當(dāng)前位置:育文網(wǎng)>初中>初中數(shù)學(xué)> 初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)

時(shí)間:2024-08-26 10:30:41 初中數(shù)學(xué) 我要投稿

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)

  總結(jié)在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對(duì)學(xué)習(xí)和工作生活等情況加以回顧和分析的一種書(shū)面材料,它能夠給人努力工作的動(dòng)力,為此我們要做好回顧,寫(xiě)好總結(jié)。總結(jié)你想好怎么寫(xiě)了嗎?以下是小編幫大家整理的初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn),僅供參考,歡迎大家閱讀。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)1

  一、投影

  1、投影:一般地,用光線照射物體,在某個(gè)平面(地面、墻壁等)上得到的影子叫做物體的投影,照射光線叫做投影線,投影所在的平面叫做投影面。

  2、平行投影:由平行光線形成的投影是平行投影。(光源特別遠(yuǎn))

  3、中心投影:由同一點(diǎn)(點(diǎn)光源發(fā)出的光線)形成的投影叫做中心投影

  4、正投影:投影線垂直于投影面產(chǎn)生的投影叫做正投影。物體正投影的形狀、大小與它相對(duì)于投影面的位置有關(guān)。

  5、當(dāng)物體的某個(gè)面平行于投影面時(shí),這個(gè)面的正投影與這個(gè)面的形狀、大小完全相同。當(dāng)物體的某個(gè)面頂斜于投影面時(shí),這個(gè)面的正投影變小。當(dāng)物體的某個(gè)面垂直于投影面時(shí),這個(gè)面的.正投影成為一條直線。

  二、三視圖

  1、三視圖:是觀測(cè)者從三個(gè)不同位置(正面、水平面、側(cè)面)觀察同一個(gè)空間幾何體而畫(huà)出的圖形。三視圖就是主視圖、俯視圖、左視圖的總稱。另外還有如剖面圖、半剖面圖等做為輔助,基本能完整的表達(dá)物體的結(jié)構(gòu)。

  2、主視圖:在正面內(nèi)得到的由前向后觀察物體的視圖。

  3、俯視圖:在水平面內(nèi)得到的由上向下觀察物體的視圖。

  4、左視圖:在側(cè)面內(nèi)得到的由左向右觀察物體的視圖。

  5、三個(gè)視圖的位置關(guān)系:

  ①主視圖在上、俯視圖在下、左視圖在右;

  ②主視、俯視表示物體的長(zhǎng),主視、左視表示物體的高,左視、俯視表示物體的寬。

 、壑饕、俯視長(zhǎng)對(duì)正,主視、左視高平齊,左視、俯視寬相等。

  6、畫(huà)法:看得見(jiàn)的部分的輪廓線畫(huà)成實(shí)線,因被其它部分遮檔而看不見(jiàn)的部分的輪廓線畫(huà)成虛線。

  鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

  對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(zhǎng)線,像這樣的兩個(gè)角互為對(duì)頂角。

  垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

  同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。

  內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。

  同旁內(nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁內(nèi)角。

  命題:判斷一件事情的語(yǔ)句叫命題。

  平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱平移。

  對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)2

  第十一章三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

  2.三邊關(guān)系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.

  3.高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作,頂點(diǎn)和間的線段叫做三角形的高.4.中線:在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊的線段叫做三角形的中線.

  5.角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和之間的線段叫做三角形的角平分線.

  6.三角形的穩(wěn)定性:三角形的形狀是,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性.

  7.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形.

  8.多邊形的內(nèi)角:多邊形兩邊組成的角叫做它的內(nèi)角.

  9.多邊形的外角:多邊形的一邊與它的鄰邊的線組成的角叫做多邊形的外角.

  10.多邊形的對(duì)角線:連接多邊形的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線.

  11.正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形.

  12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,

  13.公式與性質(zhì):

 、湃切蔚膬(nèi)角和:三角形的內(nèi)角和為度。

 、迫切瓮饨堑男再|(zhì):

  性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的的和.

  性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它的內(nèi)角.

 、嵌噙呅蝺(nèi)角和公式:n邊形的內(nèi)角和等于。

  學(xué)無(wú)慮課后輔導(dǎo)中心編制

 、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.

 、啥噙呅螌(duì)角線的條數(shù):

  ①?gòu)膎邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對(duì)角線,把多邊形分成個(gè)三角形.

 、趎邊形共有條對(duì)角線.

  第十二章全等三角形

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本定義:

 、湃刃危耗軌蛲耆膬蓚(gè)圖形叫做全等形.

 、迫热切危耗軌蛲耆膬蓚(gè)三角形叫做全等三角形.

  ⑶對(duì)應(yīng)頂點(diǎn):全等三角形中互相的頂點(diǎn)叫做對(duì)應(yīng)頂點(diǎn).

 、葘(duì)應(yīng)邊:全等三角形中互相的邊叫做對(duì)應(yīng)邊.

 、蓪(duì)應(yīng)角:全等三角形中互相的角叫做對(duì)應(yīng)角.

  2.基本性質(zhì):

  ⑴三角形的穩(wěn)定性:三角形三邊的確定了,這個(gè)三角形的`形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.

 、迫热切蔚男再|(zhì):全等三角形的相等,對(duì)應(yīng)角相等.

  3.全等三角形的判定定理:

 、胚呥呥叄⊿SS):。

 、七吔沁叄⊿AS):。

 、墙沁吔牵ˋSA):。

  ⑷角角邊(AAS):。

 、尚边叀⒅苯沁叄℉L):。

  4.角平分線:⑴畫(huà)法:⑵性質(zhì)定理:角平分線上的點(diǎn)到角的兩邊的距離.⑶性質(zhì)定理的逆定理:角的內(nèi)部到角的兩邊距離相等的點(diǎn)在角的上.

  5.證明的基本方法:

 、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對(duì)頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關(guān)系)⑵根據(jù)題意,畫(huà)出圖形,并用數(shù)字符號(hào)表示已知和求證.⑶經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程.

  第十三章軸對(duì)稱

  一、知識(shí)框架:

  二、知識(shí)概念:

  1.基本概念:

 、泡S對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊,直線兩旁的部分能夠互相,這個(gè)圖形就叫做軸對(duì)稱圖形.

  ⑵兩個(gè)圖形成軸對(duì)稱:把一個(gè)圖形沿某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱.⑶線段的垂直平分線:經(jīng)過(guò)線段中點(diǎn)并且這條線段的直線,叫做這條線段的垂直平分線.

 、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.

 、傻冗吶切危憾枷嗟鹊娜切谓凶龅冗吶切.2.基本性質(zhì):⑴對(duì)稱的性質(zhì):①不管是軸對(duì)稱圖形還是兩個(gè)圖形關(guān)于某條直線對(duì)稱,對(duì)稱軸都是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線.②對(duì)稱的圖形都全等.⑵線段垂直平分線的性質(zhì):①線段垂直平分線上的點(diǎn)與這條線段的距離相等.②與一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線段的上.⑶關(guān)于坐標(biāo)軸對(duì)稱的點(diǎn)的坐標(biāo)性質(zhì)①點(diǎn)P(x,y)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為P"(,).②點(diǎn)P(x,y)關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)為P"(,).⑷等腰三角形的性質(zhì):

 、俚妊切蝺裳.

  ②等腰三角形兩底角相等(等邊對(duì)等角).

 、鄣妊切蔚、,相互重合.④等腰三角形是圖形,對(duì)稱軸是三線合一(1條).⑸等邊三角形的性質(zhì):

 、俚冗吶切稳叾枷嗟.

  ②等邊三角形三個(gè)內(nèi)角都相等,都等于度。③等邊三角形每條邊上都存在三線合一.

  ④等邊三角形是軸對(duì)稱圖形,對(duì)稱軸是三線合一(3條).3.基本判定:

 、诺妊切蔚呐卸ǎ

  ①相等的三角形是等腰三角形.

 、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也(等角對(duì)等邊).

  ⑵等邊三角形的判定:

 、俣枷嗟鹊娜切问堑冗吶切.②三個(gè)角都相等的三角形是三角形.

 、塾幸粋(gè)角是度。的等腰三角形是等邊三角形.

  4.基本方法:

 、抛鲆阎本的垂線:

 、谱鲆阎段的垂直平分線:

  ⑶作對(duì)稱軸:連接兩個(gè)對(duì)應(yīng)點(diǎn),作所連線段的垂直平分線.

 、茸饕阎獔D形關(guān)于某直線的對(duì)稱圖形:

 、稍谥本上做一點(diǎn),使它到該直線同側(cè)的兩個(gè)已知點(diǎn)的距離之和最短.

  第十四章整式的乘除與分解因式

  一、知識(shí)框架:

  整式乘法乘法法則整式除法因式分解

  二、知識(shí)概念:

  基本運(yùn)算:⑴同底數(shù)冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。

  2.整式的乘法:⑴單項(xiàng)式單項(xiàng)式:系數(shù),同字母,不同字母為積的因式.⑵單項(xiàng)式多項(xiàng)式:。⑶多項(xiàng)式多項(xiàng)式:.

  3.計(jì)算公式:

  ⑴平方差公式:ababab

  222222⑵完全平方公式:aba2abb;aba2abb

  224.整式的除法:

 、磐讛(shù)冪的除法:aaamnmn

 、茊雾(xiàng)式單項(xiàng)式:系數(shù),同字母,不同字母作為商的因式.⑶多項(xiàng)式單項(xiàng)式:.⑷多項(xiàng)式多項(xiàng)式:用豎式.

  5.因式分解:把一個(gè)多項(xiàng)式化成的積的形式,這種變形叫做把這個(gè)式子因式分解.

  6.因式分解方法:

  ⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項(xiàng)法⑸添項(xiàng)法第十五章分式一、知識(shí)框架:

  二、知識(shí)概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為的整式,分式的值不變.4.約分:把一個(gè)分式的分子和分母的(不為1的數(shù))約去,這種變形稱為約分.5.通分:異分母的分式可以化成的分式,這一過(guò)程叫做通分.

  6.最簡(jiǎn)分式:一個(gè)分式的分子和分母沒(méi)有時(shí),這個(gè)分式稱為最簡(jiǎn)分式,約分時(shí),一般將一個(gè)分式化為最簡(jiǎn)分式.7.分式的四則運(yùn)算:

 、磐帜阜质郊訙p法則:同分母的分式相加減,分母,把相加減.用字

  母表示

  為:。

  ⑵異分母分式加減法則:異分母的分式相加減,先,化為同分母的分

  式,然后再按同分母分式的加減法法則進(jìn)行計(jì)算.用字母表示為:。

 、欠质降某朔ǚ▌t:兩個(gè)分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。

  ⑷分式的除法法則:兩個(gè)分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數(shù)指數(shù)冪:⑴aaam⑵amnmn(m、n是正整數(shù))namn(m、n是正整數(shù))nn⑶abab(n是正整數(shù))n⑷aaanmnmn(a0,m、n是正整數(shù),mn)ana⑸n(n是正整數(shù))bb⑹an1(a0,n是正整數(shù))na9.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.10.分式方程的解法:

  ①(方程兩邊同時(shí)乘以最簡(jiǎn)公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數(shù)的值;

 、(求出未知數(shù)的值后必須驗(yàn)根,因?yàn)樵诎逊质椒匠袒癁檎椒匠痰倪^(guò)程中,擴(kuò)大了未知數(shù)的取值范圍,可能產(chǎn)生增根).

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)3

  動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類型:

   1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類型:

  1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  3、多邊形與圓的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的'關(guān)系.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

  總結(jié)反思:

   本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

  解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的.

  解答函數(shù)的圖象問(wèn)題一般遵循的步驟:

   1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

  2、自變量變化函數(shù)值也變化的增減變化情況.

  3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)4

  第一章圖形的認(rèn)識(shí)初步

  一、知識(shí)框架

  本章的主要內(nèi)容是圖形的初步認(rèn)識(shí),從生活周圍熟悉的物體入手,對(duì)物體的形狀的認(rèn)識(shí)從感性逐步上升到抽象的幾何圖形。通過(guò)從不同方向看立體圖形和展開(kāi)立體圖形,初步認(rèn)識(shí)立體圖形與平面圖形的聯(lián)系。在此基礎(chǔ)上,認(rèn)識(shí)一些簡(jiǎn)單的平面圖形——直線、射線、線段和角。

  二、本章書(shū)涉及的數(shù)學(xué)思想:

  分類討論思想。在過(guò)平面上若干個(gè)點(diǎn)畫(huà)直線時(shí),應(yīng)注意對(duì)這些點(diǎn)分情況討論;在畫(huà)圖形時(shí),應(yīng)注意圖形的各種可能性。

  方程思想。在處理有關(guān)角的大小,線段大小的計(jì)算時(shí),常需要通過(guò)列方程來(lái)解決。

  圖形變換思想。在研究角的概念時(shí),要充分體會(huì)對(duì)射線旋轉(zhuǎn)的認(rèn)識(shí)。在處理圖形時(shí)應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。

  化歸思想。在進(jìn)行直線、線段、角以及相關(guān)圖形的計(jì)數(shù)時(shí),總要?jiǎng)潥w到公式n(n—1)/2的具體運(yùn)用上來(lái)。

  人教版七年級(jí)數(shù)學(xué)下冊(cè)主要包括相交線與平行線、平面直角坐標(biāo)系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內(nèi)容。

  第二章相交線與平行線

  一、知識(shí)框架

  二、知識(shí)概念

  鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是鄰補(bǔ)角。

  對(duì)頂角:一個(gè)角的兩邊分別是另一個(gè)叫的兩邊的反向延長(zhǎng)線,像這樣的兩個(gè)角互為對(duì)頂角。

  垂線:兩條直線相交成直角時(shí),叫做互相垂直,其中一條叫做另一條的垂線。

  平行線:在同一平面內(nèi),不相交的'兩條直線叫做平行線。

  同位角、內(nèi)錯(cuò)角、同旁內(nèi)角:

  同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對(duì)角叫做同位角。

  內(nèi)錯(cuò)角:∠2與∠6像這樣的一對(duì)角叫做內(nèi)錯(cuò)角。

  同旁內(nèi)角:∠2與∠5像這樣的一對(duì)角叫做同旁內(nèi)角。

  命題:判斷一件事情的語(yǔ)句叫命題。

  平移:在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,圖形的這種移動(dòng)叫做平移平移變換,簡(jiǎn)稱平移。

  對(duì)應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動(dòng)后得到的,這樣的兩個(gè)點(diǎn)叫做對(duì)應(yīng)點(diǎn)。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)5

  動(dòng)點(diǎn)與函數(shù)圖象問(wèn)題常見(jiàn)的四種類型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),根據(jù)問(wèn)題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),判斷函數(shù)圖象.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),判斷函數(shù)圖象.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),判斷函數(shù)圖象.

  圖形運(yùn)動(dòng)與函數(shù)圖象問(wèn)題常見(jiàn)的三種類型:

  1、線段與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一條線段沿一定方向運(yùn)動(dòng)經(jīng)過(guò)三角形或四邊形,進(jìn)行分段,判斷函數(shù)圖象.

  2、多邊形與多邊形的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)另一個(gè)多邊形,判斷函數(shù)圖象.

  3、多邊形與圓的運(yùn)動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動(dòng)經(jīng)過(guò)一個(gè)圓,判斷函數(shù)圖象.

  動(dòng)點(diǎn)問(wèn)題常見(jiàn)的四種類型:

  1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運(yùn)動(dòng),通過(guò)全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運(yùn)動(dòng),通過(guò)探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運(yùn)動(dòng),探究構(gòu)成的新圖形的邊角等關(guān)系.

  4、直線、雙曲線、拋物線中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線、雙曲線、拋物線運(yùn)動(dòng),探究是否存在動(dòng)點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問(wèn)題.

  總結(jié)反思:

  本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的`應(yīng)用是解題的關(guān)鍵.

  解答動(dòng)態(tài)性問(wèn)題通常是對(duì)幾何圖形運(yùn)動(dòng)過(guò)程有一個(gè)完整、清晰的認(rèn)識(shí),發(fā)掘“動(dòng)”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的

  解答函數(shù)的圖象問(wèn)題一般遵循的步驟:

  1、根據(jù)自變量的取值范圍對(duì)函數(shù)進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對(duì)于用圖象描述分段函數(shù)的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

  2、自變量變化函數(shù)值也變化的增減變化情況.

  3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)6

  ∴當(dāng)x1時(shí)函數(shù)取得最大值,且ymax(1)2(1)13例4、已知函數(shù)f(x)x22(a1)x2

  4],求實(shí)數(shù)a的取值(1)若函數(shù)f(x)的遞減區(qū)間是(,4]上是減函數(shù),求實(shí)數(shù)a的取值范圍(2)若函數(shù)f(x)在區(qū)間(,分析:二次函數(shù)的單調(diào)區(qū)間是由其開(kāi)口方向及對(duì)稱軸決定的,要分清函數(shù)在區(qū)間A上是單調(diào)函數(shù)及單調(diào)區(qū)間是A的區(qū)別與聯(lián)系

  解:(1)f(x)的.對(duì)稱軸是x可得函數(shù)圖像開(kāi)口向上

  2(a1)21a,且二次項(xiàng)系數(shù)為1>0

  1a]∴f(x)的單調(diào)減區(qū)間為(,∴依題設(shè)條件可得1a4,解得a3

  4]上是減函數(shù)(2)∵f(x)在區(qū)間(,4]是遞減區(qū)間(,1a]的子區(qū)間∴(,∴1a4,解得a3

  例5、函數(shù)f(x)x2bx2,滿足:f(3x)f(3x)

 。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數(shù)圖像的對(duì)稱軸為x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對(duì)稱軸x3對(duì)稱

  x1x223,可得x1x26

  第三章第32頁(yè)由二次項(xiàng)系數(shù)為1>0,可知拋物線開(kāi)口向上又134,132,431

  ∴依二次函數(shù)的對(duì)稱性及單調(diào)性可f(4)f(1)f(1)(III)課后作業(yè)練習(xí)六

 。á簦┙虒W(xué)后記:

  第三章第33頁(yè)

  擴(kuò)展閱讀:初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納

  學(xué)大教育

  初中數(shù)學(xué)函數(shù)板塊的知識(shí)點(diǎn)總結(jié)與歸類學(xué)習(xí)方法

  初中數(shù)學(xué)知識(shí)大綱中,函數(shù)知識(shí)占了很大的知識(shí)體系比例,學(xué)好了函數(shù),掌握了函數(shù)的基本性質(zhì)及其應(yīng)用,真正精通了函數(shù)的每一個(gè)模塊知識(shí),會(huì)做每一類函數(shù)題型,就讀于中考中數(shù)學(xué)成功了一大半,數(shù)學(xué)成績(jī)自然上高峰,同時(shí),函數(shù)的思想是學(xué)好其他理科類學(xué)科的基礎(chǔ)。初中數(shù)學(xué)從性質(zhì)上分,可以分為:一次函數(shù)、反比例函數(shù)、二次函數(shù)和銳角三角函數(shù),下面介紹各類函數(shù)的定義、基本性質(zhì)、函數(shù)圖象及函數(shù)應(yīng)用思維方式方法。

  一、一次函數(shù)

  1.定義:在定義中應(yīng)注意的問(wèn)題y=kx+b中,k、b為常數(shù),且k≠0,x的指數(shù)一定為1。2.圖象及其性質(zhì)(1)形狀、直線

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)7

  軸對(duì)稱的定義:

  把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線對(duì)稱,這條直線叫做對(duì)稱軸,折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫做對(duì)稱點(diǎn)。軸對(duì)稱和軸對(duì)稱圖形的特性是相同的,對(duì)應(yīng)點(diǎn)到對(duì)稱軸的距離都是相等的。

  軸對(duì)稱的性質(zhì):

  (1)對(duì)應(yīng)點(diǎn)所連的線段被對(duì)稱軸垂直平分;

 。2)對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等;

 。3)關(guān)于某直線對(duì)稱的兩個(gè)圖形是全等圖形。

  軸對(duì)稱的判定:

  如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱。

  這樣就得到了以下性質(zhì):

  如果兩個(gè)圖形關(guān)于某條直線對(duì)稱,那么對(duì)稱軸是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

  類似地,軸對(duì)稱圖形的`對(duì)稱軸,是任何一對(duì)對(duì)應(yīng)點(diǎn)所連線段的垂直平分線。

  線段的垂直平分線上的點(diǎn)與這條線段的兩個(gè)端點(diǎn)的距離相等。

  對(duì)稱軸是到線段兩端距離相等的點(diǎn)的集合。

  軸對(duì)稱作用:

  可以通過(guò)對(duì)稱軸的一邊從而畫(huà)出另一邊。

  可以通過(guò)畫(huà)對(duì)稱軸得出的兩個(gè)圖形全等。

  擴(kuò)展到軸對(duì)稱的應(yīng)用以及函數(shù)圖像的意義。

  軸對(duì)稱的應(yīng)用

  關(guān)于平面直角坐標(biāo)系的X,Y對(duì)稱意義

  如果在坐標(biāo)系中,點(diǎn)A與點(diǎn)B關(guān)于直線X對(duì)稱,那么點(diǎn)A的橫坐標(biāo)不變,縱坐標(biāo)為相反數(shù)。

  相反的,如果有兩點(diǎn)關(guān)于直線Y對(duì)稱,那么點(diǎn)A的橫坐標(biāo)為相反數(shù),縱坐標(biāo)不變。

  關(guān)于二次函數(shù)圖像的對(duì)稱軸公式(也叫做軸對(duì)稱公式)

  設(shè)二次函數(shù)的解析式是y=ax2+bx+c

  則二次函數(shù)的對(duì)稱軸為直線x=—b/2a,頂點(diǎn)橫坐標(biāo)為—b/2a,頂點(diǎn)縱坐標(biāo)為(4ac—b2)/4a

  在幾何證題、解題時(shí),如果是軸對(duì)稱圖形,則經(jīng)常要添設(shè)對(duì)稱軸以便充分利用軸對(duì)稱圖形的性質(zhì)。

  譬如,等腰三角形經(jīng)常添設(shè)頂角平分線;

  矩形和等腰梯形問(wèn)題經(jīng)常添設(shè)對(duì)邊中點(diǎn)連線和兩底中點(diǎn)連線;

  正方形,菱形問(wèn)題經(jīng)常添設(shè)對(duì)角線等等。

  另外,如果遇到的圖形不是軸對(duì)稱圖形,則常選擇某直線為對(duì)稱軸,補(bǔ)添為軸對(duì)稱圖形,或?qū)⑤S一側(cè)的圖形通過(guò)翻折反射到另一側(cè),以實(shí)現(xiàn)條件的相對(duì)集中。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)8

  三角形的知識(shí)點(diǎn)

  1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

  2、三角形的分類

  3、三角形的三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

  4、高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。

  5、中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。

  6、角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。

  7、高線、中線、角平分線的意義和做法

  8、三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個(gè)性質(zhì)叫三角形的穩(wěn)定性。

  9、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

  推論1直角三角形的兩個(gè)銳角互余

  推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角和

  推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角;三角形的內(nèi)角和是外角和的一半

  10、三角形的外角:三角形的一條邊與另一條邊延長(zhǎng)線的夾角,叫做三角形的外角。

  11、三角形外角的性質(zhì)

  (1)頂點(diǎn)是三角形的一個(gè)頂點(diǎn),一邊是三角形的一邊,另一邊是三角形的一邊的延長(zhǎng)線;

  (2)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角和;

  (3)三角形的一個(gè)外角大于與它不相鄰的任一內(nèi)角;

  (4)三角形的外角和是360°。

  四邊形(含多邊形)知識(shí)點(diǎn)、概念總結(jié)

  一、平行四邊形的定義、性質(zhì)及判定

  1、兩組對(duì)邊平行的四邊形是平行四邊形。

  2、性質(zhì):

  (1)平行四邊形的對(duì)邊相等且平行

  (2)平行四邊形的對(duì)角相等,鄰角互補(bǔ)

  (3)平行四邊形的對(duì)角線互相平分

  3、判定:

  (1)兩組對(duì)邊分別平行的四邊形是平行四邊形

  (2)兩組對(duì)邊分別相等的四邊形是平行四邊形

  (3)一組對(duì)邊平行且相等的四邊形是平行四邊形

  (4)兩組對(duì)角分別相等的四邊形是平行四邊形

  (5)對(duì)角線互相平分的四邊形是平行四邊形

  4、對(duì)稱性:平行四邊形是中心對(duì)稱圖形

  二、矩形的定義、性質(zhì)及判定

  1、定義:有一個(gè)角是直角的平行四邊形叫做矩形

  2、性質(zhì):矩形的四個(gè)角都是直角,矩形的對(duì)角線相等

  3、判定:

  (1)有一個(gè)角是直角的平行四邊形叫做矩形

  (2)有三個(gè)角是直角的四邊形是矩形

  (3)兩條對(duì)角線相等的平行四邊形是矩形

  4、對(duì)稱性:矩形是軸對(duì)稱圖形也是中心對(duì)稱圖形。

  三、菱形的定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等的平行四邊形叫做菱形

  (1)菱形的四條邊都相等

  (2)菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  (3)菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形

  (4)菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半

  2、s菱=爭(zhēng)6(n、6分別為對(duì)角線長(zhǎng))

  3、判定:

  (1)有一組鄰邊相等的平行四邊形叫做菱形

  (2)四條邊都相等的四邊形是菱形

  (3)對(duì)角線互相垂直的平行四邊形是菱形

  4、對(duì)稱性:菱形是軸對(duì)稱圖形也是中心對(duì)稱圖形

  四、正方形定義、性質(zhì)及判定

  1、定義:有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形

  2、性質(zhì):

  (1)正方形四個(gè)角都是直角,四條邊都相等

  (2)正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  (3)正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形

  (4)正方形的對(duì)角線與邊的夾角是45°

  (5)正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的'等腰直角三角形

  3、判定:

  (1)先判定一個(gè)四邊形是矩形,再判定出有一組鄰邊相等

  (2)先判定一個(gè)四邊形是菱形,再判定出有一個(gè)角是直角

  4、對(duì)稱性:正方形是軸對(duì)稱圖形也是中心對(duì)稱圖形

  五、梯形的定義、等腰梯形的性質(zhì)及判定

  1、定義:一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性質(zhì):等腰梯形的兩腰相等;同一底上的兩個(gè)角相等;兩條對(duì)角線相等

  3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個(gè)角相等的梯形是等腰梯形;兩條對(duì)角線相等的梯形是等腰梯形

  4、對(duì)稱性:等腰梯形是軸對(duì)稱圖形

  六、三角形的中位線平行于三角形的第三邊并等于第三邊的一半;梯形的中位線平行于梯形的兩底并等于兩底和的一半。

  七、線段的重心是線段的中點(diǎn);平行四邊形的重心是兩對(duì)角線的交點(diǎn);三角形的重心是三條中線的交點(diǎn)。

  八、依次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形。

  九、多邊形

  1、多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

  2、多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

  3、多邊形的外角:多邊形的一邊與它的鄰邊的延長(zhǎng)線組成的角叫做多邊形的外角。

  4、多邊形的對(duì)角線:連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段,叫做多邊形的對(duì)角線。

  5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內(nèi)角相等。

  6、正多邊形:在平面內(nèi),各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形。

  7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。

  8、公式與性質(zhì)

  多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°

  9、多邊形外角和定理:

  (1)n邊形外角和等于n·180°-(n-2)·180°=360°

  (2)邊形的每個(gè)內(nèi)角與它相鄰的外角是鄰補(bǔ)角,所以n邊形內(nèi)角和加外角和等于n·180°

  10、多邊形對(duì)角線的條數(shù):

  (1)從n邊形的一個(gè)頂點(diǎn)出發(fā)可以引(n-3)條對(duì)角線,把多邊形分詞(n-2)個(gè)三角形

  (2)n邊形共有n(n-3)/2條對(duì)角線

  圓知識(shí)點(diǎn)、概念總結(jié)

  1、不在同一直線上的三點(diǎn)確定一個(gè)圓。

  2、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  推論1①(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  4、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  6、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  7、同圓或等圓的半徑相等

  8、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  9、定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  10、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

  11、定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  12、①直線L和⊙O相交d

 、谥本L和⊙O相切d=r

  ③直線L和⊙O相離d>r

  13、切線的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

  14、切線的性質(zhì)定理:圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

  15、推論1經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

  16、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

  17、切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  18、圓的外切四邊形的兩組對(duì)邊的和相等,外角等于內(nèi)對(duì)角

  19、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  20、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

 、蹆蓤A相交R-rr)

  ④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含dr)

  21、定理:相交兩圓的連心線垂直平分兩圓的公共弦

  22、定理:把圓分成n(n≥3):

  (1)依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

  (2)經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  23、定理:任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  24、正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n

  25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(zhǎng)

  27、正三角形面積√3a/4a表示邊長(zhǎng)

  28、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

  29、弧長(zhǎng)計(jì)算公式:L=n兀R/180

  30、扇形面積公式:S扇形=n兀R^2/360=LR/2

  31、內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)

  32、定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  33、推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  34、推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  35、弧長(zhǎng)公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)9

  初中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)

  平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒(méi)有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。

  立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。

  實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

  初中數(shù)學(xué)平行四邊形的性質(zhì)知識(shí)點(diǎn)

  1.定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形

  2.平行四邊形的性質(zhì)

  (1)平行四邊形的對(duì)邊平行且相等;

  (2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;

  (3)平行四邊形的對(duì)角線互相平分;

  3.平行四邊形的判定

  平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對(duì)平行四邊形的五種判定方法,進(jìn)行劃分:

  第一類:與四邊形的對(duì)邊有關(guān)

  (1)兩組對(duì)邊分別平行的四邊形是平行四邊形;

  (2)兩組對(duì)邊分別相等的四邊形是平行四邊形;

  (3)一組對(duì)邊平行且相等的四邊形是平行四邊形;

  第二類:與四邊形的對(duì)角有關(guān)

  (4)兩組對(duì)角分別相等的四邊形是平行四邊形;

  第三類:與四邊形的對(duì)角線有關(guān)

  (5)對(duì)角線互相平分的四邊形是平行四邊形

  初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

  1.一次函數(shù)

  (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的'函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

  所以,正比例函數(shù)是特殊的一次函數(shù)。

  (2)一次函數(shù)的圖像及性質(zhì):

  1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

  2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

  3正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

  4k,b與函數(shù)圖像所在象限的關(guān)系:

  當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

  當(dāng)k>0,b>0時(shí),直線通過(guò)一、二、三象限;

  當(dāng)k>0,b<0時(shí),直線通過(guò)一、三、四象限;

  當(dāng)k<0,b>0時(shí),直線通過(guò)一、二、四象限;

  當(dāng)k<0,b<0時(shí),直線通過(guò)二、三、四象限;

  當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

  這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。

  2.二次函數(shù)

  (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

  (2)二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

  頂點(diǎn)式:y=a(x-h)^2+k(拋物線的頂點(diǎn)P(h,k));

  交點(diǎn)式:

  (3)二次函數(shù)的圖像與性質(zhì)

  1二次函數(shù)的圖像是一條拋物線。

  2拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)。

  3二次項(xiàng)系數(shù)a決定拋物線的開(kāi)口方向。

  當(dāng)a>0時(shí),拋物線向上開(kāi)口;

  當(dāng)a<0時(shí),拋物線向下開(kāi)口。

  4一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

  5拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);

  Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);

  Δ=b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。

  3.反比例函數(shù)

  (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

  (2)反比例函數(shù)圖像性質(zhì):

  1反比例函數(shù)的圖像為雙曲線;

  當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過(guò)一,三象限,是減函數(shù);

  當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過(guò)二,四象限,是增函數(shù);

  反比例函數(shù)圖像只能無(wú)限趨向于坐標(biāo)軸,無(wú)法和坐標(biāo)軸相交。

  2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)10

  關(guān)鍵詞:數(shù)學(xué);總復(fù)習(xí);初中;方法

  中圖分類號(hào):G633。6文獻(xiàn)標(biāo)識(shí)碼:B文章編號(hào):1672—1578(2013)12—0217—01

  初中數(shù)學(xué)是義務(wù)教育階段一門(mén)主要課程,它是進(jìn)一步學(xué)習(xí)工作的基礎(chǔ)。因此,進(jìn)行初三數(shù)學(xué)總復(fù)習(xí),使學(xué)生具有一定的數(shù)學(xué)素質(zhì),合格畢業(yè),對(duì)于提高全民族素質(zhì),為培養(yǎng)改革人才奠定基礎(chǔ)是十分必要的。本文將要探討的就是搞好初三數(shù)學(xué)總復(fù)習(xí)的一些體會(huì)。

  1、明確總復(fù)習(xí)的目的

  中考是總結(jié)性的檢驗(yàn),考試成績(jī)也必然會(huì)促使我們認(rèn)真地總結(jié)檢查自己的教學(xué)工作,改進(jìn)教學(xué)方法,提高教學(xué)質(zhì)量。因此,中考的需要是初三總復(fù)習(xí)的重要目的,但不是唯一的目的。在復(fù)習(xí)方面要從單純面向升學(xué)的需要,轉(zhuǎn)變?yōu)槊嫦驅(qū)W生終身學(xué)習(xí)的需要。通過(guò)初三數(shù)學(xué)總復(fù)習(xí),要使學(xué)生全面而系統(tǒng)地掌握初中數(shù)學(xué)的基礎(chǔ)知識(shí)加深理解這些知識(shí),進(jìn)一步提高運(yùn)用這些動(dòng)知識(shí)的分析和解決問(wèn)題的能力,從而大面積地扎扎實(shí)實(shí)的提高教學(xué)質(zhì)量,為學(xué)生升入高一級(jí)學(xué)校打下必要的基礎(chǔ)。

  2、在《課標(biāo)》和《考試說(shuō)明》的指導(dǎo)下開(kāi)展復(fù)習(xí)工作

  "人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上得到不同的發(fā)展"。這是新課程標(biāo)準(zhǔn)努力倡導(dǎo)的目標(biāo)。也是我們總復(fù)習(xí)工作的出發(fā)點(diǎn)。2011年版的《初中數(shù)學(xué)新課程標(biāo)準(zhǔn)》(以下簡(jiǎn)稱《課程標(biāo)準(zhǔn)》)以及歷年的《河北省文化課考試說(shuō)明》(以下簡(jiǎn)稱《考試說(shuō)明》)中所確定的必學(xué)內(nèi)容是要求所有學(xué)生都應(yīng)當(dāng)學(xué)習(xí)的,一定要教好學(xué)好,降低難度、減輕學(xué)生過(guò)重的學(xué)習(xí)負(fù)擔(dān),正是為了使學(xué)生掌握那些最基本、最重要的內(nèi)容,使絕大多數(shù)同學(xué)能學(xué)得好,增強(qiáng)信心,大面積提高教學(xué)質(zhì)量。另一方面,對(duì)學(xué)有余力的同學(xué)也要?jiǎng)?chuàng)造條件,指導(dǎo)他們進(jìn)一步學(xué)習(xí),充分發(fā)揮他們的數(shù)學(xué)才能,做到既面向全體學(xué)生又因材施教。這一重要的教學(xué)指導(dǎo)思想,也是我們初三數(shù)學(xué)總復(fù)習(xí)必須遵循的方針。

  3、從學(xué)生的實(shí)際出發(fā),有序地進(jìn)行初三數(shù)學(xué)總復(fù)習(xí)

  教學(xué)是師生雙方的共同活動(dòng),教師的教是為學(xué)生積極主動(dòng)地學(xué)。初三總復(fù)習(xí)時(shí)間短,內(nèi)容多,要想取得較好的復(fù)習(xí)效果,除教師鉆研《課標(biāo)》與《考試說(shuō)明》,通曉教材,突出重點(diǎn)之外,還要調(diào)查研究、了解學(xué)生、明確難點(diǎn),從學(xué)生實(shí)際出發(fā),進(jìn)行復(fù)習(xí)。否則,課的起點(diǎn)高了,學(xué)生接受有困難,起點(diǎn)低了,講得太容易了,學(xué)生聽(tīng)起來(lái)乏味厭煩,使復(fù)習(xí)課不能有的放矢,對(duì)癥下藥、因材施教。因此,要了解學(xué)生的思想狀況,復(fù)習(xí)的學(xué)習(xí)態(tài)度和方法;要了解學(xué)生對(duì)哪些知識(shí)是掌握提比較好的,哪些知識(shí)理解得不夠深透,還有哪些知識(shí)是應(yīng)當(dāng)補(bǔ)缺的,哪些知識(shí)是普遍性的問(wèn)題,哪些知識(shí)是個(gè)別性問(wèn)題,充分估計(jì)學(xué)生的實(shí)際水平究竟如何。

  4、突出數(shù)學(xué)思想方法,狠抓"四基"的`落實(shí)

  數(shù)學(xué)思想方法是數(shù)學(xué)知識(shí)的精髓,是溝通數(shù)學(xué)知識(shí)與運(yùn)算能力的橋梁。教師應(yīng)在平時(shí)教學(xué)中不斷引導(dǎo)學(xué)生從數(shù)學(xué)知識(shí)中提煉數(shù)學(xué)思想,注重運(yùn)用數(shù)學(xué)思想去分析問(wèn)題與解決問(wèn)題,并有意識(shí)、有目的地結(jié)合教材逐步滲透給學(xué)生:轉(zhuǎn)化的思想、數(shù)形結(jié)合的思想、分類討論的思想、方程的思想、函數(shù)的思想,要求學(xué)生理解待定系數(shù)法、消元法、降次法、配方法、換元法。對(duì)學(xué)習(xí)成績(jī)好的學(xué)生,還應(yīng)激發(fā)他們?nèi)タ偨Y(jié)帶全局性的數(shù)學(xué)思想方法。

  2011年版初中數(shù)學(xué)課程標(biāo)準(zhǔn)明確提出"四基",即基礎(chǔ)知識(shí)、基本技能、基本思想和基本活動(dòng)經(jīng)驗(yàn)。要使學(xué)生復(fù)習(xí)好基礎(chǔ)知識(shí)和掌握基本技能,首先要使學(xué)生正確理解概念,對(duì)易混的概念抓住它們之間的區(qū)別與聯(lián)系,同時(shí)要抓基本運(yùn)算、抓基本數(shù)學(xué)方法和思維方法;靖拍、基本運(yùn)算必須反復(fù)地練習(xí),才能達(dá)到純熟和鞏固。凡屬這方面的錯(cuò)誤,必復(fù)習(xí)一段、練習(xí)一段、檢查一段。務(wù)求落實(shí)"段段清",以掌握知識(shí)的本質(zhì)為標(biāo)準(zhǔn)。當(dāng)然還要注意因材施教,逐步深入。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)11

  自然數(shù)的分類包括了奇數(shù)和偶數(shù),質(zhì)數(shù)與合數(shù)、1和0。

  自然數(shù)的分類

  ①按能否被2整除分

  可分為奇數(shù)和偶數(shù)。

  1、奇數(shù):不能被2整除的數(shù)叫奇數(shù)。

  2、偶數(shù):能被2整除的數(shù)叫偶數(shù)。

  注:0是偶數(shù)。(20xx年國(guó)際數(shù)學(xué)協(xié)會(huì)規(guī)定,零為偶數(shù)。我國(guó)20xx年也規(guī)定零為偶數(shù)。偶數(shù)可以被2整除,0照樣可以,只不過(guò)得數(shù)依然是0而已)。

 、诎匆驍(shù)個(gè)數(shù)分

  可分為質(zhì)數(shù)、合數(shù)、1和0。

  1、質(zhì)數(shù):只有1和它本身這兩個(gè)因數(shù)的`自然數(shù)叫做質(zhì)數(shù)。也稱作素?cái)?shù)。

  2、合數(shù):除了1和它本身還有其它的因數(shù)的自然數(shù)叫做合數(shù)。

  3、1:只有1個(gè)因數(shù)。它既不是質(zhì)數(shù)也不是合數(shù)。

  4、當(dāng)然0不能計(jì)算因數(shù),和1一樣,也不是質(zhì)數(shù)也不是合數(shù)。

  備注:這里是因數(shù)不是約數(shù)。

  同學(xué)們對(duì)于“0”,它是否包括在自然數(shù)之內(nèi)存在爭(zhēng)議,其實(shí)學(xué)術(shù)界目前關(guān)于這個(gè)問(wèn)題尚無(wú)一致意見(jiàn)。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)12

  1、圖形的相似

  相似多邊形的對(duì)應(yīng)邊的比值相等,對(duì)應(yīng)角相等;

  兩個(gè)多邊形的對(duì)應(yīng)角相等,對(duì)應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;

  相似比:相似多邊形對(duì)應(yīng)邊的比值。

  2、相似三角形

  判定:

  平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;

  如果兩個(gè)三角形的三組對(duì)應(yīng)邊的比相等,那么這兩個(gè)三角形相似;

  如果兩個(gè)三角形的兩組對(duì)應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;

  如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的.兩個(gè)角對(duì)應(yīng)相等,那么兩個(gè)三角形相似。

  3相似三角形的周長(zhǎng)和面積

  相似三角形(多邊形)的周長(zhǎng)的比等于相似比;

  相似三角形(多邊形)的面積的比等于相似比的平方。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)13

  一、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的背景分析

  (一)初三數(shù)學(xué)總復(fù)習(xí)的低效教學(xué)影響了中考教學(xué)質(zhì)量的提高

  初三數(shù)學(xué)的復(fù)習(xí)教學(xué),注重“四基”(基礎(chǔ)知識(shí)、基本技能、基本思想和基本活動(dòng)經(jīng)驗(yàn))的鞏固和“四能”(發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、分析問(wèn)題、解決問(wèn)題的能力)的提升。由于受復(fù)習(xí)教學(xué)方法傳統(tǒng)、時(shí)間不足等因素的限制,往往不能處理好知識(shí)鞏固與能力提升之間的關(guān)系,導(dǎo)致復(fù)習(xí)教學(xué)實(shí)效不強(qiáng)。尤其是在初三下學(xué)期的復(fù)習(xí)教學(xué)中,大多數(shù)教師采用“一基礎(chǔ)二專題三綜合”的復(fù)習(xí)方式,使得復(fù)習(xí)教學(xué)“高耗低效”,不能大大提高學(xué)生發(fā)現(xiàn)問(wèn)題、提出問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力。同時(shí)在復(fù)習(xí)教學(xué)中,往往采用市面上的教輔資料,內(nèi)容超標(biāo),試題偏難,不符合復(fù)習(xí)教學(xué)的要求,制約著初三中考數(shù)學(xué)教學(xué)質(zhì)量的提高。

 。ǘ叭搅h(huán)”復(fù)習(xí)課型范式是課改實(shí)驗(yàn)教學(xué)的時(shí)代產(chǎn)物

  目前,基礎(chǔ)教育課程改革深入推進(jìn),雖然帶來(lái)了許多可喜的變化,但許多一線初三教師在實(shí)踐中看到了許多隱藏的教學(xué)危機(jī)。如何利用小組合作學(xué)習(xí)提高初三中考的教學(xué)質(zhì)量,是許多課改實(shí)驗(yàn)學(xué)校面臨的重大課題。筆者對(duì)任教學(xué)校班級(jí)的學(xué)生進(jìn)行了抽樣訪談,訪談分析反映出初三學(xué)生數(shù)學(xué)總復(fù)習(xí)階段的四個(gè)問(wèn)題:一是不熟悉中考數(shù)學(xué)考綱的考試要求和考試目標(biāo),沒(méi)有明確的初三數(shù)學(xué)總復(fù)習(xí)的方向;二是數(shù)學(xué)基礎(chǔ)知識(shí)掌握不夠全面,沒(méi)有完整的認(rèn)知結(jié)構(gòu),對(duì)初中數(shù)學(xué)知識(shí)的`邏輯關(guān)系不清晰;三是數(shù)學(xué)基本解題技能掌握不足,對(duì)初中數(shù)學(xué)知識(shí)的應(yīng)用把握不清;四是數(shù)學(xué)基本思想和基本活動(dòng)經(jīng)驗(yàn)欠缺,不能靈活地運(yùn)用所學(xué)知識(shí)和技能。

  “三步六環(huán)”復(fù)習(xí)課型范式的實(shí)踐研究,能轉(zhuǎn)變教師復(fù)習(xí)課的教學(xué)理念,建立更加適合本地區(qū)教學(xué)實(shí)際情況的初三數(shù)學(xué)“三步六環(huán)”復(fù)習(xí)課型的范式,掌握更加科學(xué)有效的復(fù)習(xí)方法,形成優(yōu)質(zhì)的初三數(shù)學(xué)復(fù)習(xí)教學(xué)資源,提升初三教師的數(shù)學(xué)專業(yè)能力,轉(zhuǎn)變學(xué)生的數(shù)學(xué)學(xué)習(xí)方式,提升學(xué)生的課堂參與度,變被動(dòng)的枯燥復(fù)習(xí)為主動(dòng)的興趣探究,從而提高初三數(shù)學(xué)的教學(xué)質(zhì)量。

  二、“三步六環(huán)”復(fù)習(xí)課型范式構(gòu)建的策略分析

 。ㄒ唬╆P(guān)鍵詞的概念界定

  1、復(fù)習(xí)課型。復(fù)習(xí)課型是根據(jù)學(xué)生的認(rèn)知特點(diǎn)和規(guī)律,在學(xué)習(xí)的某一階段,以鞏固、疏理已學(xué)知識(shí)、技能,促進(jìn)知識(shí)系統(tǒng)化,提高學(xué)生運(yùn)用所學(xué)知識(shí)解決問(wèn)題的能力為主要任務(wù)的一種課型。開(kāi)展數(shù)學(xué)復(fù)習(xí)課的目的是溫故知新,查漏補(bǔ)缺,完善認(rèn)知結(jié)構(gòu),促進(jìn)學(xué)生解題思想方法的形成,發(fā)展數(shù)學(xué)能力,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。

  2、“三步六環(huán)”。這是一種適合初三數(shù)學(xué)總復(fù)習(xí)教學(xué)的高效課堂模式,其基本框架如下:

  主要包括:

  (1)“三步”:第一步“先做后講”,體現(xiàn)在三點(diǎn):①學(xué)生提前1~2天完成下發(fā)的復(fù)習(xí)導(dǎo)學(xué)案;②老師及時(shí)批改了解學(xué)生的預(yù)習(xí)情況;③老師根據(jù)考綱、課標(biāo),結(jié)合學(xué)生的預(yù)習(xí)反饋進(jìn)行二次備課。

  第二步“反思診斷”,體現(xiàn)在四點(diǎn):①有反思――作業(yè)講評(píng);②有跟進(jìn)――針對(duì)內(nèi)容的重難點(diǎn)和學(xué)生的易錯(cuò)點(diǎn);③有變式――針對(duì)內(nèi)容的重難點(diǎn)和學(xué)生的易錯(cuò)點(diǎn);④有系統(tǒng)――二次訂正整理。

  第三步“滾動(dòng)測(cè)試”,體現(xiàn)在兩點(diǎn):①滾動(dòng)及時(shí)――重點(diǎn)考查近期重難點(diǎn)、易錯(cuò)點(diǎn)知識(shí);②反饋評(píng)價(jià)――關(guān)注師徒、小組捆綁評(píng)價(jià)。

 。2)“六環(huán)”:指初三數(shù)學(xué)復(fù)習(xí)課堂教學(xué)的六個(gè)步驟:自主復(fù)習(xí)、合作交流、展示質(zhì)疑、典例精講、訓(xùn)練達(dá)標(biāo)、總結(jié)評(píng)價(jià)。這六環(huán)環(huán)h遞進(jìn)、相輔相成。只有保持復(fù)習(xí)課堂高效的可持續(xù)性,才能保障中考教學(xué)質(zhì)量的提升,這里很關(guān)鍵的兩點(diǎn)因素應(yīng)務(wù)必關(guān)注:其一,教師要精心研讀課標(biāo)考綱,悉心研究中考試題,用心編制總復(fù)習(xí)導(dǎo)學(xué)案,為學(xué)生高效進(jìn)行總復(fù)習(xí)指明方向;其二,課堂教學(xué)中的發(fā)展性評(píng)價(jià)應(yīng)及時(shí)跟進(jìn),讓學(xué)生學(xué)會(huì)反思?xì)w納,分享復(fù)習(xí)的快樂(lè)。

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)14

  加法一般步驟:

 、俅_定符號(hào):同號(hào)取相同的符號(hào)。

  異號(hào)取絕對(duì)值大的加數(shù)的符號(hào)。

 、诖_定絕對(duì)值:同號(hào)將絕對(duì)值相加。

  異號(hào)用較大的絕對(duì)值減去較小的絕對(duì)值。

  互為相反數(shù)的兩個(gè)數(shù)相加得0。一個(gè)數(shù)與0相加,仍得這個(gè)數(shù)。

  用字母表示加法的交換律a+b=b+a;加法結(jié)合律a+b+c=(a+b)+c=a+(b+c)。

  三個(gè)或三個(gè)以上有理數(shù)相加,可以寫(xiě)成這些數(shù)的.連加式,對(duì)于連加式,根據(jù)加法

  交換律和加法結(jié)合律,可以任意交換加數(shù)的位置,也可先把其中的某幾個(gè)數(shù)相加。

  根據(jù)算式的特征,恰當(dāng)?shù)剡\(yùn)用運(yùn)算律,可以使運(yùn)算簡(jiǎn)便:

 、俜(hào)相同的數(shù)先相加——同號(hào)結(jié)合法

  ②互為相反數(shù)的先相加——相反數(shù)結(jié)合法

 、鄯帜赶嗤臄(shù)先相加——同分母結(jié)合法

 、苷龜(shù)與正數(shù),小數(shù)與小數(shù)相加——同形結(jié)合法

初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)15

  一、基本知識(shí)

  一、數(shù)與代數(shù)

  A、數(shù)與式:

  1、有理數(shù):

 、僬麛(shù)→正整數(shù),0,負(fù)整數(shù);

 、诜?jǐn)?shù)→正分?jǐn)?shù),負(fù)分?jǐn)?shù)

  數(shù)軸:

 、佼(huà)一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長(zhǎng)度作為單位長(zhǎng)度,規(guī)定直線上向右的方向?yàn)檎较,就得到?shù)軸。

 、谌魏我粋(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

 、廴绻麅蓚(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

 、軘(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

  絕對(duì)值:

 、僭跀(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。

 、谡龜(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0、兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

  有理數(shù)的運(yùn)算:帶上符號(hào)進(jìn)行正常運(yùn)算。

  加法:

 、偻(hào)相加,取相同的符號(hào),把絕對(duì)值相加。

  ②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

  ③一個(gè)數(shù)與0相加不變。

  減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

  乘法:

 、賰蓴(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。

 、谌魏螖(shù)與0相乘得0、

 、鄢朔e為1的兩個(gè)有理數(shù)互為倒數(shù)。

  除法:

  ①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

 、0不能作除數(shù)。

  乘方:求N個(gè)相同因數(shù)A的積的運(yùn)算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)或指數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

  2、實(shí)數(shù)

  無(wú)理數(shù)

  無(wú)理數(shù):無(wú)限不循環(huán)小數(shù)叫無(wú)理數(shù),例如:π=…

  平方根:

 、偃绻粋(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。

 、谌绻粋(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。

 、垡粋(gè)正數(shù)有2個(gè)平方根;0的平方根為0;負(fù)數(shù)沒(méi)有平方根。

 、芮笠粋(gè)數(shù)A的平方根運(yùn)算,叫做開(kāi)平方,其中A叫做被開(kāi)方數(shù)。

  立方根:

  ①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

 、矍笠粋(gè)數(shù)A的立方根的運(yùn)算叫開(kāi)立方,其中A叫做被開(kāi)方數(shù)。

  實(shí)數(shù):

 、賹(shí)數(shù)分有理數(shù)和無(wú)理數(shù)。

  ②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣;

  ③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來(lái)表示。

  3、代數(shù)式

  代數(shù)式:?jiǎn)为?dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

  合并同類項(xiàng):

 、偎帜赶嗤,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng);②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

 、墼诤喜⑼愴(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

 、贁(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

  ②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

 、垡粋(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

  整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。

  冪的運(yùn)算:

  A^M+A^N=A^(M+N)

 。ˋ^M)^N=A^(MN

  (A/B)^N=A^N/B^N

  除法一樣。

  整式的乘法:

 、賳雾(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 、趩雾(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

 、鄱囗(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

  公式兩條:平方差公式:A^2—B^2=(A+B)(A—B);

  完全平方公式:(A+B)^2=A^2+2AB+B^2;(A—B)^2=A^2—2AB+B^2、

  整式的除法:

  ①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

 、诙囗(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

  分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

  方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

  分式:

 、僬紸除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0、

 、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

  分式的運(yùn)算:

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數(shù)。

  加減法:

 、偻帜阜质较嗉訙p,分母不變,把分子相加減。

 、诋惙帜傅姆质较韧ǚ郑癁橥帜傅姆质,再加減。

  分式方程:

  ①分母中含有未知數(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  B、方程與不等式

  1、方程與方程組

  一元一次方程:

 、僭谝粋(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。

 、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數(shù)式,所得結(jié)果仍是等式。

  解一元一次方程的步驟:去分母,移項(xiàng),合并同類項(xiàng),未知數(shù)系數(shù)化為1、

  二元一次方程:含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的.方程叫做二元一次方程。

  二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。

  適合一個(gè)二元一次方程的一組未知數(shù)的值,叫做這個(gè)二元一次方程的一個(gè)解。

  二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程組的解。

  解二元一次方程組的方法:代入消元法;加減消元法。

  一元二次方程:只有一個(gè)未知數(shù),并且未知數(shù)的項(xiàng)的最高系數(shù)為2的方程:ax^2+bx+c=0;

  1)一元二次方程的二次函數(shù)的關(guān)系

  大家已經(jīng)學(xué)過(guò)二次函數(shù)(即拋物線)了,對(duì)他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數(shù)來(lái)表示,其實(shí)一元二次方程也是二次函數(shù)的一個(gè)特殊情況,就是當(dāng)Y=0的時(shí)候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來(lái),一元二次方程就是二次函數(shù)中,圖像與X軸的交點(diǎn)。也就是該方程的解了

  2)一元二次方程的解法

  大家知道,二次函數(shù)有頂點(diǎn)式(—b/2a,4ac—b^2/4a),這大家要記住,很重要,因?yàn)樵谏厦嬉呀?jīng)說(shuō)過(guò)了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解

  (1)配方法

  利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解

  (2)分解因式法

  提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的形式去解

 。3)公式法

  這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={—b+√[b^2—4ac)]}/2a,X2={—b—√[b^2—4ac)]}/2a

  3)解一元二次方程的步驟:

 。1)配方法的步驟:

  先把常數(shù)項(xiàng)移到方程的右邊,再把二次項(xiàng)的系數(shù)化為1,再同時(shí)加上1次項(xiàng)的系數(shù)的一半的平方,最后配成完全平方公式

  (2)分解因式法的步驟:

  把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

 。3)公式法

  就把一元二次方程的各系數(shù)分別代入,這里二次項(xiàng)的系數(shù)為a,一次項(xiàng)的系數(shù)為b,常數(shù)項(xiàng)的系數(shù)為c

  4)韋達(dá)定理

  利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=—b/a,二根之積=c/a

  也可以表示為x1+x2=—b/a,x1x2=c/a。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用

  5)一元二次方程根的情況

  利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diao ta”,而△=b2—4ac,這里可以分為3種情況:

  I當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根;

  II當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根;

  III當(dāng)△B,則A+C>B+C;

  在不等式中,如果減去同一個(gè)數(shù)(或加上一個(gè)負(fù)數(shù)),不等式符號(hào)不改向;

  例如:如果A>B,則A—C>B—C;

  在不等式中,如果乘以同一個(gè)正數(shù),不等式符號(hào)不改向;

  例如:如果A>B,則A*C>B*C(C>0);

  在不等式中,如果乘以同一個(gè)負(fù)數(shù),不等號(hào)改向;

  例如:如果A>B,則A*C

  如果不等式乘以0,那么不等號(hào)改為等號(hào);

  所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘的數(shù)就不等于0,否則不等式不成立;

  3、函數(shù)

  變量:因變量Y,自變量X。

  在用圖像表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

  一次函數(shù):

 、偃魞蓚(gè)變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。

 、诋(dāng)B=0時(shí),稱Y是X的正比例函數(shù)。

  一次函數(shù)的圖像:

 、侔岩粋(gè)函數(shù)的自變量X與對(duì)應(yīng)的因變量Y的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對(duì)應(yīng)點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數(shù)的圖像。

 、谡壤瘮(shù)Y=KX的圖像是經(jīng)過(guò)原點(diǎn)的一條直線。

 、墼谝淮魏瘮(shù)中,當(dāng)K〈0,B〈O時(shí),則經(jīng)234象限;

  當(dāng)K〈0,B〉0時(shí),則經(jīng)124象限;

  當(dāng)K〉0,B〈0時(shí),則經(jīng)134象限;

  當(dāng)K〉0,B〉0時(shí),則經(jīng)123象限。

  ④當(dāng)K〉0時(shí),Y的值隨X值的增大而增大,當(dāng)X〈0時(shí),Y的值隨X值的增大而減少。

  二空間與圖形

  A、圖形的認(rèn)識(shí)

  1、點(diǎn),線,面

  點(diǎn),線,面:

  ①圖形是由點(diǎn),線,面構(gòu)成的。

  ②面與面相交得線,線與線相交得點(diǎn)。

  ③點(diǎn)動(dòng)成線,線動(dòng)成面,面動(dòng)成體。

  展開(kāi)與折疊:

 、僭诶庵,任何相鄰的兩個(gè)面的交線叫做棱,側(cè)棱是相鄰兩個(gè)側(cè)面的交線,棱柱的所有側(cè)棱長(zhǎng)相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長(zhǎng)方體。

 、贜棱柱就是底面圖形有N條邊的棱柱,上下底面就是N邊形。

  截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。

  視圖:主視圖,左視圖,俯視圖。

  多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

  弧、扇形:

 、儆梢粭l弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。

 、趫A可以分割成若干個(gè)扇形。

  2、角

  線:

 、倬段有兩個(gè)端點(diǎn)。

  ②將線段向一個(gè)方向無(wú)限延長(zhǎng)就形成了射線。射線只有一個(gè)端點(diǎn)。

  ③將線段的兩端無(wú)限延長(zhǎng)就形成了直線。直線沒(méi)有端點(diǎn)。

 、芙(jīng)過(guò)兩點(diǎn)有且只有一條直線。

  比較長(zhǎng)短:

 、賰牲c(diǎn)之間的所有連線中,線段最短。兩點(diǎn)之間直線最短。

 、趦牲c(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。

  角的度量與表示:

 、俳怯蓛蓷l具有公共端點(diǎn)的射線組成,兩條射線的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。

 、谝欢鹊1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

  角的比較:

 、俳且部梢钥闯墒怯梢粭l射線繞著他的端點(diǎn)旋轉(zhuǎn)而成的。

  ②一條射線繞著他的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所成的角叫做平角,180、始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時(shí),所成的角叫做周角,360、

 、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。

  平行:

  ①同一平面內(nèi),不相交的兩條直線叫做平行線。

  ②經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行。

 、廴绻麅蓷l直線都與第3條直線平行,那么這兩條直線互相平行。

  垂直:

 、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。

  ②互相垂直的兩條直線的交點(diǎn)叫做垂足。

 、燮矫鎯(nèi),過(guò)一點(diǎn)有且只有一條直線與已知直線垂直。

  垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

  垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無(wú)限延長(zhǎng)有關(guān),再看后面的,垂直平分線是一條直線,所以在畫(huà)垂直平分線的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì)講)一定要把線段穿出2點(diǎn)。

  垂直平分線定理:

  性質(zhì)定理:在垂直平分線上的點(diǎn)到該線段兩端點(diǎn)的距離相等;

  判定定理:到線段2端點(diǎn)距離相等的點(diǎn)在這線段的垂直平分線上;

  角平分線:把一個(gè)角平分的射線叫該角的角平分線。

  定義中有幾個(gè)要點(diǎn)要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會(huì)出現(xiàn)直線,這是角平分線的對(duì)稱軸才會(huì)用直線的,這也涉及到軌跡的問(wèn)題,一個(gè)角的角平分線就是到角兩邊距離相等的點(diǎn)的集合。

  性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等;

  判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上;

  正方形:一組鄰邊相等的矩形是正方形

  性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)

  判定:

  1、對(duì)角線相等的菱形

  2、鄰邊相等的矩形

  二、基本定理

  1、過(guò)兩點(diǎn)有且只有一條直線

  2、兩點(diǎn)之間線段最短

  3、同角或等角的補(bǔ)角相等——補(bǔ)角=180—角度。

  4、同角或等角的余角相等——余角=90—角度。

  5、過(guò)一點(diǎn)有且只有一條直線和已知直線垂直

  6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

  7、平行公理:經(jīng)過(guò)直線外一點(diǎn),有且只有一條直線與這條直線平行

  8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

  9、同位角相等,兩直線平行

  10、內(nèi)錯(cuò)角相等,兩直線平行

  11、同旁內(nèi)角互補(bǔ),兩直線平行

  12、兩直線平行,同位角相等

  13、兩直線平行,內(nèi)錯(cuò)角相等

  14、兩直線平行,同旁內(nèi)角互補(bǔ)

  15、定理:三角形兩邊的和大于第三邊

  16、推論:三角形兩邊的差小于第三邊

  17、三角形內(nèi)角和定理:三角形三個(gè)內(nèi)角的和等于180°

  18、推論1:直角三角形的兩個(gè)銳角互余

  19、推論2:三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

  20、推論3:三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

  21、全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

  22、邊角邊公理(SAS):有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)三角形全等

  23、角邊角公理(ASA):有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  24、推論(AAS):有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  25、邊邊邊公理(SSS):有三邊對(duì)應(yīng)相等的兩個(gè)三角形全等

  26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

  27、定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

  28、定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

  29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

  30、推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊

  31、推論2:等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

  32、推論3:等邊三角形的各角都相等,并且每一個(gè)角都等于60°

  33、等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

  34、等腰三角形的性質(zhì)定理:等腰三角形的兩個(gè)底角相等(即等邊對(duì)等角)

  35、推論1:三個(gè)角都相等的三角形是等邊三角形

  36、推論:有一個(gè)角等于60°的等腰三角形是等邊三角形

  37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

  38、直角三角形斜邊上的中線等于斜邊上的一半

  39、定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

  40、逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

  41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

  42、定理1:關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

  43、定理:如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

  44、定理3:兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長(zhǎng)線相交,那么交點(diǎn)在對(duì)稱軸上

  45、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

  46、勾股定理:直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

  47、勾股定理的逆定理:如果三角形的三邊長(zhǎng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形

  48、定理:四邊形的內(nèi)角和等于360°

  49、四邊形的外角和等于360°

  50、多邊形內(nèi)角和定理:n邊形的內(nèi)角的和等于(n—2)×180°

  51、推論:任意多邊的外角和等于360°

  52、平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等

  53、平行四邊形性質(zhì)定理2:行四邊形的對(duì)邊相等

  54、推論:夾在兩條平行線間的平行線段相等

  55、平行四邊形性質(zhì)定理3:平行四邊形的對(duì)角線互相平分

  56、平行四邊形判定定理1:兩組對(duì)角分別相等的四邊形是平行四邊形

  57、平行四邊形判定定理2:兩組對(duì)邊分別相等的四邊形是平行四邊形

  58、平行四邊形判定定理3:對(duì)角線互相平分的四邊形是平行四邊形

  59、平行四邊形判定定理4:一組對(duì)邊平行相等的四邊形是平行四邊形

  60、矩形性質(zhì)定理1:矩形的四個(gè)角都是直角

  61、矩形性質(zhì)定理2:矩形的對(duì)角線相等

  62、矩形判定定理1:有三個(gè)角是直角的四邊形是矩形

  63、矩形判定定理2:對(duì)角線相等的平行四邊形是矩形

  64、菱形性質(zhì)定理1:菱形的四條邊都相等

  65、菱形性質(zhì)定理2:菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角

  66、菱形面積=對(duì)角線乘積的一半,即S=(a×b)÷2

  67、菱形判定定理1:四邊都相等的四邊形是菱形

  68、菱形判定定理2:對(duì)角線互相垂直的平行四邊形是菱形

  69、正方形性質(zhì)定理1:正方形的四個(gè)角都是直角,四條邊都相等

  70、正方形性質(zhì)定理2:正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角

  71、定理1:關(guān)于中心對(duì)稱的兩個(gè)圖形是全等的

  72、定理2:關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過(guò)對(duì)稱中心,并且被對(duì)稱中心平分

  73、逆定理:如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對(duì)稱

  74、等腰梯形性質(zhì)定理:等腰梯形在同一底上的兩個(gè)角相等

  75、等腰梯形的兩條對(duì)角線相等

  76、等腰梯形判定定理:在同一底上的兩個(gè)角相等的梯形是等腰梯形

  77、對(duì)角線相等的梯形是等腰梯形

  78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

  79、推論1:經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰

  80、推論2:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊

  81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半

  82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2,S=L×h

  83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc,ad=bc,那么a:b=c:d

  84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d

  85、(3)等比性質(zhì):如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

  86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例

  87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線),所得的對(duì)應(yīng)線段成比例

  88、定理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊

  89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對(duì)應(yīng)成比例

  90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與原三角形相似

  91、相似三角形判定定理1:兩角對(duì)應(yīng)相等,兩三角形相似(ASA)

  92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似

  93、判定定理2:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS)

  94、判定定理3:三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)

  95、定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似(HL)

  96、性質(zhì)定理1:相似三角形對(duì)應(yīng)高的比,對(duì)應(yīng)中線的比與對(duì)應(yīng)角平分線的比都等于相似比

  97、性質(zhì)定理2:相似三角形周長(zhǎng)的比等于相似比

  98、性質(zhì)定理3:相似三角形面積的比等于相似比的平方

  99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值sin(a)=cos(90—a),cos(a)=sin(90—a)(a<90)

  100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值tan(a)=cot(90—a),cot(a)=tan(90—a)

  101、圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合

  102、圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合

  103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合

  104、同圓或等圓的半徑相等

  105、到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓

  106、和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線

  107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線

  108、到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線

  109、定理:不在同一直線上的三點(diǎn)確定一個(gè)圓。

  110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧

  111、推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧

 、谙业拇怪逼椒志經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條。ㄖ睆剑

 、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧

  112、推論2

  圓的兩條平行弦所夾的弧相等

  113、圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形

  114、定理

  在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等

  115、推論

  在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等

  116、定理

  一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半

  117、推論1

  同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等

  118、推論2

  半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑

  119、推論3

  如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形

  120、定理

  圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角

  121、①直線L和⊙O相交0<=d<r

 、谥本L和⊙O相切d=r

 、壑本L和⊙O相離d>r

  122、切線的判定定理

  經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線

  123、切線的性質(zhì)定理

  圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑

  124、推論1

  經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)

  125、推論2

  經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心

  126、切線長(zhǎng)定理

  從圓外一點(diǎn)引圓的兩條切線相交與一點(diǎn),它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角

  127、圓的外切四邊形的兩組對(duì)邊的和相等

  128、弦切角定理

  弦切角等于它所夾的弧對(duì)的圓周角?

  129、推論

  如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等

  130、相交弦定理

  圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等

  131、推論

  如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)

  132、切割線定理

  從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)?

  133、推論

  從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條

  割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等

  134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上

  135、①兩圓外離d>R+r

 、趦蓤A外切d=R+r

  ③兩圓相交R—r<d<R+r(R>r)

 、軆蓤A內(nèi)切d=R—r(R>r)

 、輧蓤A內(nèi)含d<R—r(R>r)

  136、定理

  相交兩圓的連心線垂直平分兩圓的公共弦

  137、定理

  把圓平均分成n(n≥3):

 、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

 、平(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形

  138、定理

  任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓

  139、正n邊形的每個(gè)內(nèi)角都等于(n—2)×180°/n

  140、定理

  正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形

  141、正n邊形的面積Sn=pn*rn/2,p表示正n邊形的周長(zhǎng)

  142、正三角形面積√3a^2/4,a表示邊長(zhǎng)

  143、如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n—2)180°/n=360°化為(n—2)(k—2)=4

  144、弧長(zhǎng)計(jì)算公式:L=n兀R/180——》L=nR

  145、扇形面積公式:S扇形=n兀R^2/360=LR/2

  146、內(nèi)公切線長(zhǎng)=d—(R—r),外公切線長(zhǎng)=d—(R+r)

【初中數(shù)學(xué)總結(jié)知識(shí)點(diǎn)】相關(guān)文章:

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)06-14

數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)06-10

初中數(shù)學(xué)必備知識(shí)點(diǎn)總結(jié)03-01

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-15

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)07-22

初中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)11-05

初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)11-24

【經(jīng)典】數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)07-16

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(精選)06-16

初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)12-05