二次根式教案5篇
作為一名教學(xué)工作者,時(shí)常要開(kāi)展教案準(zhǔn)備工作,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。教案應(yīng)該怎么寫(xiě)才好呢?以下是小編整理的二次根式教案5篇,僅供參考,希望能夠幫助到大家。
二次根式教案 篇1
【教學(xué)目標(biāo)】
1.運(yùn)用法則
進(jìn)行二次根式的乘除運(yùn)算;
2.會(huì)用公式
化簡(jiǎn)二次根式。
【教學(xué)重點(diǎn)】
運(yùn)用
進(jìn)行化簡(jiǎn)或計(jì)算
【教學(xué)難點(diǎn)】
經(jīng)歷二次根式的乘除法則的探究過(guò)程
【教學(xué)過(guò)程】
一、情境創(chuàng)設(shè):
1.復(fù)習(xí)舊知:什么是二次根式?已學(xué)過(guò)二次根式的哪些性質(zhì)?
2.計(jì)算:
二、探索活動(dòng):
1.學(xué)生計(jì)算;
2.觀察上式及其運(yùn)算結(jié)果,看看其中有什么規(guī)律?
3.概括:
得出:二次根式相乘,實(shí)際上就是把被開(kāi)方數(shù)相乘,而根號(hào)不變。
將上面的公式逆向運(yùn)用可得:
積的算術(shù)平方根,等于積中各因式的算術(shù)平方根的積。
三、例題講解:
1.計(jì)算:
2.化簡(jiǎn):
小結(jié):如何化簡(jiǎn)二次根式?
1.(關(guān)鍵)將被開(kāi)方數(shù)因式分解或因數(shù)分解,使之出現(xiàn)“完全平方數(shù)”或“完全平方式”;
2.P62結(jié)果中,被開(kāi)方數(shù)應(yīng)不含能開(kāi)得盡方的因數(shù)或因式。
四、課堂練習(xí):
(一).P62 練習(xí)1、2
其中2中(5)
注意:
不是積的形式,要因數(shù)分解為36×16=242.
(二).P67 3 計(jì)算 (2)(4)
補(bǔ)充練習(xí):
1.(x>0,y>0)
2.拓展與提高:
化簡(jiǎn):1).(a>0,b>0)
2).(y
2.若,求m的.取值范圍。
☆3.已知:,求的值。
五、本課小結(jié)與作業(yè):
小結(jié):二次根式的乘法法則
作業(yè):
1).課課練P9-10
2).補(bǔ)充習(xí)題
二次根式教案 篇2
第十六章 二次根式
代數(shù)式用運(yùn)算符號(hào)把數(shù)和表示數(shù)的字母連接起來(lái)的式子叫代數(shù)式①式子中不能出現(xiàn)“=,≠,≥,≤,<,>”;②單個(gè)的數(shù)字或單個(gè)的字母也是代數(shù)式
5.5(解析:這類(lèi)題保證被開(kāi)方數(shù)是最小的完全平方數(shù)即可得出結(jié)論.20=22×5,所以正整數(shù)的'最小值為5.)
6.(1)(x+)(x-) (2)n(n+)2(n-)2(解析:關(guān)鍵是逆用()2=a(a≥0)將3變成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)
7.解:(1) . (2)寬:3 ;長(zhǎng):5 .
8.解:(1) =. (2)(3)2=32×()2=18. (3)=(-2)2×=. (4)-=-=-3π. (5) = =.
9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.
10.解析:在利用=|a|=化簡(jiǎn)二次根式時(shí),當(dāng)根號(hào)內(nèi)的因式移到根號(hào)外面時(shí),一定要注意原來(lái)根號(hào)里面的符號(hào),這也是化簡(jiǎn)時(shí)最容易出錯(cuò)的地方.
解:乙的解答是錯(cuò)誤的.因?yàn)楫?dāng)a=時(shí),=5,a-<0,所以 ≠a-,而應(yīng)是 =-a.
本節(jié)課通過(guò)“觀察——?dú)w納——運(yùn)用”的模式,讓學(xué)生對(duì)知識(shí)的形成與掌握變得簡(jiǎn)單起來(lái),將一個(gè)一個(gè)知識(shí)點(diǎn)落實(shí)到位,適當(dāng)增加了拓展性的練習(xí),層層遞進(jìn),使不同的學(xué)生得到了不同的發(fā)展和提高.
在探究二次根式的性質(zhì)時(shí),通過(guò)“提問(wèn)——追問(wèn)——討論”的形式展開(kāi),保證了活動(dòng)有一定的針對(duì)性,但是學(xué)生發(fā)揮主體作用不夠.
在探究完成二次根式的性質(zhì)1后,總結(jié)學(xué)習(xí)方法,再放手讓學(xué)生自主探究二次根式的性質(zhì)2.既可以提高學(xué)習(xí)效率,又可以培養(yǎng)學(xué)生自學(xué)能力.
練習(xí)(教材第4頁(yè))
1.解:(1)()2=3. (2)(3)2=32×()2=9×2=18.
2.解:(1)=0.3. (2) =. (3)-=-π. (4)=10-1=.
習(xí)題16.1(教材第5頁(yè))
1.解:(1)欲使有意義,則必有a+2≥0,∴a≥-2,∴當(dāng)a≥-2時(shí),有意義. (2)欲使有意義,則必有3-a≥0,∴a≤3,∴當(dāng)a≤3時(shí),有意義. (3)欲使有意義,則必有5a≥0,∴a≥0,∴當(dāng)a≥0時(shí),有意義. (4)欲使有意義,則必有2a+1≥0,∴a≥-,∴當(dāng)a≥-時(shí),有意義.
2.解:(1)()2=5. (2)(-)2=()2=0.2. (3)=. (4)(5)2=52×()2=25×5=125. (5)==10. (6)=72×=49×=14. (7) =. (8)- =- =-.
3.解:(1)設(shè)圓的半徑為R,由圓的面積公式得S=πR2,所以R2=,所以R=± .因?yàn)閳A的半徑不能是負(fù)數(shù),所以R=-不符合題意,舍去,故R= ,即面積為S的圓的半徑為 . (2)設(shè)較短的邊長(zhǎng)為2x,則它的鄰邊長(zhǎng)為3x.由長(zhǎng)方形的面積公式得2x3x=S,所以x=±,因?yàn)閤=-不符合題意,舍去,所以x=,所以2x=2=,3x=3=,即這個(gè)長(zhǎng)方形的相鄰兩邊的長(zhǎng)分別為和.
4.解:(1)32. (2)()2. (3)()2. (4)0.52. (5). (6)02.
5.解:由題意可知πr2=π22+π32,∴r2=13,∴r=±.∵r=-不符合題意,舍去,∴r=,即r的值是.
6.解:設(shè)AB=x,則AB邊上的高為4x,由題意,得x4x=12,則x2=6,∴x=±.∵x=-不符合題意,舍去,∴x=.故AB的長(zhǎng)為.
7.解:(1)∵x2+1>0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (2)∵(x-1)2≥0恒成立,∴無(wú)論x取任何實(shí)數(shù),都有意義. (3)∵即x>0,∴當(dāng)x>0時(shí), 在實(shí)數(shù)范圍內(nèi)有意義. (4)∵即x>-1,∴當(dāng)x>-1時(shí),在實(shí)數(shù)范圍內(nèi)有意義.
8.解:設(shè)h=t2, 則由題意,得20=×22,解得=5,∴h=5t2,∴t= (負(fù)值已舍去).當(dāng)h=10時(shí),t= =,當(dāng)h=25時(shí),t= =.故當(dāng)h=10和h=25時(shí),小球落地所用的時(shí)間分別為 s和 s.
9.解:(1)由題意知18-n≥0且為整數(shù),則n≤18,n為自然數(shù)且為整數(shù),∴符合條件的n的所有可能的值為2,9,14,17,18. (2)∵24n≥0且是整數(shù),n為正整數(shù),∴符合條件的n的最小值是6.
10.解:V=πr2×10,r= (負(fù)值已舍去),當(dāng)V=5π時(shí), r= =,當(dāng)V=10π時(shí),r= =1,當(dāng)V=20π時(shí),r= =.
如圖所示,根據(jù)實(shí)數(shù)a,b在數(shù)軸上的位置,化簡(jiǎn):+.
〔解析〕 根據(jù)數(shù)軸可得出a+b與a-b的正負(fù)情況,從而可將二次根式化簡(jiǎn).
解:由數(shù)軸可得:a+b<0,a-b>0,
∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.
[解題策略] 結(jié)合數(shù)軸得出字母的取值范圍,再化簡(jiǎn)二次根式,此題體現(xiàn)了數(shù)形結(jié)合的思想.
已知a,b,c為三角形的三條邊,則+= .
〔解析〕 根據(jù)三角形三邊的關(guān)系,先判斷a+b-c與b-a-c的符號(hào),再去根號(hào)、絕對(duì)值符號(hào)并化簡(jiǎn).因?yàn)閍,b,c為三角形的三條邊,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+[-(b-a-c)]=a+b-c-b+a+c=2a.故填2a.
[解題策略] 此類(lèi)化簡(jiǎn)問(wèn)題要特別注意符號(hào)問(wèn)題.
化簡(jiǎn):.
〔解析〕 題中并沒(méi)有明確字母x的取值范圍,需要分x≥3和x<3兩種情況考慮.
解:當(dāng)x≥3時(shí),=|x-3|=x-3;
當(dāng)x<3時(shí),=|x-3|=-(x-3)=3-x.
[解題策略] 化簡(jiǎn)時(shí),先將它化成|a|,再根據(jù)絕對(duì)值的意義分情況進(jìn)行討論.
5
O
M
二次根式教案 篇3
教學(xué)設(shè)計(jì)思想
新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過(guò)四個(gè)實(shí)際問(wèn)題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過(guò)二次根式的意義和算術(shù)平方根的意義找出二次根式的三個(gè)性質(zhì)。本節(jié)通過(guò)學(xué)生所熟悉的實(shí)際問(wèn)題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程中,進(jìn)一步體會(huì)二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識(shí)。
教學(xué)目標(biāo)
知識(shí)與技能
1.知道什么是二次根式,并會(huì)用二次根式的意義解題;
2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;
過(guò)程與方法
通過(guò)二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;
情感態(tài)度價(jià)值觀
1.經(jīng)歷將現(xiàn)實(shí)問(wèn)題符號(hào)化的過(guò)程,發(fā)展應(yīng)用的意識(shí);
2.通過(guò)二次根式性質(zhì)的.介紹滲透對(duì)稱(chēng)性、規(guī)律性的數(shù)學(xué)美。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;
難點(diǎn):確定二次根式中字母的取值范圍。
教學(xué)方法
啟發(fā)式、講練結(jié)合
教學(xué)媒體
多媒體
課時(shí)安排
1課時(shí)
二次根式教案 篇4
教學(xué)目的
1.使學(xué)生掌握最簡(jiǎn)二次根式的定義,并會(huì)應(yīng)用此定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式;
2.會(huì)運(yùn)用積和商的算術(shù)平方根的性質(zhì),把一個(gè)二次根式化為最簡(jiǎn)二次根式。
教學(xué)重點(diǎn)
最簡(jiǎn)二次根式的定義。
教學(xué)難點(diǎn)
一個(gè)二次根式化成最簡(jiǎn)二次根式的方法。
教學(xué)過(guò)程
一、復(fù)習(xí)引入
1.把下列各根式化簡(jiǎn),并說(shuō)出化簡(jiǎn)的根據(jù):
2.引導(dǎo)學(xué)生觀察考慮:
化簡(jiǎn)前后的根式,被開(kāi)方數(shù)有什么不同?
化簡(jiǎn)前的被開(kāi)方數(shù)有分?jǐn)?shù),分式;化簡(jiǎn)后的被開(kāi)方數(shù)都是整數(shù)或整式,且被開(kāi)方數(shù)中開(kāi)得盡方的.因數(shù)或因式,被移到根號(hào)外。
3.啟發(fā)學(xué)生回答:
二次根式,請(qǐng)同學(xué)們考慮一下被開(kāi)方數(shù)符合什么條件的二次根式叫做最簡(jiǎn)二次根式?
二、講解新課
1.總結(jié)學(xué)生回答的內(nèi)容后,給出最簡(jiǎn)二次根式定義:
滿(mǎn)足下列兩個(gè)條件的二次根式叫做最簡(jiǎn)二次根式:
(1)被開(kāi)方數(shù)的因數(shù)是整數(shù),因式是整式;
(2)被開(kāi)方數(shù)中不含能開(kāi)得盡的因數(shù)或因式。
最簡(jiǎn)二次根式定義中第(1)條說(shuō)明被開(kāi)方數(shù)不含有分母;分母是1的例外。第(2)條說(shuō)明被開(kāi)方數(shù)中每個(gè)因式的指數(shù)小于2;特別注意被開(kāi)方數(shù)應(yīng)化為因式連乘積的形式。
2.練習(xí):
下列各根式是否為最簡(jiǎn)二次根式,不是最簡(jiǎn)二次根式的說(shuō)明原因:
3.例題:
例1 把下列各式化成最簡(jiǎn)二次根式:
例2 把下列各式化成最簡(jiǎn)二次根式:
4.總結(jié)
把二次根式化成最簡(jiǎn)二次根式的根據(jù)是什么?應(yīng)用了什么方法?
當(dāng)被開(kāi)方數(shù)為整數(shù)或整式時(shí),把被開(kāi)方數(shù)進(jìn)行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的性質(zhì),把開(kāi)得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號(hào)外面去。
當(dāng)被開(kāi)方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。
此方法是先根據(jù)分式的基本性質(zhì)把被開(kāi)方數(shù)的分母化成能開(kāi)得盡方的因式,然后分子、分母再分別化簡(jiǎn)。
三、鞏固練習(xí)
1.把下列各式化成最簡(jiǎn)二次根式:
2.判斷下列各根式,哪些是最簡(jiǎn)二次根式?哪些不是最簡(jiǎn)二次根式?如果不是,把它化成最簡(jiǎn)二次根式。
四、小結(jié)
本節(jié)課學(xué)習(xí)了最簡(jiǎn)二次根式的定義及化簡(jiǎn)二次根式的方法。同學(xué)們掌握用最簡(jiǎn)二次根式的定義判斷一個(gè)根式是否為最簡(jiǎn)二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個(gè)根式化成最簡(jiǎn)二次根式,特別注意當(dāng)被開(kāi)方數(shù)為多項(xiàng)式時(shí)要進(jìn)行因式分解,被開(kāi)方數(shù)為兩個(gè)分?jǐn)?shù)的和則要先通分,再化簡(jiǎn)。
五、布置作業(yè)
下列各式化成最簡(jiǎn)二次根式:
二次根式教案 篇5
1.教學(xué)目標(biāo)
(1)經(jīng)歷二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過(guò)程;會(huì)進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算;
(2)會(huì)用公式化簡(jiǎn)二次根式.
2.目標(biāo)解析
(1)學(xué)生能通過(guò)計(jì)算發(fā)現(xiàn)規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;
(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡(jiǎn)二次根式.
教學(xué)問(wèn)題診斷分析
本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡(jiǎn)化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算能力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過(guò)的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培養(yǎng)學(xué)生良好的運(yùn)算習(xí)慣.
在教學(xué)時(shí),通過(guò)實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡(jiǎn)二次根式,一般有兩種情況:(1)如果被開(kāi)方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采用直接利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(jiǎn)(例見(jiàn)教科書(shū)例6解法1),也可以先寫(xiě)成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見(jiàn)教科書(shū)例6解法2);(2)如果被開(kāi)方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開(kāi)得盡方的因數(shù)或因式開(kāi)出來(lái),從而將式子化簡(jiǎn).
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡(jiǎn).
教學(xué)過(guò)程設(shè)計(jì)
1.復(fù)習(xí)引入,探究新知
我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課開(kāi)始我們要學(xué)習(xí)二次根式的乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.
問(wèn)題1 什么叫二次根式?二次根式有哪些性質(zhì)?
師生活動(dòng) 學(xué)生回答。
【設(shè)計(jì)意圖】乘法運(yùn)算和二次根式的化簡(jiǎn)需要用到二次根式的性質(zhì).
問(wèn)題2 教材第6頁(yè)“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?
師生活動(dòng) 學(xué)生計(jì)算、思考并嘗試歸納,引導(dǎo)學(xué)生用自己的語(yǔ)言描述乘法法則的內(nèi)容.
【設(shè)計(jì)意圖】學(xué)生在自主探究的過(guò)程中發(fā)現(xiàn)規(guī)律,運(yùn)用類(lèi)比思想,由特殊到一般地,采用不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語(yǔ)言和文字分別描述法則,以培養(yǎng)學(xué)生的符號(hào)意識(shí).
2.觀察比較,理解法則
問(wèn)題3 簡(jiǎn)單的根式運(yùn)算.
師生活動(dòng) 學(xué)生動(dòng)手操作,教師檢驗(yàn).
問(wèn)題4 二次根式的乘除成立的條件是什么?等式反過(guò)來(lái)有什么價(jià)值?
師生活動(dòng) 學(xué)生回答,給出正確答案后,教師給出積的算術(shù)平方根的性質(zhì).
【設(shè)計(jì)意圖】讓學(xué)生運(yùn)用法則進(jìn)行簡(jiǎn)單的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的掌握情況.乘法法則反過(guò)來(lái)就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡(jiǎn)化二次根式,培養(yǎng)學(xué)生的'運(yùn)算能力.
3.例題示范,學(xué)會(huì)應(yīng)用
例1 化簡(jiǎn):(1)二次根式的乘除; (2)二次根式的乘除.
師生活動(dòng) 提問(wèn):你是怎么理解例(1)的?
如果學(xué)生回答不完善,再追問(wèn):這個(gè)問(wèn)題中,就直接將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡(jiǎn)的效果?
師生合作回答上述問(wèn)題.對(duì)于根式運(yùn)算的最后結(jié)果,一般被開(kāi)方數(shù)中有開(kāi)得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外.
再提問(wèn):你能仿照第(1)題的解答,能自己解決(2)嗎?
【設(shè)計(jì)意圖】通過(guò)運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力,明確二次根式化簡(jiǎn)的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡(jiǎn).
例2 計(jì)算:(1)二次根式的乘除; (2)二次根式的乘除; (3)二次根式的乘除
師生活動(dòng) 學(xué)生計(jì)算,教師檢驗(yàn).
(1)在被開(kāi)方數(shù)相乘的時(shí)候,就可以考慮因數(shù)或因式分解,由二次根式的乘除直接可得二次根式的乘除而不必先寫(xiě)成二次根式的乘除再分解;
(2)二次根式的乘法運(yùn)算類(lèi)似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的.對(duì)于根號(hào)外有系數(shù)的根式在相乘時(shí),可以將系數(shù)先相乘作為積的系數(shù),再對(duì)根式進(jìn)行運(yùn)算;
(3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以判斷二次根式的乘除,因此直接將x移出根號(hào)外.
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生及時(shí)總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡(jiǎn)化運(yùn)算.讓學(xué)生認(rèn)識(shí)到,二次根式是一類(lèi)特殊的實(shí)數(shù),因此滿(mǎn)足實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.
教材中雖然指明,如未特別說(shuō)明,本章中所有的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要注意被開(kāi)方數(shù)的符號(hào).可以根據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行判斷,在移出根號(hào)時(shí)正確處理符號(hào)問(wèn)題.
4.鞏固概念,學(xué)以致用
練習(xí):教科書(shū)第7頁(yè)練習(xí)第1題. 第10頁(yè)習(xí)題16.2第1題.
【設(shè)計(jì)意圖】鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的掌握情況.
5.歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問(wèn)題:
(1)你能說(shuō)明二次根式的乘法法則是如何得出的嗎?
(2)你能說(shuō)明乘法法則逆用的意義嗎?
(3)化簡(jiǎn)二次根式的基本步驟是怎樣?一般對(duì)最后結(jié)果有何要求?
6.布置作業(yè):教科書(shū)第7頁(yè)第2、3題.習(xí)題16.2第1,6題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1.下列各式中,一定能成立的是( )
A.二次根式的乘除 B.二次根式的乘除
C.二次根式的乘除 D.二次根式的乘除
【設(shè)計(jì)意圖】考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).
2.化簡(jiǎn)二次根式的乘除 ______________________________。
【設(shè)計(jì)意圖】二次根式是特殊的實(shí)數(shù),實(shí)數(shù)的相關(guān)運(yùn)算法則也適用于二次根式.
3.已知二次根式的乘除,化簡(jiǎn)二次根式二次根式的乘除的結(jié)果是( )
A.二次根式的乘除 B.二次根式的乘除 C.二次根式的乘除 D.二次根式的乘除
【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì),利用積的算術(shù)平方根的性質(zhì)正確化簡(jiǎn)二次根式.
【二次根式教案】相關(guān)文章:
二次根式教案02-16
二次根式教案6篇02-21
二次根式教案8篇02-21
二次根式教案五篇02-13
二次根式教案三篇01-25
【精選】二次根式教案3篇08-22
精選二次根式教案四篇09-21
二次根式數(shù)學(xué)教案04-03
二次根式教案15篇02-27
精選二次根式教案3篇07-31