當前位置:育文網(wǎng)>教學文檔>教案> 二次根式教案

二次根式教案

時間:2022-02-06 09:13:31 教案 我要投稿

二次根式教案4篇

  作為一位不辭辛勞的人民教師,通常會被要求編寫教案,教案有助于順利而有效地開展教學活動。教案要怎么寫呢?以下是小編精心整理的二次根式教案4篇,歡迎閱讀,希望大家能夠喜歡。

二次根式教案4篇

二次根式教案 篇1

  第十六章 二次根式

  代數(shù)式用運算符號把數(shù)和表示數(shù)的字母連接起來的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個的數(shù)字或單個的字母也是代數(shù)式

  5.5(解析:這類題保證被開方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的最小值為5.)

  6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)

  7.解:(1) . (2)寬:3 ;長:5 .

  8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.

  9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.

  10.解析:在利用=|a|=化簡二次根式時,當根號內(nèi)的因式移到根號外面時,一定要注意原來根號里面的符號,這也是化簡時最容易出錯的地方.

  解:乙的解答是錯誤的.因為當a=時,=5,a-<0,所以 ≠a-,而應是 =-a.

  本節(jié)課通過“觀察——歸納——運用”的模式,讓學生對知識的形成與掌握變得簡單起來,將一個一個知識點落實到位,適當增加了拓展性的練習,層層遞進,使不同的學生得到了不同的發(fā)展和提高.

  在探究二次根式的性質(zhì)時,通過“提問——追問——討論”的形式展開,保證了活動有一定的針對性,但是學生發(fā)揮主體作用不夠.

  在探究完成二次根式的性質(zhì)1后,總結(jié)學習方法,再放手讓學生自主探究二次根式的性質(zhì)2.既可以提高學習效率,又可以培養(yǎng)學生自學能力.

  練習(教材第4頁)

  1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.

  2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.

  習題16.1(教材第5頁)

  1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當a≥-2時,有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當a≤3時,有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當a≥0時,有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當a≥-時,有意義.

  2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.

  3.解:(1)設圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因為圓的半徑不能是負數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設較短的`邊長為2x,則它的鄰邊長為3x.由長方形的面積公式得2x3x=S,所以x=±,因為x=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個長方形的相鄰兩邊的長分別為和.

  4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.

  5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.

  6.解:設AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長為.

  7.解:(1)∵x2+1>0恒成立,∴無論x取任何實數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無論x取任何實數(shù),都有意義. (3)∵即x>0,∴當x>0時, 在實數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當x>-1時,在實數(shù)范圍內(nèi)有意義.

  8.解:設h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負值已舍去).當h=10時,t= =,當h=25時,t= =.故當h=10和h=25時,小球落地所用的時間分別為 s和 s.

  9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.

  10.解:V=πr2×10,r= (負值已舍去),當V=5π時, r= =,當V=10π時,r= =1,當V=20π時,r= =.

  如圖所示,根據(jù)實數(shù)a,b在數(shù)軸上的位置,化簡:+.

  〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負情況,從而可將二次根式化簡.

  解:由數(shù)軸可得:a+b<0,a-b>0,

  ∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.

  [解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.

  已知a,b,c為三角形的三條邊,則+= .

  〔解析〕 根據(jù)三角形三邊的關系,先判斷a+b-c與b-a-c的符號,再去根號、絕對值符號并化簡.因為a,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.

  [解題策略] 此類化簡問題要特別注意符號問題.

  化簡:.

  〔解析〕 題中并沒有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.

  解:當x≥3時,=|x-3|=x-3;

  當x<3時,=|x-3|=-(x-3)=3-x.

  [解題策略] 化簡時,先將它化成|a|,再根據(jù)絕對值的意義分情況進行討論.

  5

  O

  M

二次根式教案 篇2

  教學目的:

  1、在二次根式的混合運算中,使學生掌握應用有理化分母的方法化簡和計算二次根式;

  2、會求二次根式的代數(shù)的值;

  3、進一步提高學生的綜合運算能力。

  教學重點:在二次根式的混合運算中,靈活選擇有理化分母的方法化簡二次根式

  教學難點:正確進行二次根式的混合運算和求含有二次根式的代數(shù)式的值

  教學過程:

  一、二次根式的混合運算

  例1 計算:

  分析:(1)題是二次根式的加減運算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進行二次根式的加減運算。

  (2)題是含乘方、加、減和除法的混合運算,應按運算的順序進行計算,先算括號內(nèi)的式子,最后進行除法運算。注意的計算。

  練習1:P206 / 8--① P207 / 1①②

  例2 計算

  問:計算思路是什么?

  答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進行計算。

  二、求代數(shù)式的值。 注意兩點:

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母?墒褂嬎愫啽。

  例4 已知,求的.值。

  觀察代數(shù)式的特點,請說出求這個代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進行]通分,把這個代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運算。應根據(jù)二次根式的加、減、乘除和乘方運算的順序進行,即先進行乘方運算,再進行乘、除運算,最后進行加、減運算。如果有括號,先進行括號內(nèi)的式子的運算,運算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應先把它們化簡,然后再求值。

  3、在進行二次根式的混合運算時,要根據(jù)題目特點,靈活選擇解題方法,目的在于使計算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

二次根式教案 篇3

  一、教學目標

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應用;

  4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學美.

  二、教學重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學方法

  啟發(fā)式、講練結(jié)合.

  四、教學過程

  (一)復習提問

  1.什么叫平方根、算術平方根?

  2.說出下列各式的意義,并計算:

  通過練習使學生進一步理解平方根、算術平方根的概念.

  觀察上面幾個式子的特點,引導學生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學們討論論應注意的問題,引導學生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學生分析、回答.

  例1 當a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負數(shù),即a+10、a2-1可以是負數(shù)(如當a-10時,a+10又如當0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.

  例3 當字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的.字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導學生做出本節(jié)課學習內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負的實數(shù)a的算術平方根的表達式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習和作業(yè)

  練習:

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負數(shù),即x、x+1可以是負數(shù)(如x0時,又如當x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習題11.1;A組1;B組1.

  六、板書設計

二次根式教案 篇4

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

  學生分析:

  本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎差、自學能力差,因此要提供賞識性評價教學策略,給予個別關照、心理暗示以及適當?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務。

  設計理念:

  新課程有效課堂教學明確倡導,學生是學習的主人,在學生自學文本的基礎上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W生的自主性、探究性、合作性學習活動的設計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設置開放的、面向?qū)嶋H的.、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

  教學目標知識與技能目標:

  會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

  過程與方法目標:

  通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經(jīng)歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。

  情感態(tài)度與價值觀:

  通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣.

  重點、難點:重點:

  合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

  難點:

  二次根式加減法的實際應用。

  關鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

  教學方法:.

  1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

  3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。

【二次根式教案】相關文章:

二次根式教案02-16

二次根式教案六篇01-18

二次根式教案15篇02-27

精選二次根式教案3篇07-31

【精選】二次根式教案3篇08-22

二次根式教案九篇02-04

精選二次根式教案四篇09-21

二次根式教案10篇02-06

二次根式教案5篇02-21