1)定義:有一個角是直角的平行四邊形。
(2)性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。
。3)判定定理:
、儆幸粋角是直角的平行四邊形叫做矩形。
、趯蔷相等的平行四邊形是矩形。
、塾腥齻角是直角的四邊形是矩形。
直角三角形的性質(zhì):直角三角形中所對的直角邊等于斜邊的一半。
2.菱形:
。1)定義:鄰邊相等的平行四邊形。
(2)性質(zhì):菱形的四條邊都相等;菱形的'兩條對角線互相垂直,并且每一條對角線平分一組對角。
。3)判定定理:
、僖唤M鄰邊相等的平行四邊形是菱形。
②對角線互相垂直的平行四邊形是菱形。
、鬯臈l邊相等的四邊形是菱形。
。4)面積:
3.正方形:
。1)定義:一個角是直角的菱形或鄰邊相等的矩形。
。2)性質(zhì):四條邊都相等,四個角都是直角,對角線互相垂直平分。正方形既是矩形,又是菱形。
。3)正方形判定定理:
①對角線互相垂直平分且相等的四邊形是正方形;
、谝唤M鄰邊相等,一個角為直角的平行四邊形是正方形;
、蹖蔷互相垂直的矩形是正方形;
、茑忂呄嗟鹊木匦问钦叫
、萦幸粋角是直角的菱形是正方形;
、迣蔷相等的菱形是正方形。
二、矩形、菱形、正方形與平行四邊形、四邊形之間的聯(lián)系:
1.矩形、菱形和正方形都是特殊的平行四邊形,其性質(zhì)都是在平行四邊形的基礎(chǔ)上擴充來的。矩形是由平行四邊形增加“一個角為90°”的條件得到的,它在角和對角線方面具有比平行四邊形更多的特性;菱形是由平行四邊形增加“一組鄰邊相等”的條件得到的,它在邊和對角線方面具有比平行四邊形更多的特性;正方形是由平行四邊形增加“一組鄰邊相等”和“一個角為90°”兩個條件得到的,它在邊、角和對角線方面都具有比平行四邊形更多的特性。
2.矩形、菱形的判定可以根據(jù)出發(fā)點不同而分成兩類:一類是以四邊形為出發(fā)點進行判定,另一類是以平行四邊形為出發(fā)點進行判定。而正方形除了上述兩個出發(fā)點外,還可以從矩形和菱形出發(fā)進行判定。
三、判定一個四邊形是特殊四邊形的步驟:
常見考法
(1)利用菱形、矩形、正方形的性質(zhì)進行邊、角以及面積等計算;
。2)靈活運用判定定理證明一個四邊形(或平行四邊形)是菱形、矩形、正方形;
。3)一些折疊問題;
。4)矩形與直角三角形和等腰三角形有著密切聯(lián)系、正方形與等腰直角三角形也有著密切聯(lián)系。所以,以此為背景可以設(shè)置許多考題。
誤區(qū)提醒
。1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點易出現(xiàn)混淆;
。2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點也易出現(xiàn)混淆;
。3)不能正確的理解和運用判定定理進行證明,(如在證明菱形時,把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);
。4)再利用對角線長度求菱形的面積時,忘記乘;
。5)判定一個四邊形是特殊的平行四邊形的條件不充分。
初中數(shù)學(xué)知識點總結(jié)13
1有理數(shù)加法法則
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加;
2、異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;
3、一個數(shù)與0相加,仍得這個數(shù)。
2有理數(shù)加法的運算律
1、加法的交換律:a+b=b+a;
2、加法的結(jié)合律:(a+b)+c=a+(b+c)
3有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)
4有理數(shù)乘法法則
1、兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘;
2、任何數(shù)同零相乘都得零;
3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的'個數(shù)決定。
5有理數(shù)乘法的運算律
1、乘法的交換律:ab=ba;
2、乘法的結(jié)合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
6單項式
只含有數(shù)字與字母的積的代數(shù)式叫做單項式。
注意:單項式是由系數(shù)、字母、字母的指數(shù)構(gòu)成的。
7多項式
1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。
2、同類項所有字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。幾個常數(shù)項也是同類項。
8中心對稱
1、定義:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。這兩個圖形中的對應(yīng)點叫做關(guān)于中心的對稱點。
2、心對稱的兩條基本性質(zhì):
。1)關(guān)于中心對稱的兩個圖形,對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
。2)關(guān)于中心對稱的兩個圖形是全等圖形。
3、中心對稱圖形
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
初中數(shù)學(xué)知識點總結(jié)14
關(guān)鍵詞:初一數(shù)學(xué);基礎(chǔ)知識;教學(xué)策略
初中數(shù)學(xué)是一個整體,相對而言,初一數(shù)學(xué)知識點很多,注重基礎(chǔ),初一數(shù)學(xué)是對學(xué)數(shù)學(xué)的適當(dāng)深入,也為后續(xù)的學(xué)習(xí)打下良好的基礎(chǔ)。在初一數(shù)學(xué)的教學(xué)中,注重學(xué)生基礎(chǔ)知識的掌握是非常必要的。如今的現(xiàn)狀是,剛?cè)氤踔械膶W(xué)生并沒有對打好數(shù)學(xué)基礎(chǔ)有足夠的重視。一些學(xué)生剛進入初中,在數(shù)學(xué)學(xué)習(xí)中感受不到壓力,沒有投入足夠的精力,因而漸漸地就積累了很多關(guān)于基礎(chǔ)知識的小問題,這些小問題在學(xué)生進入后續(xù)的學(xué)習(xí)中,慢慢就越來越多,形成大問題,大問題漸漸就會凸顯出來,學(xué)生漸漸就會感到力不從心。下面就針對初一學(xué)生學(xué)習(xí)中的問題,具體談?wù)勅绾未蚝贸跻粩?shù)學(xué)的基礎(chǔ)。
一、打好初一數(shù)學(xué)基礎(chǔ)的重要性
進入中學(xué),學(xué)生的科目增加,內(nèi)容拓展,知識深入,數(shù)學(xué)這門學(xué)科由具體到抽象,從文字發(fā)展成了符號,從靜態(tài)逐漸發(fā)展成了動態(tài)。初一數(shù)學(xué)學(xué)習(xí)是很重要的一年,能夠讓學(xué)生感受到初中數(shù)學(xué)與小學(xué)的不同,并能感受到數(shù)學(xué)學(xué)習(xí)帶來的快樂,然而,一些學(xué)生對數(shù)學(xué)產(chǎn)生厭惡情緒也大都是從初中開始的,由于基礎(chǔ)沒打好對數(shù)學(xué)產(chǎn)生厭惡是很多學(xué)生的通病;A(chǔ)知識是進行深入學(xué)習(xí)的根基,它為數(shù)學(xué)學(xué)習(xí)的深入做鋪墊,然而基礎(chǔ)知識卻并沒有得到初一學(xué)生應(yīng)有的足夠重視。初中的數(shù)學(xué)知識相對小學(xué)來說,已有了很大的深入,如果初一的基礎(chǔ)知識沒有打好,學(xué)生會漸漸感到吃力,從而跟不上教學(xué)步伐,導(dǎo)致產(chǎn)生厭學(xué)情緒。不利于學(xué)生的發(fā)展。因此,教師在教學(xué)中必須注重初一學(xué)生基礎(chǔ)知識的培養(yǎng),并使學(xué)生認識到打好基礎(chǔ)知識的重要性。
二、初一數(shù)學(xué)學(xué)習(xí)中常出現(xiàn)的問題
1、知識點理解不透徹
初一學(xué)生剛?cè)氤踔,依然保留著小學(xué)生的一些習(xí)慣,愛玩并且厭煩課本上的基礎(chǔ)知識點。對知識點的理解停留在一知半解的層次上。并且,學(xué)生并沒有對基礎(chǔ)知識有足夠的重視,沒有認識到基礎(chǔ)知識的重要性,從而導(dǎo)致基礎(chǔ)知識越來越差,產(chǎn)生對數(shù)學(xué)的厭煩,進入惡性循環(huán)。
2、解答題目小錯誤多,無法完整地解決問題
學(xué)生由于不重視基礎(chǔ),導(dǎo)致一些題目無法完整地進行解決,無論簡單的題型還是難的題型,都是建立在基礎(chǔ)知識點上的。學(xué)生的問題是無法把握其中的基礎(chǔ)技巧,忽視基礎(chǔ)知識,始終不能完整地解決問題。
3、沒有養(yǎng)成歸納總結(jié)的好習(xí)慣
學(xué)生在平時的練習(xí)中會有許多解錯的題型和忽視了的知識點,然而大都都是錯了就錯了,并沒有進行歸納總結(jié),導(dǎo)致對錯誤的題型沒有進行反思,從而一錯再錯。對一些基礎(chǔ)知識點,也沒有進行很好的歸納,腦海里沒有一個系統(tǒng)的基礎(chǔ)知識網(wǎng)。
三、打好學(xué)生數(shù)學(xué)基礎(chǔ)的策略
1、明確教學(xué)目標(biāo),突出重點
每一堂課的教學(xué),都有它的重點內(nèi)容,每一堂課,作為教師,首先都需要明確這堂課的教學(xué)目標(biāo),并要突出重點,讓學(xué)生對這堂課所學(xué)的知識點有一個清晰的'輪廓。教師可以在黑板的一角把重點內(nèi)容簡短地寫出來,并保持一節(jié)課,引起學(xué)生的關(guān)注和重視。教師要通過不斷強調(diào)和引用,使學(xué)生對重點知識點留下深刻的印象,并可以出一個引用了重點知識的題目讓學(xué)生解答。例如,學(xué)習(xí)《數(shù)軸》這一節(jié)時,教師可先對重點基礎(chǔ)知識點進行講解,讓學(xué)生了解數(shù)軸的基本定義,在腦海里留下一個概念,再讓學(xué)生上講臺到黑板上按要求畫下來。畫完后,讓學(xué)生自己做必要的講解,比如畫數(shù)軸的三要素原點、正方向、單位長度。這樣,學(xué)生對數(shù)軸的基礎(chǔ)知識點就會有一個深刻的印象。
2、精講例題,多做課堂練習(xí)
針對基礎(chǔ)知識,教師可在課堂上多設(shè)置一些例題,使學(xué)生能夠把基礎(chǔ)知識應(yīng)用到題目中去解答,從而認識到基礎(chǔ)知識的重要性。教師要精選例題,按照這節(jié)課的重點基礎(chǔ)內(nèi)容進行選題,從結(jié)構(gòu)特征、思維方式等各個方面進行對題型的剖析,從而讓學(xué)生在解題的基礎(chǔ)之上掌握基礎(chǔ)知識的關(guān)鍵。知識點講得再多也是抽象空洞的,只有與題目進行結(jié)合,讓學(xué)生靈活運用,才能夠使學(xué)生對知識點有一個深刻的理解。課堂上需根據(jù)實際情況布置課堂練習(xí),練習(xí)量針對知識點的難易程度可多可少,重要的是要讓學(xué)生有一個思考解答的過程。教師可讓學(xué)生自主進行解答,若解答不出教師則做必要的指點進行幫助,并且要鼓勵學(xué)生不懂就要問。還可以讓學(xué)生共同討論一些難點問題,促進學(xué)生勤學(xué)好問的習(xí)慣培養(yǎng)。
3、形象教學(xué),變抽象為具體
教師在實際課堂教學(xué)中,可以運用很多種教學(xué)方式,每一堂課都有其教學(xué)目標(biāo),教學(xué)需根據(jù)教學(xué)內(nèi)容的變化選擇適當(dāng)?shù)慕虒W(xué)方式,形象教學(xué)是很重要并且很有效的教學(xué)方式。例如,進行幾何的教學(xué),教師可以進行具體演示,向?qū)W生展示幾何模型,運用幾何模型來驗證幾何結(jié)論。
4、讓學(xué)生收集題目,制作錯題集
基礎(chǔ)是在無數(shù)次練習(xí)的基礎(chǔ)之上總結(jié)出來的,做題如同挖金礦,對待錯題就如同對待發(fā)掘冶煉金礦一樣。學(xué)生在做題時,會遇到很多難題和易錯題,對于做錯了的題目,學(xué)生看看就丟到一邊,是沒有起到練習(xí)應(yīng)有的效果的。教師要促使學(xué)生制作一個錯題集,專門收集自己做錯或者不會做的題目,讓學(xué)生自己分析做錯的原因,為什么會做錯,下次如何避免,學(xué)生在總結(jié)反思的過程中,自然而然就對知識進行了一次梳理。例如,用科學(xué)計數(shù)法計數(shù)是學(xué)生經(jīng)常容易犯錯的知識點,學(xué)生的粗心導(dǎo)致很簡單的問題經(jīng)常犯錯,通過錯題集,學(xué)生收集表示錯的科學(xué)計數(shù)法,不斷總結(jié)、強化,從而做到更細心。
初一數(shù)學(xué)學(xué)習(xí)對剛進入初中的學(xué)生來說是非常重要的,其既是對小學(xué)數(shù)學(xué)知識的必要深入,也為后續(xù)更深層次的學(xué)習(xí)打下關(guān)鍵的基礎(chǔ)。然而,初一學(xué)生往往并沒有認識到進入初中打好數(shù)學(xué)基礎(chǔ)的重要性。本文針對學(xué)好初一數(shù)學(xué)的重要性和初一數(shù)學(xué)學(xué)習(xí)面臨的一些問題進行了具體討論,最后總結(jié)出提高學(xué)生數(shù)學(xué)基礎(chǔ)知識的幾條教學(xué)策略,給以后的數(shù)學(xué)教學(xué)提供參考。
參考文獻:
[1]吳遠,學(xué)生數(shù)學(xué)自主能力的培養(yǎng)[J]。巨人教學(xué)資源,20xx。
初中數(shù)學(xué)知識點總結(jié)15
三角形兩邊:
定理三角形兩邊的和大于第三邊。
推論三角形兩邊的差小于第三邊。
三角形中位線定理:
三角形的中位線平行于第三邊,并且等于它的一半。
三角形的重心:
三角形的重心到頂點的距離是它到對邊中點距離的2倍。
在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線,三角形的三條中線交于一點,這一點叫做“三角形的重心”。
與三角形有關(guān)的角:
1、三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°,與三角形的形狀無關(guān)。
2、直角三角形兩個銳角的關(guān)系:直角三角形的兩個銳角互余(相加為90°)。有兩個角互余的三角形是直角三角形。
3、三角形外角的性質(zhì):三角形的`一個外角等于與它不相鄰的兩個內(nèi)角之和;三角形的一個外角大于與它不相鄰的任何一個內(nèi)角;三角形三個外角和為360°。
全等三角形的性質(zhì)和判定:
全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對折也會構(gòu)成全等三角形。
。ㄟ呥呥叄慈厡(yīng)相等的兩個三角形全等。
(邊角邊),即三角形的其中兩條邊對應(yīng)相等,且兩條邊的夾角也對應(yīng)相等的兩個三角形全等。
(角邊角),即三角形的其中兩個角對應(yīng)相等,且兩個角夾的的邊也對應(yīng)相等的兩個三角形全等。
。ń墙沁叄,即三角形的其中兩個角對應(yīng)相等,且對應(yīng)相等的角所對應(yīng)的邊也對應(yīng)相等的兩個三角形全等。
。ㄐ边叀⒅苯沁叄,即在直角三角形中一條斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等。
等邊三角形的判定:
1、三邊相等的三角形是等邊三角形(定義)。
2、三個內(nèi)角都相等的三角形是等邊三角形。
3、有一個角是60度的等腰三角形是等邊三角形。
4、有兩個角等于60度的三角形是等邊三角形。
【初中數(shù)學(xué)知識點總結(jié)】相關(guān)文章:
初中數(shù)學(xué)幾何知識點總結(jié)11-05
初中數(shù)學(xué)函數(shù)知識點總結(jié)11-24
初中數(shù)學(xué)圓的知識點總結(jié)12-05
初中數(shù)學(xué)函數(shù)知識點總結(jié)06-14
【經(jīng)典】數(shù)學(xué)初中知識點總結(jié)07-16