《圓柱的體積》教案【精華15篇】
作為一位杰出的教職工,總歸要編寫教案,教案是教學藍圖,可以有效提高教學效率。那么你有了解過教案嗎?下面是小編收集整理的《圓柱的體積》教案,僅供參考,歡迎大家閱讀。
《圓柱的體積》教案1
教學內容:
教材第10~12頁圓柱的體積公式,例1、例2和練一練,練習二第1~5題。
教學要求:
1.使學生理解和掌握圓柱的體積計算公式,并能根據(jù)題里的條件正確地求出圓柱的體積。
2.培養(yǎng)學生初步的空間觀念和思維能力;讓學生認識轉化的思考方法。
教具準備:
圓柱體積演示教具。
教學重點:
理解和掌握圓柱的體積計算公式。
教學難點:
圓柱體積計算公式的推導。
教學過程:
一、鋪墊孕伏:
1.求下面各圓的面積(回答)。
(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
要求說出解題思路。
2.想一想:學習計算圓的面積時,是怎樣得出圓的面積計算公式的?指出:把一個圓等分成若干等份,可以拼成一個近似的長方形。這個長方形的面積就是圓的面積。
3.提問:什么叫體積?常用的體積單位有哪些?
4.已知長方體的底面積s和高h,怎樣計算長方體的體積?(板書:長方體的體積=底面積高)
二、自主研究:
1.根據(jù)學過的體積概念,說說什么是圓柱的體積。(板書課題)
2.怎樣計算圓柱的體積呢?我們能不能根據(jù)圓柱的底面可以像上面說的轉化成一個長方形,通過切、拼的方法,把圓柱轉化為已學過的立體圖形來計算呢,現(xiàn)在我們大家一起來討論。
3.公式推導。(可分小組進行)
(1)請同學指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導。(切拼轉化)
(3)探索求圓柱體積的公式。
根據(jù)圓面積剪、拼轉化成長方形的思路,我們也可以運用切拼轉化的方法把圓柱體變成學過的幾何形體來推導出圓柱的體積計算公式。你能想出怎樣切、拼轉化嗎?請同學們仔細觀察以下實驗,邊觀察邊思考圓柱的體積、底面積、高與拼成的幾何形體之間的關系。教師演示圓柱體積公式推導演示教具:把圓柱的底面分成許多相等的扇形(數(shù)量一般為16個),然后把圓柱切開,照下圖拼起來,(圖見教材)就近似于一個長方體?梢韵胂螅殖傻纳刃卧蕉,拼成的立體圖形就越接近于長方體。
(4)討論并得出結果。
你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉化成近似的體。這個長方體的底面積與圓柱體的底面積,這個長方體的高與圓柱體的高。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是:。(板書:圓柱的體積=底面積高)用字母表示:。(板書:V=Sh)
(5)小結。
圓柱的體積是怎樣推導出來的?計算圓柱的'體積必須知道哪些條件?
4.教學例1。
出示例1,審題。提問:你能獨立完成這題嗎?指名一同學板演,其余學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?(單位統(tǒng)一,最后結果用體積單位)
0.9米=90厘米2490=2160(立方厘米)
5.做練習二第1題。
讓學生做在課本上。指名口答,集體訂正。追問:圓柱的體積是怎樣算的?
6.教學試一試一個圓柱的底面半徑是2分米,高是8米,求它的體積。指名一人板演,其余學生做在練習本上。評講試一試小結:求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。
7.教學例2。
出示例2,審題。小組討論計算方法,然后學生做在練習本上。集體訂正:列式依據(jù)是什么?應注意哪些問題?(單位統(tǒng)一,最后結果用體積單位,結果保留整數(shù)。)
三、鞏固練習
第12頁,練一練。
四、課堂小結
這節(jié)課學習了什么內容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉化,把圓柱體切拼轉化成長方體,(在課題下板書:圓柱些長方體)得出了圓柱體的體積計算公式V=Sh。
五、布置作業(yè)
練習二第2,3,4,5題及數(shù)訓。
六、板書設計:
圓柱的體積
長方體的體積=底面積高
圓柱的體積=底面積高
V=Sh
《圓柱的體積》教案2
教學目標
1.理解圓柱體體積公式的推導過程,掌握計算公式.
2.會運用公式計算圓柱的體積.
教學重點
圓柱體體積的計算.
教學難點
理解圓柱體體積公式的推導過程.
教學過程
一、復習準備
(一)教師提問
1.什么叫體積?怎樣求長方體的體積?
2.圓的面積公式是什么?
3.圓的面積公式是怎樣推導的?
(二)談話導入
同學們,我們在研究圓面積公式的推導時,是把它轉化成我們學過的長方形知識的來解決的.那圓柱的體積怎樣計算呢?能不能也把它轉化成我們學過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題.(板書:圓柱的體積)
二、新授教學
(一)教學圓柱體的體積公式.(演示動畫“圓柱體的體積1”)
1.教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體.
2.學生利用學具操作.
3.啟發(fā)學生思考、討論:
。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
。2)通過剛才的實驗你發(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了.
、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化.
、劢崎L方體的高就是圓柱的高,沒有變化.
4.學生根據(jù)圓的面積公式推導過程,進行猜想.
。1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
。3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5.啟發(fā)學生說出通過以上的觀察,發(fā)現(xiàn)了什么?
。1)平均分的份數(shù)越多,拼起來的形體越近似于長方體.
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體.
6.推導圓柱的體積公式
(1)學生分組討論:圓柱體的體積怎樣計算?
(2)學生匯報討論結果,并說明理由.
因為長方體的體積等于底面積乘高.(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高.(板書:圓柱的體積=底面積×高)
。3)用字母表示圓柱的體積公式.(板書:V=Sh)
(二)教學例4.
1.出示例4
例4.一根圓柱形鋼材,底面積是50平方厘米,高是2。1米,它的體積是多少?
2。1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米.
2.反饋練習
(1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
(2)一個圓柱形罐頭盒的.內底面半徑是5厘米,高15厘米,它的容積是多少?
(三)教學例5.
1.出示例5
例5.一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
。3。14×
=3。14×100
。314(平方厘米)
水桶的容積:
314×25
=7850(立方厘米)
。7。8(立方分米)
答:這個水桶的容積大約是7。8立方分米.
三、課堂小結
通過本節(jié)課的學習,你有什么收獲?
1.圓柱體體積公式的推導方法.
2.公式的應用.
四、課堂練習
。ㄒ唬┨畋
底面積S(平方米)15
高h(米)3
圓柱的體積V(立方米)6.4
。ǘ┣笙旅娓鲌A柱的體積.
。ㄈ┮粋圓柱形水池,半徑是10米,深1。5米.這個水池占地面積是多少?水池的容積是多少立方米?
五、課后作業(yè)
。ㄒ唬┣笙铝袌D形的表面積和體積.(圖中單位:厘米)
(二)兩個底面積相等的圓柱,一個圓柱的高為4。5分米,體積為81立方分米.另一個圓柱的高為3分米,體積是多少?
六、板書設計
《圓柱的體積》教案3
教學內容:
北師大版小學數(shù)學教材六年級下冊第8—10頁。
教學目標:
1、結合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,能夠運用公式正確的計算圓柱的體積和容積。
2、初步學會用轉化的思想和方法,提高解決實際問題的能力。
教學重點、難點:
重點:掌握圓柱體積的計算公式。
難點:圓柱體積計算公式的推導。
教學過程:
一、情境導入
1、出示教學情境:怎樣用學過的知識測量出老師的水杯里裝了多少毫升的水?
想一想:杯子里的水是什么形狀?準備用什么方法來計算水的體積?
讓學生討論得出:把杯子里的水倒入長方體或正方體容器,只要量出長方體的長、寬和水的高,就能求出水的體積。
2、出示第二情境:圓柱形的木柱子、壓路機的車輪這樣的圓柱用這種方法還行嗎?怎么辦?
怎樣計算圓柱的體積?這就是我們本節(jié)課要研究的問題。(板書課題:計算圓柱的體積)
二、探究新知:
1、大膽猜想:你覺得圓柱體積的大小和什么有關?
學生猜想,教師出示相應的課件演示,讓學生觀察,體會圓柱的體積和它的底面積和高,有關系,有怎樣的關系。
2、圓柱的'體積可能等于什么?(說說猜想依據(jù))
長方體,正方體的體積都等于“底面積×高”猜想圓柱的體積也可能等于“底面積×高”。
(用課件展示切拼過程,讓學生觀察等分的份數(shù)越多越接近長方體,彌補直觀操作等分的份數(shù)太多不易操作的缺陷。)
學生討論交流:
。1)把圓柱拼成長方體后,什么變了,什么沒變?
。2)拼成的長方體與圓柱之間有什么聯(lián)系?
。3)通過觀察得到什么結論?
得到:圓柱的體積=底面積×高 V=Sh
三、拓展交流
要求圓柱的體積只要找到它的底面積和高就可以,分別討論知道半徑、直徑、地面周長,該怎么求出圓柱的體積,總結出公式。
四、練習設計:
1、想一想,填一填:
把圓柱體切割拼成近似(),它們的()相等。長方體的高就是圓柱體的( ),長方體的底面積就是圓柱體的( ),因為長方體的體積=(),所以圓柱體的體積=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圓柱體體積用字母表示為( )
2、判斷正誤,對的畫“√”,錯誤的畫“×”。
(1)圓柱體的底面積越大,它的體積越大。×
(2)圓柱體的高越長,它的體積越大!
(3)圓柱體的體積與長方體的體積相等!
(4)圓柱體的底面直徑和高可以相等!
3、分別計算下列各圖形的體積,再說說這幾個圖形體積計算方法之間的聯(lián)系。
4×3×8
6×6×6
3.14×(5÷2)2×8
。96(cm3)
=216(cm3)
。157(cm3)
4、計算下面各圓柱的體積。
60×4
3.14×12×5
3.14×(6÷2)2×10
=240(cm3)
。15.7(cm3)
。282.6(dm3)
5、這個杯子能否裝下3000mL的牛奶?
3.14×(14÷2)2×20
=3077.2(cm3)
。3077.2(mL)
3077.2mL>3000mL
答:這個杯子能裝下3000mL的牛奶。
五、課堂小結:談談這節(jié)課你有哪些收獲?
《圓柱的體積》教案4
教學目標
圓柱的體積(1)
圓柱的體積(教材第25頁例5)。
探索并掌握圓柱的體積計算公式,會運用公式計算圓柱的體積,體會轉化的思想方法。
教學重難點
1.掌握圓柱的體積公式,并能運用其解決簡單實際問題。
2.理解圓柱體積公式的推導過程。
教學工具
推導圓柱體積公式的圓柱教具一套。
教學過程
復習導入
1、口頭回答。
(1)什么叫體積?怎樣求長方體的體積?
(2)怎樣求圓的面積?圓的面積公式是什么?
(3)圓的面積公式是怎樣推導的?在學生回憶的基礎上,概括出“轉化圖形——建立聯(lián)系——推導公式”的方法。
2、引入新課。
我們在推導圓的面積公式時,是把它轉化成近似的長方形,找到這個長方形與圓各部分之間的聯(lián)系,由長方形的面積公式推導出了圓的面積公式。今天,我們能不能也用這個思路研究圓柱體積的計算問題呢?
教師板書:圓柱的體積(1)。
新課講授
1、教學圓柱體積公式的推導。
(1)教師演示。
把圓柱的底面分成16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積相等,底面是扇形的立體圖形。
(2)學生利用學具操作。
(3)啟發(fā)學生思考、討論:
①圓柱切開后可以拼成一個什么立體圖形?
學生:近似的長方體。
②通過剛才的實驗你發(fā)現(xiàn)了什么?
教師:拼成的近似長方體和圓柱相比,體積大小變了沒有?形狀呢?
學生:拼成的近似長方體和圓柱相比,底面的形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方體的高就是圓柱的高,沒有變化。故體積不變。
(4)學生根據(jù)圓的面積公式推導過程,進行猜想:
①如果把圓柱的底面平均分成32份,拼成的形狀是怎樣的?
、谌绻褕A柱的底面平均分成64份,拼成的'形狀是怎樣的?
、廴绻褕A柱的底面平均分成128份,拼成的形狀是怎樣的?
(5)啟發(fā)學生說出:通過以上的觀察,發(fā)現(xiàn)了什么?
、倨骄值姆輸(shù)越多,拼起來的形狀越接近長方體。
②平均分的份數(shù)越多,每份扇形的面積就越小,弧就越短,拼起來的長方體的長就越接近一條線段,這樣整個立體形狀就越接近長方體。
(6)推導圓柱的體積公式。
①學生分組討論:圓柱的體積怎樣計算?
、趯W生匯報討論結果,并說明理由。
教師:因為長方體的體積等于底面積乘高,而近似長方體的體積等于圓柱的體積,近似長方體的底面積等于圓柱的底面積,近似長方體的高等于圓柱的高,所以圓柱的體積=底面積×高。
2、教學補充例題。
(1)出示補充例題:一根圓柱形鋼材,底面積是1250px2,高是2.1m。它的體積是多少?
(2)指名學生分別回答下面的問題:
①這道題已知什么?求什么?
、谀懿荒芨鶕(jù)公式直接計算?
、塾嬎阒耙⒁馐裁?
學生:計算時既要分析已知條件和問題,還要注意先統(tǒng)一計量單位。
(3)出示下面幾種解答方案,讓學生判斷哪個是正確的。
、50×2.1=105(cm3)答:它的體積是2625px3。
、2.1m=5250px 50×210=10500(cm3)
答:它的體積是262500px3。
、1250px2=0.5m2 0.5×2.1=1.05(m3)
答:它的體積是1.05m3。
、1250px2=0.005m2
0.005×2.1=0.0105(m3)
答:它的體積是0.0105m3。
先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單。對不正確的第①、③種解答要說說錯在什么地方。
(4)引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?
教師板書:V=πr2h。
課堂作業(yè)
教材第25頁“做一做”和教材第28頁練習五的第1題。學生獨立做在練習本上,做完后集體訂正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1題:(從左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
課堂小結
通過這節(jié)課的學習,你有什么收獲?你有什么感受?
課后作業(yè)
完成練習冊中本課時的練習。
第4課時圓柱的體積(1)
課后小結
1.“圓柱的體積”是學生在掌握了圓柱的基本特征以及長方體、正方體體積計算方法等基礎上學習的。它是今后學習圓錐體積計算的基礎。
2.采用小組合作學習,從而引發(fā)自主探究,最后獲取知識的新方式來代替教師講授的老模式,能取得事半功倍的效果。
3.推導公式時間過長,可能導致練習時間少,練習量少,要注意把控。
課后習題
教材第25頁“做一做”和教材第28頁練習五的第1題。學生獨立做在練習本上,做完后集體訂正。
答案:“做一做”:1. 6750(cm3)
2. 7.85m3
第1題:(從左往右)
3.14×52×2=157(cm3)
3.14×(4÷2)2×12=150.72(cm3)
3.14×(8÷2)2×8=401.92(cm3)
《圓柱的體積》教案5
學內容:教科書第46—47頁練習十一的第8—13題。
教學目的:通過綜合練習,使學生進一步掌握有關圓柱的表面積和體積的計算。
教具準備:長方體、正方體和圓拄模型各一個。
教學過程:
一、復習
1.復習平面圖形。
教師:我們已經學過的平面圖形有哪些?
引導學生總結出已學過的平面圖形有:長方形、正方形、平行四邊形、三角形、梯形和圓。
教師:它們各自的面積公式是什么?
指名學生分別回答,教師板書在黑板上:
長方形的面積=長×寬
正方形的面積=邊長×邊長
平行四邊形的面積=底×高
三角形的面積= ×底×高
梯形的面積:= ×(上底+下底)×高
圓的面積=∏×R×R
2.復習立體圖形。
教師:我們已經學過的立體圖形有哪些?
引導學生總結出已經學過的立體圖形有:長方體、正方體和圓柱。
教師:它們的表面積和體積怎樣求?
出示長方體、正方體和圓柱的模型,引導學生通過觀察回憶它們表面積和體積的
計算公式·,教師列成表格板書在黑板上:
教師:這三個立體圖形的體積公式能否統(tǒng)一成一個呢?
使學生明確長方體、正方體和圓柱的體積公式可以統(tǒng)一寫成:“底面積×高”。
教師:—如果長方體與圓柱的底面積和高分別相等,那么它們的體積相等嗎?為什么?
二、課堂練習
l。做練習十一的`第8、9題。
讓學生獨立做在練習本上,教師行間巡視,做完后集體訂正。
2。做練習十一的第10題。
這是一道聯(lián)系實際的題目。讀題后,教師提問:
“這道題要求前輪轉動一周壓路的面積。實際上是求什么?”
“那么這個圓柱的底面直徑和高分別是多少呢?”
使學生弄清求前輪轉動一周壓路的面積,就是求前輪這個圓柱的側面積。而這個圓柱的底面直徑就是前輪的直徑,這個圓柱的高就是前輪的輪寬。
分析后。讓學生做在練習本上。做完后集體訂正。
3.做練習十一的第11題。
指名一學生讀題后.教師提問:
“這道題已知什么?求什么?”
“裝了 桶水是什么意思?”
要使學生明白:裝了 桶水就是說水的體積是水桶體積的 即水的體積是24× 立方分米。根據(jù)圓柱體積的計算公式,可以直接計算,也可以用列方程來解。
設水面高為X分米。
24× =7.5×X
X=18十7.5
X=2.4
4.做練習十一的第12題。
第(1)題,引導學生從圓柱的體積計算公式人手,由于“圓柱的體積=底面積×高”,所以當?shù)酌娣e相等財,高和體積成正比例。
第(2)題,啟發(fā)學生根據(jù)第(1)題的結論列出比例式進行解答:即:
設另一個圓柱的體積為x立方分米:
=
x=
X=40
5.做練習十一的第13題。
讀題后,教師提問:
“兩個圓柱的底面半徑相等說明了什么?”
“要求第二個圓柱的體積比第一個多多少,應該先求什么?怎樣求?”
啟發(fā)學生仿照第12題,利用比例的知識先求出第二個圓柱的體積.再求出第二個圓柱的體積比第一個多多少立方厘米。
三、選做題
讓學有余力的學生做練習十一的第14、15題和思考題。
1,練習十一的第14題。
教學前教師要準備一個實物,或者制作一個教具。通過對教具的觀察,使學生明確鋼管的體積就是大圓柱的體積減去中間一個小圓柱的體積后剩下的體積,即鋼管體積=大圓柱的體積一小圓柱的體積。
2.練習十一的第15題。
這道題是有關體積計算的應用題。要先求出圓柱形糧囤的容積后,再計算其他問題就比較簡便。
3.思考題。
這道題需要知道鐵塊的體積等于它完全浸入水里后所排開水的體積。那么,只要求出鐵塊從圓柱形容器中的水里取出后,水面下降后所減少的這部分圓柱形水柱的體積,就是鐵塊的體積。
具體解法: 3.14×( )’×2
=3.14×25×2
=157(立方米)
《圓柱的體積》教案6
教學目標:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、進一步提高學生解決問題的能力。
教學重、難點:
1、理解圓柱體積公式的推導過程。
2、能夠初步地學會運用體積公式解決簡單的實際問題。
3、理解圓柱體積公式的推導過程。
教學準備:
圓柱切割組合模具、小黑板。
教學過程:
一、創(chuàng)設情境,生成問題
1、什么是體積?(物體所占空間的大小叫做物體的體積。)
2、長方體的體積該怎樣計算?歸納到底面積乘高上來。
3、圓的面積怎樣計算?
二、探索交流,解決問題
1、計算圓的面積時,是把圓面積轉化成我們學過的長方形進行計算的,能不能把圓柱轉化成我們學過的立體圖形來計算它的體積?
(啟發(fā)學生思考。)
2、把圓柱的底面分成許多相等的扇形(16等分),然后把圓柱沿高切開,可能會拼成怎樣的圖形?教師演示,引導學生進行觀察。
3、思考:
(1)圓柱切開后可以拼成一個什么形體?(長方體)
(2)通過實驗你發(fā)現(xiàn)了什么?小組討論:實驗前后,什么變了?什么沒變?討論后,整理出來,再進行匯報。
(拼成的近似長方體體積大小沒變,形狀變了,拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似長方形,而底面的面積大小沒有發(fā)生變化。近似長方形的高就是圓柱的高,沒有變化。)
4、推導圓柱體積公式
小組討論:怎樣計算圓柱的'體積?
學生匯報討論結果。
長方體的體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的底面積,高就是圓柱的高,所以圓柱的體積也可以用底面積乘高來計算。
師:圓柱的體積怎樣計算?用字母公式,怎樣表示?
板書:V=Sh
5、算一算:已知一根柱子的底面半徑為0.4米,高為5米。你能算出它的體積嗎?
三、鞏固應用練習。
1、一個圓柱形水桶,從桶內量得底面直徑是3分米,高是4分米,這個水桶的容積是多少升?說明:求水桶的容積,就是求水桶的體積。想一想先求什么?
2、一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?先求底面半徑再求底面積,最后求體積。已知底面周長對解決問題有什么幫助嗎?必須先求出什么?
四:課堂小結:
通過這節(jié)課你學會了哪些知識,有什么收獲?
五:課后作業(yè):
教材第9頁,練一練第1、3、4、題
《圓柱的體積》教案7
教學目標:
1、滲透轉化思想,培養(yǎng)學生的自主探索意識。
2、初步學會用轉化的數(shù)學思想和方法,解決實際問題的能力
3、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
教學重點:
掌握圓柱體積的計算公式。
教學難點:
圓柱體積的計算公式的推導。
教學準備:主題圖、圓柱形物體
教學過程:
一、復習:
1、長方體的體積公式是什么?
。ㄩL方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么,怎么求。
3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的'計算公式。
二、新課:
1、圓柱體積計算公式的推導:
。1)用將圓轉化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。
(課件演示將圓柱細分,拼成一個長方體)
。3)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學補充例題:
(1)出示補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
(2)指名學生分別回答下面的問題:
、 這道題已知什么?求什么?
② 能不能根據(jù)公式直接計算?
③ 計算之前要注意什么?
(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)
(3)出示下面幾種解答方案,讓學生判斷哪個是正確的.
、賄=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
、2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
、50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.
(4)做第20頁的“做一做”。
學生獨立做在練習本上,做完后集體訂正。
3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?(V=πr2h)
4、教學例6:
。1)出示例6,并讓學生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應先知道杯子的容積)
(2)學生嘗試完成例6。
、 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
、 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)
5、比較一下補充例題、例6有哪些相同的地方和不同的地方?
。ㄏ嗤氖嵌家脠A柱的體積計算公式進行計算;不同的是補充例題已給出底面積,可直接應用公式計算;例6只知道底面直徑,要先求底面積,再求體積。)
三、鞏固練習:
1、做第26頁的第1題:
2、練習五的第2題:
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習題.要求學生審題后,知道要先求出底面積,再求圓柱的體積。
四、全課總結:
《圓柱的體積》教案8
新課程觀強調:
教材是一種重要的課程資源,對于學校和教師來說,課程實施更多地應該是如何更好地用教材,而不是簡單地教教材。在實際教學中,如何落實這一理念?本人結合圓柱的體積一課談談自己的實踐與思考。
■ [片段一]
■ 師生共同探究出圓柱的體積計算公式后對公式加以應用。師出示教材例4(蘇教版第12冊P8):一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,它的體積是多少?
■ 由于課前學生已進行了預習,多數(shù)學生是按照教材介紹的解法來解答:
■ 1.5米=150厘米 201150=3000(立方厘米)
■ 師:這道題還有其他結果嗎?(學生又沉入了深思)不一會兒,另外兩種結果紛紛展現(xiàn):
■ ①20平方厘米=0.002平方米 0.00211.5=0.003(立方米)
■ ②20平方厘米=0.2平方分米 1.5米=15分米 0.2115=3(立方分米)
■ 師:為什么會出現(xiàn)三種結果?
■ 經討論,學生才明白:從不同的角度去考慮問題,將得到不同的結果。
■ [片斷二]
■ 鞏固與應用階段,我將教材練習二中的一個填表題(表1)進行了加工組合呈現(xiàn)給學生這樣一個表格(表2)。
■ 表 1
■
■ 表2
■
■ 學生填表后,師:觀察前兩組數(shù)據(jù),你想說什么?
■ 學生獨立思考后再小組交流,最后匯報。
■ 生1:兩個圓柱的高相等,底面積是幾倍的關系,體積也是幾倍的關系。
■ 生2:兩個圓柱的高相等,底面積越大,體積就越大。
■ 師:觀察后兩組數(shù)據(jù),你想說什么?
■ 有了前面的基礎,學生很容易說出了后兩組的關系。
■ 學生的表述盡管不是很準確完美,但已說出了其中的`規(guī)律,而這個規(guī)律正是解答練習二第17、18題的基礎,又為下一單元比例的教學作了提前孕伏。
■ [片段三]
■ 教材的練習中有這樣一題:量一個圓柱形茶杯的高和底面直徑,算出它可裝水多少克?
■ 學生動手測量自備的圓柱形茶杯的有關數(shù)據(jù)并計算它的體積。
■ 師:水的生命之源。人每天都要飲用一定量的水,請大家課后查閱相關資料,計算自己每天需要飲用幾杯水(自己的杯子)才能保證健康,并把自己對水的想法寫下來,下節(jié)課我們再交流。
■ [教學反思]
■ 精心研究教材是用好教材的基礎
■ 教材作為教學的憑借與依據(jù),只不過是編者對學科知識、國家要求與學生進行整和思考的結晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種枷鎖,而應作為跳板編者意圖與學生實際的跳板。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創(chuàng)造性地利用教材。
■ 1、挖掘訓練空白,及時補白教材。編者在編寫教材時,也考慮了地域、學科、時間等因素,留下了諸多空白,我們使用教材時,要深入挖掘其中的訓練空白,及時補白教材。[片段一] 中的例題教學,就挖掘出了教材中的訓練空白,并沒有把教學簡單地停留在一種解答方法上,而是在學生預習的基礎上引導學生深入思考,在解決問題的過程中體會從不同的角度去考慮問題,將得到不同的結果的道理,從而學會多角度考慮問題,提高解決問題的能力。
■ 2、找出知識聯(lián)系,大膽重組教材。數(shù)學知識具有一定的結構,知識間存在著密切的聯(lián)系,我們在教學時不能只著眼于本節(jié)課的教學,而應找出知識間的內在聯(lián)系,幫助學生建立一個較為完整知識系統(tǒng)。[片斷二]的表1僅幫助學生熟練掌握體積公式,此外無更多的教學價值,而重組后的表2不僅實現(xiàn)了編者的意圖,而且為比例的教學作了提前孕伏。走出了數(shù)學教學的只見樹木,不見森林的點教學的誤區(qū)。
■ 落實課標理念是用好教材的關鍵
■ 能否用好教材,關鍵在于我們的課堂教學是否落實了新課標的理念。關注人是新課程的核心理念。我們的數(shù)學教學不能再以學科為中心,而應以學生為出發(fā)點和歸宿。教材在編寫時不可能面面俱到,教師要心里裝著學生,使用教材前反復琢磨,怎樣的教學才能符合新理念。前兩個片段就突破了學科中心和知識中心,走向了學生中心。[片斷三]在教材關注學生的基礎上向深層發(fā)展不僅讓學生動手測量,動腦計算,而且讓學生在課外展開調查研究;不僅關注知識技能,而且關注了態(tài)度、情感和價值觀(對生命之源水的自我看法)這一片斷的教學,其價值就在于滲透了人文關愛。
■ 學生獲得發(fā)展是用好教材的標準
■ 有的教師在教學中常常脫離教材,片面追求新課程的形式,而忽略了實質一切為了每一位學生的發(fā)展。每個學生在一節(jié)課的40分鐘里獲得最大發(fā)展應作為我們用好教材組織教學的追求。本節(jié)課緊扣教材,以本為本,著眼學生的發(fā)展,無論是知識技能、過程與方法、數(shù)學思考還是情感態(tài)度價值觀,學生都獲得了最大發(fā)展。
《圓柱的體積》教案9
教學內容:圓柱體積練習
教學目標:
1、使學生進一步認識體積的計算方法,能根據(jù)不同的條件求圓柱的體積。
2、學會計算圓柱形容器的容積,并能應用于實際求出所容物體的重量,解決實際生活中的一些問題。
教學重點
圓柱體體積中的一些實際問題。
教學難點
圓柱體體積中的一些實際問題。根據(jù)不同的條件求圓柱的'體積。
對策:
加強數(shù)學問題與生活問題的轉化。根據(jù)圓柱的容積的計算方法,能解決求圓柱容積的實際問題。
教學預設:
一、復習。
1、求下面圓柱的體積(口頭列式,不計算)
(1)底面積3平方分米,高4分米;
。2)底面半徑2厘米,高2厘米;
(3)底面直徑2分米,高3分米。
追問:圓柱的體積是怎樣計算的?(板書:V=Sh)
2、復習容積。
。1)提問:什么是容積?它與物體的體積有什么區(qū)別?
我們是按什么方法計算容積的?
(2)第27頁上第5題:先交流學生量的結果,板書幾組數(shù)據(jù),請學生分別計算。計算后交流解題思路:先求杯子的容積,再根據(jù)溶劑與重量之間的關系,計算出容納物體的重量。
二、解決生活中的實際問題
1、第28頁上第7題:先讀題,思考理解:擠出的牙膏可以看成是直徑為0.5或0.4厘米,高為2厘米的圓柱,從而想到這題計算求每天用去牙膏的體積的計算。
2、補充:一個圓柱形水池,從里面量底面直徑為12米,深2.5米。
。1)在這個水池的底面和四周抹上水泥,抹水泥部分的面積是多少?
。2)這個水池最多能蓄水多少噸?(每立方米水重1噸)
學生讀題后獨立解答,再組織交流解題思路,幫助學生區(qū)分表面積與溶積的計算方法。
3、補充:一個用塑料薄膜覆蓋的蔬菜棚,長10米,橫截面是一個直徑為6米的半圓。
。1)覆蓋在這個大棚上的塑料薄膜約有多少厘米?
。2)這個大棚的占地面積是多少?
。3)大棚的空間大約有多大?
通過這一組題,進一步讓學生學習用數(shù)學知識解決生活問題,區(qū)別這3個問題的本質。
三、拓展練習:
1、補充:有兩個底面積相等的圓柱,一個圓柱高為6分米,體積是48立方分米。另一個圓柱的高為5分米,體積是多少?
2、補充:有兩個體積相等的圓柱,第一個圓柱和第二個圓柱高的比是4:7。第一個圓柱的體積是2.4立方厘米,第二個圓柱的體積比第一個多多少立方厘米?
3、第28頁上的思考題
學生讀題理解:(1)圓鋼8厘米的體積就等于儲水桶4厘米的體積;(2)水桶9厘米高的體積就等于這段圓鋼的體積。
獨立作業(yè):第28頁上的第6、8、9題。
《圓柱的體積》教案10
圓柱的體積
教材簡析:
本節(jié)內容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。
教學目的:
1、運用遷移規(guī)律,引導學生借助因面積計算公式的推導方法來推導圓柱的體積計算公式,并理解這個過程。
2。會用圓柱的體積計算圓柱形物體的體積和容積,運用公式解決一些簡單的問題。
3。引導學生逐步學會轉化的數(shù)學思想和數(shù)學法,培養(yǎng)學生解決實際問題的能力
4。借助實物演示,培養(yǎng)學生抽象、概括的思維能力。
教 具:圓柱的體積公式演示教具,多媒體課件
教學過程:
一、情景引入
1、出示圓柱形水杯。
。1)老師在杯子里面裝滿水,想一想,水杯里的水是什么形狀的?(2)你能用以前學過的方法計算出這些水的體積嗎?
。3)討論后匯報:把水倒入長方體容器中,量出數(shù)據(jù)后再計算。(4)說一說長方體體積的計算公式。
2、創(chuàng)設問題情景。(課件顯示)
如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?
今天,我們就來一起研究圓柱體積的計算方法。(出示課題:圓柱的體積)(設計意圖:問題是思維的動力。通過創(chuàng)設問題情景,可以引導學生運用已有的生活經驗和舊知,積極思考,去探索和解決實際問題,并能制造認知沖突,形成"任務驅動"的探究氛圍。)
二、新課教學:
設疑揭題:我們能把一個圓采用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?今天我們一起來探討這個問題。板書課題:圓柱的體積。
1。探究推導圓柱的體積計算公式。
課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份……),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。C、依次解決上面三個問題。①把圓柱拼成長方體后,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積) ②拼成的長方體的底面積等于圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,并板書相應的內容。)③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)
討論并得出結果。你能根據(jù)這個實驗得出圓柱的體積計算公式嗎?為什么?讓學生再討論:圓柱體通過切拼,圓柱體轉化成近似的` 體。這個長方體的底面積與圓柱體的底面積 ,這個長方體的高與圓柱體的高 。因為長方體的體積等于底面積乘以高,所以,圓柱體的體積計算公式是: 。(板書:圓柱的體積=底面積×高)用字母表示: 。(板書:V=Sh)(設計意圖:在新課教學中,先讓學生通過復習舊知識,在觀察中理解,在比較中歸納,通過這些措施可以使學生切實經歷圓柱體積公式充分體現(xiàn)了教師的主導作用和學生的主體作用。這樣的教學,不僅有利于學生理解算理,掌握算法,而且在公式的推導過程當中,領悟了學習方法,培養(yǎng)了學生的學習能力、抽象概括能力和邏輯思維能力)
要用這個公式計算圓柱的體積必須知道什么條件?
填表:請同學看屏幕回答下面問題,
底面積(㎡)高(m)圓柱體積(m3)
63
0.5 8
52
。ㄔO計意圖:設計練習能使學生達到舉一反三的效果,從而訓練學生的技能。這是第一層基本練習,通過這道題可以使學生更好的掌握本課重點,夯實基礎知)
例:一個圓柱形油桶,底面內直徑是6分米,高是7分米。它的容積約是多少立方分米?(得數(shù)保留整立方分米)
解: d=6dm,h=7dm。r=3dm
S底 =πr2=3。14×32 =3。14×9 =28。26(dm2)
V =S底h =28。26×7 =197。82198dm3 答:油桶的容積約是198立方分
。ㄔO計意圖:使學生注意解題格式,注意體積的單位為三次方)
三.鞏固反饋
1.求下面圓柱體的體積。(單位:厘米)
同學板演,其余同學在作業(yè)本上做。板演的同學講解自己的解題方法題,教師歸納學生所用的解題方法,強調在解題的過程當中格式。(設計意圖:這是第二層變式練習。是讓學生在掌握公式的基礎上理解公式,學會靈活運用公式的訓練題。通過對公式的拓展性理解,可以進一步加深學生對圓柱體積公式的理解和掌握,同時也能培養(yǎng)學生的邏輯思維能力。)
練習:(回到想一想中) 圓柱形水杯的底面直徑是10cm,高是15cm。已知水杯中水的體積是整個水杯體積的 2/3 計算水杯中水的體積?
(設計意圖:這是第三層發(fā)展性練習,安排了密切聯(lián)系生活實際的習題,讓學生運用公式解決引入環(huán)節(jié)中的兩個問題,切實體驗到數(shù)學就存在于自己的身邊。)
四.拓展練習
1.一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,A是用4分米做底高6分米,B是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(結果保留π)
2.一個底面直徑是20cm的圓柱形容體里,放進一個不規(guī)則的鑄鐵零件后,容體里的水面升高4cm,求這鑄鐵零件的體積是多少?、
。ㄔO計意圖:安排了密切聯(lián)系生活實際的習題,讓學生運用公式解決引入環(huán)節(jié)中的兩個問題,使學生認識到數(shù)學的價值體驗到數(shù)學對于了解周圍世界和解決實際問題是非常有作用的;能使學生的思維處于積極的狀態(tài)達到培養(yǎng)學生思維的靈活性和創(chuàng)造性解決問題能力的目的。)
五.課堂小結:
1.談談這節(jié)課你有哪些收獲。
2.解題時需要注意那些方面。
(設計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用提問式小結,使學生暢談收獲、發(fā)現(xiàn)不足,既能訓練學生的語言表達能力,又能培養(yǎng)學生的歸納概括能力;同時通過對本節(jié)所學知識的總結與回顧,還能使學生學到的知識系統(tǒng)化、完整化。)
六.布置作業(yè)
1。A冊習題2。7
2。拓展練習2題
教學反思: 本節(jié)課的教學體現(xiàn)了:一、利用遷移規(guī)律引入新課,為學生創(chuàng)設良好的學習情境;二、遵循學生的認知規(guī)律,引導學生觀察、思考、說理,調動多種感觀參與學習;三、正確處理"兩主"關系,充分發(fā)揮學生的主體作用,注意學生學習的參與過程及知識的獲取過程,學生積極性高,學習效果好。達到預期效果,不足處學生討論時間控制太少,課后作業(yè)個別學生還是對公式不會靈活應用。
《圓柱的體積》教案11
目標:通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式;使學生理解圓柱的體積公式的推導過程,能夠運用公式正確地計算圓柱的體積。
重點:能夠正確計算圓柱體體積
教學難點:圓柱體體積公式的推導過程。
教具準備:圓柱的體積公式演示教具(把圓柱底面平均分成16個扇形,然后把它分成兩部分,兩部分分別用不同顏色區(qū)別開)。
教學過程:
一、復習
1.圓柱的側面積怎么求?
(圓柱的側面積=底面周長×高。)
2.長方體的體積怎樣計算?
學生可能會答出“長方體的體積=長×寬×高”,教師繼續(xù)引導學生想到長方體和正方體體積的統(tǒng)一公式“底面積×高”。
板書:長方體的體積=底面積×高
3.拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側面、表面各是什么圓柱有幾個底面?有多少條高?
二、導入新課
教師:請大家想一想,在學習圓的面積時,我們是怎樣把圓變成已學過的圖形再計算面積的?
先讓學生回憶,同桌的相互說說。
然后指名學生說一說圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓的面積和所拼成的長方形面積之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。
教師:怎樣計算圓柱的體積呢?大家仔細想想看,能不能把圓柱轉化成我們已經學過的圖形來求出它的體積?
讓學生相互討論,思考應怎樣進行轉化。
指名學生說說自己想到的方法,有的學生可能會說出將圓柱的底面分成扇形切開教師應該給予表揚。
教師:這節(jié)課我們就來研究如何將圓柱轉化成我們已經學過的圖形來求出它的體積。
板書課題:圓柱的體積
三、新課
1.圓柱體積計算公式的推導。
圓的面積是怎樣推導出來的?
圓柱體積計算公式的推導又會怎樣呢?(看模型,聯(lián)想長方體)
推導其體積計算公式
板書:圓柱的體積=底面積×高
教師:如果用V表示圓柱的`體積,S表示圓柱的底面積,h表示圓柱的高,可以得到圓柱的體積計算公式: V=Sh
2.教學例1
出示例1
(1)教師指名學生分別回答下面的問題:
這道題已知什么?求什么?
能不能根據(jù)公式直接計算?
計算之前要注意什么?
通過提問,使學生明確計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位。
(2)用投影出示下面幾種解答方案,讓學生判斷哪個是正確的?
V=Sh=50×2.l=105
答:它的體積是105立方厘米。
2.1米=110厘米。
V=Sh=50×210=10500
答:它的體積是1050O立方厘米。
50平方厘米=0.5立方米
V=Sh=0.5×2.1=1.05答:它的體積是1.05立方米。
50平方厘米=0.005平方米
V=Sh=0.005×2.1=0.0105立方米
答:它的體積是0.0105立方米。
先讓學生思考,然后指名學生回答哪個是正確的解答,并比較一下哪一種解答更簡單i對不正確的第、種解答要說說錯在什么地方。
五、作業(yè):
數(shù)學書: 9頁 第2、3、4、
《圓柱的體積》教案12
教學內容:
九年義務教育六年制第十二冊第36~37頁例4、例5及做一做,練習八的第1、2題。
教學目標:
1、理解圓柱體體積公式的推導過程,并會正確地計算出圓柱的體積。
2、培養(yǎng)學生的遷移能力、邏輯思維能力,并進一步發(fā)展空間觀念。
3、引導學生探索和解決問題,體驗轉化及極限的思想方法。
教學重點:圓柱體體積的計算.
教學難點:理解圓柱體體積公式的推導過程.
教具:多媒體課件、圓柱形容器、水、橡皮泥。
教學過程:
一、激凝導入
師: 大家都知道,水是生命之源!我們要養(yǎng)成節(jié)約用水的好習慣?汕皟商,老師家的水龍頭出了問題,你們看,一刻鐘就滴了這么多水。(出示裝有水的圓柱容器。)
。1)啟發(fā)思考:容器里面的水形成了什么形狀?(圓柱)你能知道這些水的體積嗎?你能想什么辦法知道它的體積?
。2)生回答。
2、出示橡皮泥捏成的圓柱體。
那你有辦法求出這個圓柱體橡皮泥的體積嗎?
生(熱情的):老師將它捏成長方體或正方體就可以了!
3、創(chuàng)設問題情境。
師小結:這么說同學們都有辦法將一些圓柱形的物體轉化為長方形或正方體來求它們的.體積,大家真了不起!那如果我們要求某些建筑如(出示課件:人民大會堂東門前的門柱和壓路機大前輪)雄偉的人民大會堂東門前的一個圓柱形門柱的體積,或者求壓路機圓柱形大前輪的體積,還能用剛才同學們想出來的辦法嗎?(不能)
那怎么辦?
學生試說出自己的辦法。
師:看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,是不是?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、經歷體驗、探究新知
1、推導圓柱的體積公式。
師:你們打算怎么去研究圓柱的體積?
小組同學討論研究的方法。
2、學生動手操作感知
。1)學生以小組為單位操作體驗。(操作學具,進行拼組)。
。2)學生小組匯報交流:
近似長方體的體積等于圓柱的體積;近似長方體的底面積等于圓柱的底面積;近似長方體的高就是圓柱的高。根據(jù)長方體的體積等于底面積乘高,得出圓柱體的體積也等于底面積乘高。。。。。。
。3)想像:如果把圓柱像這樣等分成32份、64、128份后再拼起來,會怎么樣?有怎樣的變化趨勢?分成無數(shù)份呢?(平均分的份數(shù)越多,拼起來的近似長方體的長越近似于直線,這樣整個圖形越近似于長方體。如果照這樣分成無限多份,拼出的圖形就是長方體)
3、教師課件演示圓柱轉化成長方體的過程。
4、師生共同推導出圓柱的體積公式:
長方體的體積=底面積高
圓柱的體積=底圓柱面積高
V = Sh
5、鞏固公式
、賄、S、h各表示什么?
、谥滥男l件就可以求圓柱的體積?
а、知道底面積和高可以直接用公式計算圓柱的體積;
b、知道底面半徑和高,可以先計算出底面積,再計算體積;
c、知道底面直徑和高,要先算出半徑,再算出底面積,最后才能計算出圓柱的體積。
學生回答后師板書。
6、教學例4、例5。
課件分別出示例4、例5,讓學生找出題中的條件和問題,然后獨立完成,集體訂正。
三、實踐練習
1、出示課件:人民大會堂東門前的門柱和壓路機大前輪的有關數(shù)據(jù)求出它的體積。
2、拓展延伸:同學們到工廠參加社會實踐。工人師傅拿出一塊長、寬、高分別是6厘米、5厘米、4厘米的長方體,問:同學們,現(xiàn)在我們要把這塊木料加工成一個體積最大的圓柱體,你們想一想,圓柱的底面直徑和高應是多少?小林想了想說:我知道了。
同學們,你們知道小林是怎樣想的嗎?
四、課堂總結;
通過本節(jié)課的學習,你有什么收獲?
《圓柱的體積》教案13
學習目標:
經歷探究不規(guī)則物體體積的轉化、測量和計算過程,在動手操作中初步建立“轉化”的數(shù)學思想,體驗“等積變形”的轉化過程。學習重點:應用圓柱的體積計算公式解決實際問題。
學習難點:理解瓶子的容積是由裝水的圓柱的體積和倒置后無水的圓柱的體積兩部分組成的。
學習過程
一.創(chuàng)設情境,提出問題。
每個小組桌子上有一個沒有裝滿水的礦泉水瓶。原本這是一瓶裝滿水的礦泉水,已經喝了一部分,你能根據(jù)它來提一個數(shù)學問題嗎?
1:瓶子還有多少水?(剩下多少水?)
2:喝了多少水?(也就是瓶子的空氣部分。)
3:這個瓶子一共能裝多少水?(也就是這個瓶子的容積是多少?)
二、小組交流、探究新知
1.獨立思考、嘗試解決問題
怎么求這個礦泉水瓶的容積?根據(jù)自己的生活學習經驗來想辦法解決,2.小組合作,探討瓶子的容積計算方法
小組合作活動一:要求:小組內拿出課前準備的礦泉水,先請一位同學倒出一部分,再把你的想法在小組內交流交流。
交流:哪位同學上來把你們的想法給大家交流分享一下?(生上臺演示講解。)
3.總結板書:水的體積+空氣部分體積=瓶子的容積。
三、同樣的方法完成課本例題及做一做。
1.完成例7。指名學生上臺板演,2.數(shù)學書P27做一做。
四、總結板書
水的體積+空氣部分體積=瓶子的容積
形狀變了體積不變
五、作業(yè):課本29頁練習第10題、13題。
教學反思
本節(jié)課是利用所學圓柱的知識解決實際問題。雖然備課時盡量考慮到可能出現(xiàn)的所有情況,但是實際上課的過程中還是出現(xiàn)了沒有預料到的情況。
首先,小組合作的時候分組比較大:即有的學生真的參與進去了,有的學生卻無事可干,因為計算量比較大,得到數(shù)據(jù)的同學忙著計算,沒有接觸到瓶子的同學沒有計算的數(shù)據(jù),也反映出我們平時小組合作時互相配合的'良好習慣還沒養(yǎng)成。如果我把小組設定為4人一組或2人一組的話,學生實際的參與程度會更高。
其次,本課的教學過程中瓶子的容積計算方法的推導過程中,滲透了簡便計算的方法,如果在理解底面積x(水的高+空氣部分的高)這一步時,如果配上教具展示(把教具中圓柱形的水和倒置后圓柱形的空氣部分剪下來,再拼接在一起,形成一個大圓柱。)學生更能理解空氣部分體積+水的體積=底面積x(水的高+空氣部分的高)表示的具體意義了。
最后,我感覺這節(jié)課注重了容積計算方法的推導過程,練習時間較少,還有更多不規(guī)則體積的計算,期待在以后的練習中,學生都能找到解決問題的方法!
《圓柱的體積》教案14
教學內容:
教科書第8~9頁的圓柱體積公式的推導和例4,完成練習二的第1~4題。
教學目標:
1、通過學生動手操作,分組交流,探究出圓柱體體積的計算方法。
2、使學生理解和掌握圓柱體積的計算方法,并能結合實際計算出有關圓柱體的物體的體積。
教學重點:
圓柱體積計算公式。
教學難點:
圓柱體積計算公式的推導。
教學理念:
1、學習內容緊密聯(lián)系生活實際。
2、學習的方式以多媒體展示、自主探索與小組討論為主。
教學設計:
教學步驟:
教師活動過程
學生活動過程
一、激疑引入
1、求裝在圓柱形容器中水的體積。
2、求橡皮泥捏的圓柱形體積。
3、創(chuàng)設情境。
1、出示裝了水的圓柱容器。
2、師:容器里面的水什么形狀,你們能想什么方法求出水的體積嗎?
3、出示圓柱形橡皮泥。
4、你們有方法求這個圓柱形橡皮泥的體積嗎?
5、課件出示:圓形柱子、壓路機的圓柱形大前輪。你有辦法求出它們的體積嗎?
6、今天,就讓我們一起來研究圓柱體積的計算方法。
1、學生討論后匯報。
2、指名回答
二、媒體展示、引導探究
1、回顧舊知,幫助遷移
2、動手操作,實現(xiàn)遷移。
3、得出公式。
圓柱的體積=底面積×高
4、教學例4
5、拓展圓柱的體積計算公式。
1、讓學生回憶我們怎樣推導出圓面積計算公式的?
2、課件演示。
3、想一想:怎樣計算圓柱的體積。
4、課件演示。
5、師:圓柱與所拼成的長方體有什么關系?
6、根據(jù)學生的匯報師生共同概括公式。
長方體的`體積=底面積×高
圓柱的體積=底面積×高
7、引導學生用字母表示公式。
8、出示例4,讓學生試做。提醒學生注意單位的處。
9、讓學生看可課本。
想一想:如果已知圓柱底面的半徑r和高h,圓柱的體積的計算公式師什么?
10、教師行間巡視檢查。
1、學生回答提問。
2、學生匯報。
3、學生分小組討論。
3、學生操作學具,進行拼組。
4、學生討論、交流、匯報。
5、學生齊讀。
6、學生試做。
7、學生獨立思考,相互交流。
三、利用資源、鞏固練習。
1、做一做
2、練習二第一題
3、實踐與應用
4、提高練習
1、讓學生獨立完成。
2、師:完成練習二第一題。
3、讓學生取出所準備的圓柱形實物。
師:計算它的表面積,需要測量哪些數(shù)據(jù)并計算。
4、課件出示圓柱形的大柱子。要知道這根柱子的體積,測量哪些數(shù)據(jù)比較方便?
1、學生練習。
2、同桌相互檢查,然后訂正。
3、學生獨立填表,反饋。
4、學生討論,小組內交流。
5、各小組匯報。
6、學生討論,全班交流。
四、課堂小結
師:這節(jié)課學習了什么內容?圓柱的體積怎樣計算,這個公式是怎樣得到的?
學生回答
五、布置作業(yè)
師: 課堂作業(yè):練習二第2,3題。
《圓柱的體積》教案15
第二課時
教學目標
1.經歷同桌合作,測量、計算圓柱形物體體積的過程。
2.會測量圓柱形物體的有關數(shù)據(jù),能根據(jù)圓柱的高及底面直徑或周長計算圓柱的體積。
3.能與同伴合作尋找解決問題的有效方法,能表達解決問題的大致過程和結果。
教學重點
能根據(jù)學生自己測量的數(shù)據(jù)進行圓柱體積的計算。
教學難點
給出圓柱底面周長如何計算圓柱的體積。
教具準備
學生自備的茶葉筒或露露瓶。
教學過程
一、測量茶葉筒的體積
1.師:同學們,我們要想計算這個茶葉筒的體積,應該首先知道哪些數(shù)據(jù)?
生:茶葉筒的高,底面直徑或半徑。
師:很好,那么我們就來親手量一量你們手里的圓柱體的各個數(shù)據(jù),并計算出它們的體積。
學生同桌合作測量并計算。
2.交流測量數(shù)據(jù)的方法和計算的結果。
3.剛才同學大部分都測量的是茶葉筒的高和直徑或半徑,有沒有測量茶葉筒的底面周長的?如果有,就說說是怎么測量和計算的。如果沒有,就提示大家,如果給出了圓柱底面周長,怎樣計算圓柱的體積呢?
生:利用周長先求出半徑,再進行計算。
師:你們會不會測量茶葉筒的底面周長呢?如果已經忘記,就進行一下提示:在圓柱的底面上做一標記,然后把圓柱體在直尺上進行滾動;蛴闷こ邷y量。請大家實際測量一下底面周長,并進行計算,看看和剛才計算的結果是否一致。
二、鞏固練習
1.一根圓柱形水泥柱子,它的底面周長是6.28分米,高200分米,求它的體積?
2.獨立完成練一練的1-3題。
三、家庭作業(yè)
1.練一練的第4小題。
2.①一個圓柱的的體積是141.3立方厘米,底面半徑3厘米,它的高是多少厘米?
、谝桓鶊A柱形鋼材,截下2米,量得它的橫截面的直徑是4厘米,如果每立方厘米鋼重7.8克,截下的這段鋼材重多少克?
圓柱的體積
第三課時 容積
教學目標
1.結合具體事例,經歷探索容積計算問題的過程。
2.掌握計算容積的方法,能解決有關容積的簡單實際問題。
3.在解決容積問題的過程中,體驗數(shù)學與日常生活的密切聯(lián)系。
教學重點
利用體積公式計算保溫杯的容積。
教學難點
計算容積所需要的數(shù)據(jù)是容器內壁的高、底面直徑或半徑,如何獲得這些數(shù)據(jù)。
教學過程
一、復習舊知
1.求下列圓柱的體積(口答列式)。
(1)底面積3平方分米,高4分米;
。2)底面半徑2厘米,高2厘米;
(3)底面直徑2分米,高3分米。
追問:圓柱的體積是怎樣計算的?(板書:V=Sh)
2.復習容積。
提問:什么是容積?它與物體的體積有什么區(qū)別?我們是按什么方法計算容積的?
3.引入新課。
我們已經學習過圓柱的體積計算,知道了容積和容積的計算方法。這節(jié)課,就在計算圓柱體積的.基礎上,學習圓柱的容積計算。(板書課題)
二、教學新課
1.教學例題。
出示例題,讀題。提問:這道題求什么?你能計算它的容積嗎?請大家仔細看一下題目,解答這道題還要注意些什么?(統(tǒng)一單位或改寫體積單位,取近似數(shù))指名學生板演,其余學生做在練習本上。集體訂正,說明每一步求的什么,怎樣求的。同時注意是怎樣統(tǒng)一單位和取近似值的。
2.注意體積單位和容積單位的區(qū)別,以及它們之間的換算:
1立方分米=1升 1立方厘米=1毫升
3.注意保溫杯內壁的厚度應該減去幾個才是內壁的直徑,高應該減去幾個厚度才是內壁的高?
4.學生獨立完成。然后進行全班交流。
三、新課小結
1.提問:求圓柱形容器的容積要怎樣計算?如果知道圓柱底面的半徑或直徑,怎樣求圓柱的體積?
2.計算容積與計算體積有什么相同點和不同點?
四、提高練習
把6個這樣的保溫杯倒?jié)M水,大約需要多少千克水?
注意大頭蛙的話:1毫升水重1克。
五、鞏固練習
1.拿一個水杯,量出它的內直徑和高,算一算這個水杯大約可以裝多少水?
注意:如果給出水杯的外壁直徑、杯壁厚度和高,怎么計算?(內壁就減兩個厚度,高減一個厚度,因為水杯沒有蓋。)
2.練一練1:求水杯的水有多少是求水杯的容積嗎?水杯的高度與計算容積有關嗎?需要用哪個數(shù)據(jù)來計算?(杯中水的高度)
3.練一練第4小題。怎么鋼管的體積?
1)鋼管體積=大圓柱體積-小圓柱體積
2)鋼管體積=鋼管環(huán)形底面積高
【《圓柱的體積》教案】相關文章:
圓柱的體積教案11-18
《圓柱的體積》教案09-01
《圓柱的體積》教案05-22
《圓柱的體積》教案[精選]05-22
圓柱的體積教案及反思03-09
《圓柱的體積》教案 15篇04-01
《圓柱的體積》教案(精選15篇)04-01
圓柱和圓錐的體積教案08-26
《圓柱的體積》教案(15篇)03-13
圓柱的體積教案15篇03-19