- 相關(guān)推薦
初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)
在平時(shí)的學(xué)習(xí)中,很多人都經(jīng)常追著老師們要知識(shí)點(diǎn)吧,知識(shí)點(diǎn)也可以理解為考試時(shí)會(huì)涉及到的知識(shí),也就是大綱的分支。為了幫助大家更高效的學(xué)習(xí),以下是小編整理的初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié),僅供參考,大家一起來(lái)看看吧。
初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)1
圓的定理:
1不在同一直線上的三點(diǎn)確定一個(gè)圓。
2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧
②弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧
、燮椒窒宜鶎(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形
4圓是定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合
5圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7同圓或等圓的半徑相等
8到定點(diǎn)的`距離等于定長(zhǎng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(zhǎng)為半徑的圓
9定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等
10推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等
中考數(shù)學(xué)知識(shí)點(diǎn)復(fù)習(xí)口訣
有理數(shù)的加法運(yùn)算
同號(hào)相加一邊倒;異號(hào)相加“大”減“小”,
符號(hào)跟著大的跑;絕對(duì)值相等“零”正好。
合并同類項(xiàng)
合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
去、添括號(hào)法則
去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),
括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),
括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
一元一次方程
已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。
平方差公式
平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
完全平方公式
完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;
首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
因式分解
一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,
兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,
四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),
就用一三來(lái)分組,否則二二去分組,
五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,
以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
單項(xiàng)式運(yùn)算
加、減、乘、除、乘(開)方,三級(jí)運(yùn)算分得清,
系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
一元一次不等式解題步驟
去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)合并好,再把系數(shù)來(lái)除掉,
兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。
一元一次不等式組的解集
大大取較大,小小取較小,小大、大小取中間,大小、小大無(wú)處找。
一元二次不等式、一元一次絕對(duì)值不等式的解集
大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。
分式混合運(yùn)算法則
分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);
乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;
加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;
變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。
中考數(shù)學(xué)知識(shí)點(diǎn)歸納:平面直角坐標(biāo)系
平面直角坐標(biāo)系
1、平面直角坐標(biāo)系
在平面內(nèi)畫兩條互相垂直且有公共原點(diǎn)的數(shù)軸,就組成了平面直角坐標(biāo)系。
其中,水平的數(shù)軸叫做x軸或橫軸,取向右為正方向;鉛直的數(shù)軸叫做y軸或縱軸,取向上為正方向;兩軸的交點(diǎn)O(即公共的原點(diǎn))叫做直角坐標(biāo)系的原點(diǎn);建立了直角坐標(biāo)系的平面,叫做坐標(biāo)平面。
為了便于描述坐標(biāo)平面內(nèi)點(diǎn)的位置,把坐標(biāo)平面被x軸和y軸分割而成的四個(gè)部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(diǎn),不屬于任何象限。
2、點(diǎn)的坐標(biāo)的概念
點(diǎn)的坐標(biāo)用(a,b)表示,其順序是橫坐標(biāo)在前,縱坐標(biāo)在后,中間有“,”分開,橫、縱坐標(biāo)的位置不能顛倒。平面內(nèi)點(diǎn)的坐標(biāo)是有序?qū)崝?shù)對(duì),當(dāng)時(shí),(a,b)和(b,a)是兩個(gè)不同點(diǎn)的坐標(biāo)。
初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)2
函數(shù)
、傥恢玫拇_定與平面直角坐標(biāo)系
位置的確定
坐標(biāo)變換
平面直角坐標(biāo)系內(nèi)點(diǎn)的特征
平面直角坐標(biāo)系內(nèi)點(diǎn)坐標(biāo)的符號(hào)與點(diǎn)的象限位置
對(duì)稱問(wèn)題:P(x,y)→Q(x,- y)關(guān)于x軸對(duì)稱P(x,y)→Q(- x,y)關(guān)于y軸對(duì)稱P(x,y)→Q(- x,-y)關(guān)于原點(diǎn)對(duì)稱
變量、自變量、因變量、函數(shù)的定義
函數(shù)自變量、因變量的取值范圍(使式子有意義的條件、圖象法) 56、函數(shù)的圖象:變量的變化趨勢(shì)描述
②一次函數(shù)與正比例函數(shù)
一次函數(shù)的.定義與正比例函數(shù)的定義
一次函數(shù)的圖象:直線,畫法
一次函數(shù)的性質(zhì)(增減性)
一次函數(shù)y=kx+b(k≠0)中k、b符號(hào)與圖象位置
待定系數(shù)法求一次函數(shù)的解析式(一設(shè)二列三解四回)
一次函數(shù)的平移問(wèn)題
一次函數(shù)與一元一次方程、一元一次不等式、二元一次方程的關(guān)系(圖象法)
一次函數(shù)的實(shí)際應(yīng)用
一次函數(shù)的綜合應(yīng)用(1)一次函數(shù)與方程綜合(2)一次函數(shù)與其它函數(shù)綜合(3)一次函數(shù)與不等式的綜合(4)一次函數(shù)與幾何綜合
初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)3
一、目標(biāo)與要求
1.了解一元二次方程及有關(guān)概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,應(yīng)用一元二次方程概念解決一些簡(jiǎn)單題目。
2.掌握通過(guò)配方法、公式法、因式分解法降次──解一元二次方程,掌握依據(jù)實(shí)際問(wèn)題建立一元二次方程的數(shù)學(xué)模型的方法,應(yīng)用熟練掌握以上知識(shí)解決問(wèn)題。
二、重點(diǎn)
1.一元二次方程及其它有關(guān)的概念及其一般形式和一元二次方程的.有關(guān)概念并用這些概念解決問(wèn)題。
2.判定一個(gè)數(shù)是否是方程的根;
3.用配方法、公式法、因式分解法降次──解一元二次方程。
4.運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次──轉(zhuǎn)化的數(shù)學(xué)思想。
5.利用實(shí)際問(wèn)題建立一元二次方程的數(shù)學(xué)模型,并解決這個(gè)問(wèn)題.
三、難點(diǎn)
1.一元二次方程配方法解題。
2.通過(guò)提出問(wèn)題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念。
3.用公式法解一元二次方程時(shí)的討論。
4.通過(guò)根據(jù)平方根的意義解形如x2=n,知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程。
5.建立一元二次方程實(shí)際問(wèn)題的數(shù)學(xué)模型,方程解與實(shí)際問(wèn)題解的區(qū)別。
6.由實(shí)際問(wèn)題列出的一元二次方程解出根后還要考慮這些根是否確定是實(shí)際問(wèn)題的根。
7.知識(shí)框架
四、知識(shí)點(diǎn)、概念總結(jié)
1.一元二次方程:方程兩邊都是整式,只含有一個(gè)未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。
2.一元二次方程有四個(gè)特點(diǎn):
(1)含有一個(gè)未知數(shù);
(2)且未知數(shù)次數(shù)最高次數(shù)是2;
(3)是整式方程。要判斷一個(gè)方程是否為一元二次方程,先看它是否為整式方程,若是,再對(duì)它進(jìn)行整理。如果能整理為 ax2+bx+c=0(a≠0)的形式,則這個(gè)方程就為一元二次方程。
(4)將方程化為一般形式:ax2+bx+c=0時(shí),應(yīng)滿足(a≠0)
3. 一元二次方程的一般形式:一般地,任何一個(gè)關(guān)于x的一元二次方程,經(jīng)過(guò)整理,都能化成如下形式ax2+bx+c=0(a≠0)。
一個(gè)一元二次方程經(jīng)過(guò)整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項(xiàng),a是二次項(xiàng)系數(shù);bx是一次項(xiàng),b是一次項(xiàng)系數(shù);c是常數(shù)項(xiàng)。
初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)4
圓與弧的公式:
正n邊形的每個(gè)內(nèi)角都等于(n-2)180/n
弧長(zhǎng)計(jì)算公式:L=n兀R/180
扇形面積公式:S扇形=n兀R^2/360=LR/2
內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
、賰蓤A外離dR+r②兩圓外切d=R+r③兩圓相交R-rr)④兩圓內(nèi)切d=R-r(Rr)⑤兩圓內(nèi)含dr)
定理相交兩圓的連心線垂直平分兩圓的公共弦
定理把圓分成n(n3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形⑵經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的'多邊形是這個(gè)圓的外切正n邊形
定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360,因此k(n-2)180/n=360化為(n-2)(k-2)=4
弧長(zhǎng)計(jì)算公式:L=n兀R/180
因式分解公式:
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
平方差公式:a平方-b平方=(a+b)(a-b)
完全平方和公式:(a+b)平方=a平方+2ab+b平方
完全平方差公式:(a-b)平方=a平方-2ab+b平方
兩根式:ax^2+bx+c=a[x-(-b+(b^2-4ac))/2a][x-(-b-(b^2-4ac))/2a]兩根式
立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2)
立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)
完全立方公式:a^33a^2b+3ab^2b^3=(ab)^3.
扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長(zhǎng)=d-(R-r)外公切線長(zhǎng)=d-(R+r)
一元二次方程公式與判別式:
一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理
判別式
b2-4ac=0 注:方程有兩個(gè)相等的實(shí)根
b2-4ac>0 注:方程有兩個(gè)不等的實(shí)根
b2-4ac<0 注:方程沒(méi)有實(shí)根,有共軛復(fù)數(shù)根
三角不等式:
|a+b||a|+|b|
|a-b||a|+|b|
|a|=ab
|a-b||a|-|b|-|a||a|
等差數(shù)列公式:
某些數(shù)列前n項(xiàng)和
1+2+3+4+5+6+7+8+9++n=n(n+1)/21+3+5+7+9+11+13+15++(2n-1)=n2
2+4+6+8+10+12+14++(2n)=n(n+1)12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3
兩角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)
ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式
tan2A=2tanA/(1-tan2A)
ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
sin(A/2)=((1-cosA)/2)sin(A/2)=-((1-cosA)/2)
cos(A/2)=((1+cosA)/2)cos(A/2)=-((1+cosA)/2)
tan(A/2)=((1-cosA)/((1+cosA))tan(A/2)=-((1-cosA)/((1+cosA))
ctg(A/2)=((1+cosA)/((1-cosA))ctg(A/2)=-((1+cosA)/((1-cosA))
和差化積
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)5
1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。
2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);
、屏庑蔚乃臈l邊都相等;
⑶菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
、攘庑问禽S對(duì)稱圖形。
提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長(zhǎng)的平方等于對(duì)角線一半的平方和。
3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。
4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)
5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的`公因式。
6、公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。
7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。
8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開方數(shù)。
9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0
10、平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒(méi)有平方根開平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開平方。
11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。
12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0
13、含根號(hào)式子的意義:表示a的平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。
14、求正數(shù)a的算術(shù)平方根的方法;
完全平方數(shù)類型:①想誰(shuí)的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。
求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。
初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)6
1、正數(shù)和負(fù)數(shù)的有關(guān)概念
(1)正數(shù):比0大的數(shù)叫做正數(shù);
負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);
0既不是正數(shù),也不是負(fù)數(shù)。
(2)正數(shù)和負(fù)數(shù)表示相反意義的量。
2、有理數(shù)的概念及分類
3、有關(guān)數(shù)軸
(1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長(zhǎng)度。數(shù)軸是一條直線。
(2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。
(3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。
(2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。
若a、b互為相反數(shù),則a+b=0;
相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。
(3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。
4、任何數(shù)的絕對(duì)值是非負(fù)數(shù)。
最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。
5、利用絕對(duì)值比較大小
兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;
兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。
6、有理數(shù)加法
(1)符號(hào)相同的.兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和.
(2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零.
(3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù).
加法的交換律:a+b=b+a
加法的結(jié)合律:(a+b)+c=a+(b+c)
7、有理數(shù)減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。
8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡(jiǎn)的形式,負(fù)數(shù)前面的加號(hào)可以省略不寫.
例如:14+12+(-25)+(-17)可以寫成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”
9、有理數(shù)的乘法
兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。
第一步:確定積的符號(hào) 第二步:絕對(duì)值相乘
10、乘積的符號(hào)的確定
幾個(gè)有理數(shù)相乘,因數(shù)都不為 0 時(shí),積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);
當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。
11、倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒(méi)有倒數(shù)。
正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)
倒數(shù)是本身的只有1和-1。
【初中中考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初中數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)04-25
高中學(xué)考數(shù)學(xué)必考知識(shí)點(diǎn)總結(jié)06-16
初中化學(xué)必考知識(shí)點(diǎn)02-26
初中數(shù)學(xué)圓知識(shí)點(diǎn)總結(jié)04-06
初中數(shù)學(xué)蘇教版知識(shí)點(diǎn)總結(jié)04-25
初中數(shù)學(xué)代數(shù)知識(shí)點(diǎn)總結(jié)04-25
數(shù)學(xué)初中全部知識(shí)點(diǎn)總結(jié)04-25