- 相關(guān)推薦
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)
在我們平凡無奇的學(xué)生時(shí)代,說起知識點(diǎn),應(yīng)該沒有人不熟悉吧?知識點(diǎn)是指某個(gè)模塊知識的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。為了幫助大家掌握重要知識點(diǎn),以下是小編為大家收集的高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié),歡迎閱讀,希望大家能夠喜歡。
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)1
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x,y+y)。
a+0=0+a=a。
向量加法的運(yùn)算律:
交換律:a+b=b+a;
結(jié)合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0
AB-AC=CB.即“共同起點(diǎn),指向被減”
a=(x,y)b=(x,y)則a-b=(x-x,y-y).
3、數(shù)乘向量
實(shí)數(shù)λ和向量a的乘積是一個(gè)向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當(dāng)λ>0時(shí),λa與a同方向;
當(dāng)λ<0時(shí),λa與a反方向;
當(dāng)λ=0時(shí),λa=0,方向任意。
當(dāng)a=0時(shí),對于任意實(shí)數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實(shí)數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當(dāng)∣λ∣>1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當(dāng)∣λ∣<1時(shí),表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數(shù)與向量的乘法滿足下面的運(yùn)算律
結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:①如果實(shí)數(shù)λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
4、向量的的數(shù)量積
定義:兩個(gè)非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個(gè)向量的數(shù)量積(內(nèi)積、點(diǎn)積)是一個(gè)數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的`數(shù)量積的坐標(biāo)表示:a·b=x·x+y·y。
向量的數(shù)量積的運(yùn)算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數(shù)量積的性質(zhì)
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)2
考點(diǎn)一、映射的概念
1、了解對應(yīng)大千世界的對應(yīng)共分四類,分別是:一對一多對一一對多多對多
2、映射:設(shè)A和B是兩個(gè)非空集合,如果按照某種對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)元素x,在集合B中都存在的一個(gè)元素y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)映射(mapping)、映射是特殊的對應(yīng),簡稱“對一”的對應(yīng)、包括:一對一多對一
考點(diǎn)二、函數(shù)的概念
1、函數(shù):設(shè)A和B是兩個(gè)非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,對于集合A中的任意一個(gè)數(shù)x,在集合B中都存在確定的數(shù)y與之對應(yīng),那么,就稱對應(yīng)f:A→B為集合A到集合B的一個(gè)函數(shù)、記作y=f(x),xA、其中x叫自變量,x的取值范圍A叫函數(shù)的定義域;與x的值相對應(yīng)的y的值函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域、函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射、
2、函數(shù)的三要素:定義域、值域、對應(yīng)關(guān)系、這是判斷兩個(gè)函數(shù)是否為同一函數(shù)的依據(jù)、
3、區(qū)間的概念:設(shè)a,bR,且a
①(a,b)={xa
、荩╝,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)
考點(diǎn)三、函數(shù)的表示方法
1、函數(shù)的三種表示方法列表法圖象法解析法
2、分段函數(shù):定義域的不同部分,有不同的.對應(yīng)法則的函數(shù)、注意兩點(diǎn):①分段函數(shù)是一個(gè)函數(shù),不要誤認(rèn)為是幾個(gè)函數(shù)、②分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集、
考點(diǎn)四、求定義域的幾種情況
、偃鬴(x)是整式,則函數(shù)的定義域是實(shí)數(shù)集R;
②若f(x)是分式,則函數(shù)的定義域是使分母不等于0的實(shí)數(shù)集;
、廴鬴(x)是二次根式,則函數(shù)的定義域是使根號內(nèi)的式子大于或等于0的實(shí)數(shù)集合;
、苋鬴(x)是對數(shù)函數(shù),真數(shù)應(yīng)大于零、
⑤因?yàn)榱愕牧愦蝺鐩]有意義,所以底數(shù)和指數(shù)不能同時(shí)為零、
、奕鬴(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,則函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)集合;
、呷鬴(x)是由實(shí)際問題抽象出來的函數(shù),則函數(shù)的定義域應(yīng)符合實(shí)際問題
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)3
1、定義法:
判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可、
2、轉(zhuǎn)換法:
當(dāng)所給命題的充要條件不易判斷時(shí),可對命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷、
3、集合法
在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:
若A∩B,則p是q的'充分條件、
若A∪B,則p是q的必要條件、
若A=B,則p是q的充要條件、
若A∈B,且B∈A,則p是q的既不充分也不必要條件、
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)4
1、求函數(shù)的單調(diào)性:
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
。1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);
。2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);
。3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)、
利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:
、偾蠛瘮(shù)yf(x)的定義域;
、谇髮(dǎo)數(shù)f(x);
③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;
、芙獠坏仁絝(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間、
反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),
。1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
。2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);
(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立、
2、求函數(shù)的極值:
設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)、
可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:
(1)確定函數(shù)f(x)的定義域;
(2)求導(dǎo)數(shù)f(x);
。3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個(gè)小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:
。4)檢查f(x)的``符號并由表格判斷極值、
3、求函數(shù)的值與最小值:
如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值、函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的、
求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:
。1)求f(x)在區(qū)間(a,b)上的極值;
。2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值
4、解決不等式的有關(guān)問題:
。1)不等式恒成立問題(絕對不等式問題)可考慮值域、
f(x)(xA)的值域是[a,b]時(shí),
不等式f(x)0恒成立的充要條件是f(x)max0,即b0;
不等式f(x)0恒成立的充要條件是f(x)min0,即a0、
f(x)(xA)的值域是(a,b)時(shí),
不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0、
(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0、
5、導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:
實(shí)際生活求解(。┲祮栴},通常都可轉(zhuǎn)化為函數(shù)的最值、在利用導(dǎo)數(shù)來求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說明、
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)5
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。
3、a—邊長,S=6a2,V=a3。
4、長方體a—長,b—寬,c—高S=2(ab+ac+bc)V=abc。
5、棱柱S—h—高V=Sh。
6、棱錐S—h—高V=Sh/3。
7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。
9、圓柱r—底半徑,h—高,C—底面周長S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h。
10、空心圓柱R—外圓半徑,r—內(nèi)圓半徑h—高V=πh(R^2—r^2)。
11、r—底半徑h—高V=πr^2h/3。
12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。
14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。
15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。
16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。
17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)。
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)6
1、“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關(guān)系(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={2-1=0}B={-1,1}“元素相同”
結(jié)論:對于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋(gè)集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
、苋绻鸄íB同時(shí)BíA那么A=B
3、不含任何元素的.集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)7
1、一些基本概念:
(1)向量:既有大小,又有方向的量、
(2)數(shù)量:只有大小,沒有方向的量、
(3)有向線段的三要素:起點(diǎn)、方向、長度、
(4)零向量:長度為0的向量、
(5)單位向量:長度等于1個(gè)單位的向量、
(6)平行向量(共線向量):方向相同或相反的非零向量、
※零向量與任一向量平行、
(7)相等向量:長度相等且方向相同的向量、
2、向量加法運(yùn)算:
⑴三角形法則的.特點(diǎn):首尾相連、
、破叫兴倪呅畏▌t的特點(diǎn):共起點(diǎn)
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)8
有界性
設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界、
單調(diào)性
設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D、如果對于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的、單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)、
奇偶性
設(shè)為一個(gè)實(shí)變量實(shí)值函數(shù),若有f(—x)=—f(x),則f(x)為奇函數(shù)、
幾何上,一個(gè)奇函數(shù)關(guān)于原點(diǎn)對稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會改變、
奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)、
設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(—x),則f(x)為偶函數(shù)、
幾何上,一個(gè)偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會改變、
偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)、
偶函數(shù)不可能是個(gè)雙射映射、
連續(xù)性
在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性、直觀上來說,連續(xù)的.函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會隨之足夠小的函數(shù)、如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個(gè)突然的跳躍甚至無法定義,則這個(gè)函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)、
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)9
。1)不等關(guān)系
感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實(shí)際背景。
。2)一元二次不等式
①經(jīng)歷從實(shí)際情境中抽象出一元二次不等式模型的過程。
、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。
、蹠庖辉尾坏仁剑瑢o定的一元二次不等式,嘗試設(shè)計(jì)求解的`程序框圖。
。3)二元一次不等式組與簡單線性規(guī)劃問題
①從實(shí)際情境中抽象出二元一次不等式組。
、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組(參見例2)。
、蹚膶(shí)際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
。4)基本不等式
、偬剿鞑⒘私饣静坏仁降淖C明過程。
、跁没静坏仁浇鉀Q簡單的(。┲祮栴}。
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)10
一、數(shù)列定義:
如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差常用字母d表示。
等差數(shù)列的通項(xiàng)公式為:an=a1+(n-1)d(1)
前n項(xiàng)和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均屬于正整數(shù)。
二、解釋說明:
從(1)式可以看出,an是n的一次函數(shù)(d≠0)或常數(shù)函數(shù)(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(shù)(d≠0)或一次函數(shù)(d=0,a1≠0),且常數(shù)項(xiàng)為0。
在等差數(shù)列中,等差中項(xiàng):一般設(shè)為Ar,Am+An=2Ar,所以Ar為Am,An的'等差中項(xiàng),且為數(shù)列的平均數(shù)。
且任意兩項(xiàng)am,an的關(guān)系為:an=am+(n-m)d
它可以看作等差數(shù)列廣義的通項(xiàng)公式。
三、推論公式:
從等差數(shù)列的定義、通項(xiàng)公式,前n項(xiàng)和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數(shù)列,等等。
四、基本公式:
和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1
首項(xiàng)=2和÷項(xiàng)數(shù)-末項(xiàng)
末項(xiàng)=2和÷項(xiàng)數(shù)-首項(xiàng)
末項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)-1)×公差
高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)11
一、平面的基本性質(zhì)與推論
1、平面的基本性質(zhì):
公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);
公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
2、空間點(diǎn)、直線、平面之間的位置關(guān)系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點(diǎn)A與平面一點(diǎn)B的連線和平面內(nèi)不經(jīng)過點(diǎn)B的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個(gè)平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角
二、空間中的平行關(guān)系
1、直線與平面平行(核心)
定義:直線和平面沒有公共點(diǎn)
判定:不在一個(gè)平面內(nèi)的'一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)
性質(zhì):一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,則這條直線就和兩平面的交線平行
2、平面與平面平行
定義:兩個(gè)平面沒有公共點(diǎn)
判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
三、空間中的垂直關(guān)系
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
性質(zhì):垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面
直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直
【高中學(xué)考數(shù)學(xué)必考知識點(diǎn)總結(jié)】相關(guān)文章:
初中數(shù)學(xué)必考知識點(diǎn)總結(jié)04-25
初中中考數(shù)學(xué)必考知識點(diǎn)總結(jié)04-25
高中數(shù)學(xué)學(xué)考知識點(diǎn)總結(jié)04-25
初中化學(xué)必考知識點(diǎn)02-26
數(shù)學(xué)學(xué)業(yè)水平考高中知識點(diǎn)總結(jié)04-06
高中數(shù)學(xué)學(xué)業(yè)水平考知識點(diǎn)總結(jié)04-13
初中學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)04-25