當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 二次根式教案

二次根式教案

時間:2022-08-22 10:30:14 教案 我要投稿

【精選】二次根式教案3篇

  作為一名教職工,就難以避免地要準(zhǔn)備教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。教案應(yīng)該怎么寫呢?以下是小編收集整理的二次根式教案3篇,僅供參考,希望能夠幫助到大家。

【精選】二次根式教案3篇

二次根式教案 篇1

  一、教學(xué)目標(biāo)

  1。使學(xué)生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

  2。使學(xué)生掌握化簡一個二次根式成最簡二次根式的方法。

  3。使學(xué)生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

  二、教學(xué)重點和難點

  1。重點:能夠把所給的二次根式,化成最簡二次根式。

  2。難點:正確運(yùn)用化一個二次根式成為最簡二次根式的方法。

  三、教學(xué)方法

  通過實際運(yùn)算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的方法。

  四、教學(xué)手段

  利用投影儀。

  五、教學(xué)過程

 。ㄒ唬┮胄抡n

  提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會給解決實際問題帶來方便。

 。ǘ┬抡n

  由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

  這兩個二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

  1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的`方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點,即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

  2。要提問學(xué)生

  問題,通過這個小題使學(xué)生明確如何使用化簡中的條件。

  通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。

  注意:

 、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

  ②當(dāng)一個式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

 。ㄈ┬〗Y(jié)

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩(xí)

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習(xí)題11。4;A組1;B組1。

  七、板書設(shè)計

二次根式教案 篇2

  一、教學(xué)目標(biāo)

  1.了解二次根式的意義;

  2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用;

  4.通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;

  5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美.

  二、教學(xué)重點和難點

  重點:(1)二次根的意義;(2)二次根式中字母的.取值范圍.

  難點:確定二次根式中字母的取值范圍.

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合.

  四、教學(xué)過程

  (一)復(fù)習(xí)提問

  1.什么叫平方根、算術(shù)平方根?

  2.說出下列各式的意義,并計算:

  通過練習(xí)使學(xué)生進(jìn)一步理解平方根、算術(shù)平方根的概念.

  觀察上面幾個式子的特點,引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,

  表示的是算術(shù)平方根.

  (二)引入新課

  我們已遇到的這樣的式子是我們這節(jié)課研究的內(nèi)容,引出:

  新課:二次根式

  定義: 式子 叫做二次根式.

  對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

  (1)式子 只有在條件a0時才叫二次根式, 是二次根式嗎? 呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.

  (2) 是二次根式,而 ,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的外在形態(tài).請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學(xué)生分析、回答.

  例1 當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?

  分析: , , , 、 、 、 四個是二次根式. 因為a是實數(shù)時,a+10、a2-1不能保證是非負(fù)數(shù),即a+10、a2-1可以是負(fù)數(shù)(如當(dāng)a-10時,a+10又如當(dāng)0

  例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?

  解:略.

  說明:這個問題實質(zhì)上是在x是什么數(shù)時,x-3是非負(fù)數(shù),式子 有意義.

  例3 當(dāng)字母取何值時,下列各式為二次根式:

  (1) (2) (3) (4)

  分析:由二次根式的定義 ,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式.

  解:(1)∵a、b為任意實數(shù)時,都有a2+b20,當(dāng)a、b為任意實數(shù)時, 是二次根式.

  (2)-3x0,x0,即x0時, 是二次根式.

  (3) ,且x0,x0,當(dāng)x0時, 是二次根式.

  (4) ,即 ,故x-20且x-20, x2.當(dāng)x2時, 是二次根式.

  例4 下列各式是二次根式,求式子中的字母所滿足的條件:

  (1) ; (2) ; (3) ; (4)

  分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,.即: 只有在條件a0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.

  解:(1)由2a+30,得 .

  (2)由 ,得3a-10,解得 .

  (3)由于x取任何實數(shù)時都有|x|0,因此,|x|+0.10,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).

  (4)由-b20得b20,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.

  (三)小結(jié)(引導(dǎo)學(xué)生做出本節(jié)課學(xué)習(xí)內(nèi)容小結(jié))

  1.式子 叫做二次根式,實際上是一個非負(fù)的實數(shù)a的算術(shù)平方根的表達(dá)式.

  2.式子中,被開方數(shù)(式)必須大于等于零.

  (四)練習(xí)和作業(yè)

  練習(xí):

  1.判斷下列各式是否是二次根式

  分析:(2) 中, , 是二次根式;(5)是二次根式. 因為x是實數(shù)時,x、x+1不能保證是非負(fù)數(shù),即x、x+1可以是負(fù)數(shù)(如x0時,又如當(dāng)x-1時=,因此(1)(3)(4)不是二次根式,(6)無意義.

  2.a是怎樣的實數(shù)時,下列各式在實數(shù)范圍內(nèi)有意義?

  五、作業(yè)

  教材P.172習(xí)題11.1;A組1;B組1.

  六、板書設(shè)計

二次根式教案 篇3

  教學(xué)目的

  1.使學(xué)生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學(xué)重點

  最簡二次根式的定義。

  教學(xué)難點

  一個二次根式化成最簡二次根式的方法。

  教學(xué)過程

  一、復(fù)習(xí)引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導(dǎo)學(xué)生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分?jǐn)?shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學(xué)生回答:

  二次根式,請同學(xué)們考慮一下被開方數(shù)符合什么條件的.二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習(xí):

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當(dāng)被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習(xí)

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

【二次根式教案】相關(guān)文章:

二次根式教案02-16

二次根式教案九篇02-04

二次根式教案5篇02-21

二次根式教案三篇01-25

精選二次根式教案四篇09-21

精選二次根式教案3篇07-31

二次根式教案4篇02-06

二次根式數(shù)學(xué)教案04-03

二次根式教案3篇02-05

二次根式教案五篇02-13