初中數(shù)學知識要點大集合
前面也為大家講過,圓的知識對于大家來說并不陌生,接下來讓我們來學習初中數(shù)學圓的基礎知識吧。
圓的定義
幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等于定長的點的集合叫做圓。
概括
把一個圓按一條直線對折過去,并且完全重合,展開再換個方向對折,折出后,這些折痕相交的一個點,叫做圓心,用字母O表示。連接圓心和圓上的任意一點的線段叫做半徑,用字母r表示。通過圓心并且兩端都在圓上的線段叫做直徑,用字母d表示。圓心決定圓的位置,半徑和直徑?jīng)Q定圓的大小。在同一個圓或等圓中,半徑都相等,直徑也都相等,直徑是半徑的2倍,半徑是直徑的1/2。
用字母表示是:d=2r或r=d/2
溫馨提示:為大家整合的是初中數(shù)學圓的基礎知識總結,老師提醒大家做好筆記了。
初中數(shù)學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內(nèi)容學習,希望同學們很好的掌握下面的內(nèi)容。
平面直角坐標系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學知識點:平面直角坐標系的構成
對于平面直角坐標系的構成內(nèi)容,下面我們一起來學習哦。
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內(nèi)容都能很好的掌握,同學們認真學習吧。
初中數(shù)學知識點:點的坐標的性質
下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。
初中數(shù)學知識點:因式分解的一般步驟
關于數(shù)學中因式分解的一般步驟內(nèi)容學習,我們做下面的知識講解。
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。
初中數(shù)學知識點:因式分解
下面是對數(shù)學中因式分解內(nèi)容的知識講解,希望同學們認真學習。
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
、俨粶蕘G字母
、诓粶蕘G常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
、芙Y果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
、奘醉椮撎柗爬ㄌ柾
⑦括號內(nèi)同類項合并。
通過上面對因式分解內(nèi)容知識的講解學習,相信同學們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學們的學習很好的幫助。
【初中數(shù)學知識要點大】相關文章:
初中數(shù)學知識點06-07
初中數(shù)學知識點歸納.07-30
初中數(shù)學知識點總結07-14
初中數(shù)學知識點資料06-13
初中數(shù)學知識點整理02-19
【薦】初中數(shù)學知識點總結07-04
初中數(shù)學知識點歸納總結12-02
初中數(shù)學知識點(精選20篇)04-23
初中數(shù)學知識點精選15篇11-08
初中數(shù)學知識點(15篇)02-24