當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 二次根式教案

二次根式教案

時(shí)間:2022-02-13 10:23:52 教案 我要投稿

二次根式教案五篇

  作為一位兢兢業(yè)業(yè)的人民教師,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。我們該怎么去寫教案呢?以下是小編精心整理的二次根式教案5篇,僅供參考,希望能夠幫助到大家。

二次根式教案五篇

二次根式教案 篇1

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學(xué)上冊第二十一章第三節(jié)的第一課時(shí),本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學(xué)習(xí)二次根式的加減運(yùn)算法則和進(jìn)一步完善二次根式的化簡。本小節(jié)重點(diǎn)是二次根式的加減運(yùn)算,教材從一個(gè)實(shí)際問題引出二次根式的加減運(yùn)算,使學(xué)生感到研究二次根式的加減運(yùn)算是解決實(shí)際問題的需要。通過探索二次根式加減運(yùn)算,并用其解決一些實(shí)際問題,來提高我們用數(shù)學(xué)解決實(shí)際問題的意識(shí)和能力。另外,通過本小節(jié)學(xué)習(xí)為后面學(xué)生熟練進(jìn)行二次根式的加減運(yùn)算以及加、減、乘、除混合運(yùn)算打下了鋪墊。

  學(xué)生分析:

  本節(jié)課的內(nèi)容是知識(shí)的延續(xù)和創(chuàng)新,學(xué)生積極主動(dòng)的投入討論、交流、建構(gòu)中,自主探索、動(dòng)手操作、協(xié)作交流,全班學(xué)生具有較扎實(shí)的知識(shí)和創(chuàng)新能力,通過自學(xué)、小組討論大部分學(xué)生能夠達(dá)到教學(xué)目標(biāo),少部分學(xué)生有困難,基礎(chǔ)差、自學(xué)能力差,因此要提供賞識(shí)性評價(jià)教學(xué)策略,給予個(gè)別關(guān)照、心理暗示以及適當(dāng)?shù)木窦?lì),克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學(xué)習(xí)任務(wù)。

  設(shè)計(jì)理念:

  新課程有效課堂教學(xué)明確倡導(dǎo),學(xué)生是學(xué)習(xí)的主人,在學(xué)生自學(xué)文本的基礎(chǔ)上動(dòng)手實(shí)踐、自主探究、合作交流,來倡導(dǎo)新的學(xué)習(xí)觀,讓他們完成二次根式加減知識(shí)研究。教師從過去知識(shí)的.傳授者轉(zhuǎn)變?yōu)閷W(xué)生的自主性、探究性、合作性學(xué)習(xí)活動(dòng)的設(shè)計(jì)者和組織者,與學(xué)生零距離接觸共同探究。在教學(xué)過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學(xué)生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學(xué)”變成“我要學(xué)”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣,掌握學(xué)習(xí)策略,并根據(jù)活動(dòng)中示范和指導(dǎo)培養(yǎng)學(xué)生大膽闡述并討論觀點(diǎn),說明所獲討論的有效性,并對推論進(jìn)行評價(jià)。從而營造一個(gè)接納的、支持的、寬容的良好氛圍進(jìn)行學(xué)習(xí)。

  教學(xué)目標(biāo)知識(shí)與技能目標(biāo):

  會(huì)化簡二次根式,了解同類二次根式的概念,會(huì)進(jìn)行簡單的二次根式的加減法;通過加減運(yùn)算解決生活的實(shí)際問題。

  過程與方法目標(biāo):

  通過類比整式加減法運(yùn)算體驗(yàn)二次根式加減法運(yùn)算的過程;學(xué)生經(jīng)歷由實(shí)際問題引入數(shù)學(xué)問題的過程,發(fā)展學(xué)生的抽象概括能力。

  情感態(tài)度與價(jià)值觀:

  通過對二次根式加減法的探究,激發(fā)學(xué)生的探索熱情,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使他們體驗(yàn)到成功的樂趣.

  重點(diǎn)、難點(diǎn):重點(diǎn):

  合并被開放數(shù)相同的同類二次根式,會(huì)進(jìn)行簡單的二次根式的加減法。

  難點(diǎn):

  二次根式加減法的實(shí)際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會(huì)進(jìn)行二次根式的加減法。

  教學(xué)方法:.

  1. 引導(dǎo)發(fā)現(xiàn)法:在教師的啟發(fā)引導(dǎo)下,鼓勵(lì)學(xué)生積極參與,與實(shí)際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學(xué)生自主探索,合作學(xué)習(xí),歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實(shí)際問題導(dǎo)入二次根式加減運(yùn)算;類比合并同類項(xiàng)合并同類二次根式。

  3.嘗試訓(xùn)練法:通過學(xué)生嘗試,教師針對個(gè)別問題進(jìn)行點(diǎn)撥指導(dǎo),實(shí)現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學(xué)目標(biāo):

  1.知識(shí)目標(biāo):二次根式的加減法運(yùn)算

  2.能力目標(biāo):能熟練進(jìn)行二次根式的加減運(yùn)算,能通過二次根式的加減法運(yùn)算解決實(shí)際問題。

  3.情感態(tài)度:培養(yǎng)學(xué)生善于思考,一絲不茍的科學(xué)精神。

  重難點(diǎn)分析:

  重點(diǎn):能熟練進(jìn)行二次根式的加減運(yùn)算。

  難點(diǎn):正確合并被開方數(shù)相同的二次根式,二次根式加減法的實(shí)際應(yīng)用。

  教學(xué)關(guān)鍵:通過復(fù)習(xí)舊知識(shí),運(yùn)用類比思想方法,達(dá)到溫故知新的目的;運(yùn)用創(chuàng)設(shè)問題激發(fā)學(xué)生求知欲;通過學(xué)生全面參與學(xué)習(xí)(分層次要求),達(dá)到每個(gè)學(xué)生在學(xué)習(xí)數(shù)學(xué)上有不同的發(fā)展。

  運(yùn)用教具:小黑板等。

  教學(xué)過程:

問題與情景

師生活動(dòng)

設(shè)計(jì)目的

活動(dòng)一:

情景引入,導(dǎo)學(xué)展示

1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點(diǎn)?

2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個(gè)面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識(shí)的回顧,老師可以找同學(xué)直接回答。對于問題,老師要關(guān)注:學(xué)生是否能熟練得到正確答案。 教師傾聽學(xué)生的交流,指導(dǎo)學(xué)生探究。

問:什么樣的二次根式能進(jìn)行加減運(yùn)算,運(yùn)算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進(jìn)行加減。

加強(qiáng)新舊知識(shí)的聯(lián)系。通過觀察,初步認(rèn)識(shí)同類二次根式。

引出二次根式加減法則。

3. A、B層同學(xué)自主學(xué)習(xí)15頁例1、例2、例3,C層同學(xué)至少完成例1、例2的學(xué)習(xí)。

例1.計(jì)算:

(1) ;

(2) - ;

例2. 計(jì)算:

1)

2)

例3.要焊接一個(gè)如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動(dòng)二:分層練習(xí),合作互助

1.下列計(jì)算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計(jì)算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補(bǔ)充:

活動(dòng)三:分層檢測,反饋小結(jié)

教材17頁習(xí)題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學(xué)到了什么知識(shí)?你有什么收獲?

作業(yè):課堂練習(xí)冊第5、6頁。

自學(xué)的同時(shí)抽查部分同學(xué)在黑板上板書計(jì)算過程。抽2名C層同學(xué)在黑板上完成例1板書過程,學(xué)生在計(jì)算時(shí)若出現(xiàn)錯(cuò)誤,抽2名B層同學(xué)訂正。抽2名B層同學(xué)在黑板上完成例2板書過程,若出現(xiàn)錯(cuò)誤,再抽2名A層同學(xué)訂正。抽1名A層同學(xué)在黑板上完成例3板書過程,并做適當(dāng)?shù)姆治鲋v解。

此題是聯(lián)系實(shí)際的題目,需要學(xué)生先列式,再計(jì)算。并將結(jié)果精確到0.1 m, 學(xué)生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的`方案是否得當(dāng);2)考慮的問題是否全面。3)計(jì)算是否準(zhǔn)確。

A層同學(xué)完成16頁練習(xí)1、2、3;B層同學(xué)完成練習(xí)1、2,可選做第3題;C層同學(xué)盡量完成練習(xí)1、2。多數(shù)同學(xué)完成后,讓學(xué)生在小組內(nèi)互相檢查,有問題時(shí)共同分析矯正或請教老師。也可以抽查部分同學(xué)。例如:抽3名C層同學(xué)口答練習(xí)1;抽4名B層或C層同學(xué)在黑板上板書練習(xí)第2題;抽1名A層或B層同學(xué)在黑板上板書練習(xí)第3題后再分析講解。

點(diǎn)撥:1)對 的化簡是否正確;2)當(dāng)根式中出現(xiàn)小數(shù)、分?jǐn)?shù)、字母時(shí),是否能正確處理;

3)運(yùn)算法則的運(yùn)用是否正確

先測試,再小組內(nèi)互批,查找問題。學(xué)生反思本節(jié)課學(xué)到的知識(shí),談自己的感受。

小結(jié)時(shí)教師要關(guān)注:

1)學(xué)生是否抓住本課的重點(diǎn);

2)對于常見錯(cuò)誤的認(rèn)識(shí)。

把學(xué)習(xí)目標(biāo)由高到低分為A、B、C三個(gè)層次,教學(xué)中做到分層要求。

學(xué)生學(xué)習(xí)經(jīng)歷由淺到深的過程,可以提高學(xué)生能力,同時(shí)有利于激發(fā)學(xué)生的探索知識(shí)的欲望。

二次根式的加減運(yùn)算融入實(shí)際問題中去,提高了學(xué)生的學(xué)習(xí)興趣和對數(shù)學(xué)知識(shí)的應(yīng)用意識(shí)和能力。

小組成員互相檢查學(xué)生對于新的知識(shí)掌握的情況,鞏固學(xué)生剛掌握的知識(shí)能力。達(dá)到共同把關(guān)、合作互助的目的。

培養(yǎng)學(xué)生的計(jì)算的準(zhǔn)確性,以培養(yǎng)學(xué)生科學(xué)的精神。

對課堂的問題及時(shí)反饋,使學(xué)生熟練掌握新知識(shí)。

每個(gè)學(xué)生對于知識(shí)的理解程度不同,學(xué)生回答時(shí)教師要多鼓勵(lì)學(xué)生。

二次根式教案 篇2

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  二次根式的性質(zhì)。

  2.內(nèi)容解析

  本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個(gè)基本性質(zhì).

  對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個(gè)具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

 。1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

 。2)會(huì)運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

 。3)了解代數(shù)式的概念.

  2.目標(biāo)解析

 。1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會(huì)用符號(hào)表述這一性質(zhì);

 。2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

 。3)學(xué)生能從已學(xué)過的各種式子中,體會(huì)其共同特點(diǎn),得出代數(shù)式的概念.

  三、教學(xué)問題診斷分析

  二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計(jì)好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

  本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

  四、教學(xué)過程設(shè)計(jì)

  1.探究性質(zhì)1

  問題1 你能解釋下列式子的含義嗎?

  師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)非負(fù)數(shù)的算術(shù)平方根的平方.

  問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

  問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

  例2 計(jì)算

 。1) ;(2) .

  師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)1,學(xué)會(huì)靈活運(yùn)用.

  2.探究性質(zhì)2

  問題4 你能解釋下列式子的含義嗎?

  師生活動(dòng):教師引導(dǎo)學(xué)生說出每一個(gè)式子的含義.

  【設(shè)計(jì)意圖】讓學(xué)生初步感知,這些式子都表示一個(gè)數(shù)的平方的算術(shù)平方根.

  問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

  師生活動(dòng) 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

  【設(shè)計(jì)意圖】學(xué)生通過計(jì)算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

  問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個(gè)式子表示這個(gè)規(guī)律嗎?

  師生活動(dòng):引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

  【設(shè)計(jì)意圖】讓學(xué)生經(jīng)歷從特殊到一般的'過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

  例3 計(jì)算

 。1) ;(2) .

  師生活動(dòng):學(xué)生獨(dú)立完成,集體訂正.

  【設(shè)計(jì)意圖】鞏固二次根式的性質(zhì)2,學(xué)會(huì)靈活運(yùn)用.

  3.歸納代數(shù)式的概念

  問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

  師生活動(dòng):學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

  【設(shè)計(jì)意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

  4.綜合運(yùn)用

 。1)算一算:

  【設(shè)計(jì)意圖】設(shè)計(jì)有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號(hào).

  (2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時(shí), 等于多少?當(dāng) 時(shí), 又等于多少?

  【設(shè)計(jì)意圖】通過此問題的設(shè)計(jì),加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

 。3)談一談你對 與 的認(rèn)識(shí).

  【設(shè)計(jì)意圖】加深學(xué)生對二次根式性質(zhì)的理解.

  5.總結(jié)反思

 。1)你知道了二次根式的哪些性質(zhì)?

  (2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡需要注意什么?

 。3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

  (4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識(shí).

  6.布置作業(yè):教科書習(xí)題16.1第2,4題.

  五、目標(biāo)檢測設(shè)計(jì)

  1. ; ; .

  【設(shè)計(jì)意圖】考查對二次根式性質(zhì)的理解.

  2.下列運(yùn)算正確的是( )

  A. B. C. D.

  【設(shè)計(jì)意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡的能力.

  3.若 ,則 的取值范圍是 .

  【設(shè)計(jì)意圖】考查學(xué)生對一個(gè)數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

  4.計(jì)算: .

  【設(shè)計(jì)意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

二次根式教案 篇3

  教學(xué)目的:

  1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計(jì)算二次根式;

  2、會(huì)求二次根式的代數(shù)的值;

  3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

  教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡二次根式

  教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

  教學(xué)過程:

  一、二次根式的混合運(yùn)算

  例1 計(jì)算:

  分析:(1)題是二次根式的加減運(yùn)算,可先把前三個(gè)二次根式化最簡二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

  (2)題是含乘方、加、減和除法的'混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計(jì)算,先算括號(hào)內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計(jì)算。

  練習(xí)1:P206 / 8--① P207 / 1①②

  例2 計(jì)算

  問:計(jì)算思路是什么?

  答:先把第一人的括號(hào)內(nèi)的式子通分,把第二個(gè)括號(hào)內(nèi)的式子的分母有理化,再進(jìn)行計(jì)算。

  二、求代數(shù)式的值。 注意兩點(diǎn):

  (1)如果已知條件為含二次根式的式子,先把它化簡;

  (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

  例3 已知,求的值。

  分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計(jì)算中,先把及的式了有理化分母?墒褂(jì)算簡便。

  例4 已知,求的值。

  觀察代數(shù)式的特點(diǎn),請說出求這個(gè)代數(shù)式的值的思路。

  答:所求的代數(shù)式中,相減的兩個(gè)式子的分母都含有二次根式,為化去它們的分母中的根號(hào),可以分別先把各自的分母有理化或進(jìn)行]通分,把這個(gè)代數(shù)式化簡后,再求值。

  三、小結(jié)

  1、對于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號(hào),先進(jìn)行括號(hào)內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡二次根式。

  2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

  3、在進(jìn)行二次根式的混合運(yùn)算時(shí),要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計(jì)算更簡捷。

  四、作業(yè)

  P206 / 7 P206 / 8---②③

二次根式教案 篇4

  【 學(xué)習(xí)目標(biāo) 】

  1、知識(shí)與技能:了解二次根式的概念,能求根號(hào)內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

  2、過程與方法:進(jìn)一步體會(huì)分類討論的數(shù)學(xué)思想。

  3、情感、態(tài)度與價(jià)值觀:通過小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

  【 學(xué)習(xí)重難點(diǎn) 】

  1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計(jì)算。

  2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

  【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

  【 學(xué)習(xí)流程 】

  一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

  學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識(shí),并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

  二、 課堂教學(xué)

  (一)合作學(xué)習(xí)階段。

  教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時(shí)的引導(dǎo)、點(diǎn)撥,對普遍存在的.問題做好記錄。

  (二)集體講授階段。(15分鐘左右)

  1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

  2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。

  3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。

  (三)當(dāng)堂檢測階段

  為了及時(shí)了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時(shí)的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。

  (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

  三、 課后作業(yè)(課后作業(yè)見附件2)

  教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

  四、板書設(shè)計(jì)

  課題:二次根式(1)

  二次根式概念 例題 例題

  二次根式性質(zhì)

  反思:

二次根式教案 篇5

  一、教學(xué)目標(biāo)

  1。使學(xué)生知道什么是最簡二次根式,遇到實(shí)際式子能夠判斷是不是最簡二次根式。

  2。使學(xué)生掌握化簡一個(gè)二次根式成最簡二次根式的方法。

  3。使學(xué)生了解把二次根式化簡成最簡二次根式在實(shí)際問題中的應(yīng)用。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  1。重點(diǎn):能夠把所給的二次根式,化成最簡二次根式。

  2。難點(diǎn):正確運(yùn)用化一個(gè)二次根式成為最簡二次根式的方法。

  三、教學(xué)方法

  通過實(shí)際運(yùn)算的例子,引出最簡二次根式的概念,再通過解題實(shí)踐,總結(jié)歸納化簡二次根式的方法。

  四、教學(xué)手段

  利用投影儀。

  五、教學(xué)過程

  (一)引入新課

  提出問題:如果一個(gè)正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會(huì)給解決實(shí)際問題帶來方便。

 。ǘ┬抡n

  由以上例子可以看出,遇到一個(gè)二次根式將它化簡,為解決問題創(chuàng)

  這兩個(gè)二次根式化簡前后有什么不同,這里要引導(dǎo)學(xué)生從兩個(gè)方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個(gè)條件的二次根式,叫做最簡二次根式:

  1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運(yùn)算結(jié)果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導(dǎo)學(xué)生觀察例2題中二次根式的特點(diǎn),即被開方數(shù)是整式或整數(shù),再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導(dǎo)學(xué)生觀察例題3中二次根式的特點(diǎn),即被開方數(shù)是分?jǐn)?shù)或分式,再啟發(fā)學(xué)生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的'形式,然后利用分母有理化化簡。

  2。要提問學(xué)生

  問題,通過這個(gè)小題使學(xué)生明確如何使用化簡中的條件。

  通過例2、例3總結(jié)把一個(gè)二次根式化成最簡二次根式的兩種情況,并引導(dǎo)學(xué)生小結(jié)應(yīng)該注意的問題。

  注意:

 、倩啎r(shí),一般需要把被開方數(shù)分解因數(shù)或分解因式。

 、诋(dāng)一個(gè)式子的分母中含有二次根式時(shí),一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進(jìn)行有理化。

 。ㄈ┬〗Y(jié)

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個(gè)二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩(xí)

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習(xí)題11。4;A組1;B組1。

  七、板書設(shè)計(jì)

【二次根式教案】相關(guān)文章:

二次根式教案02-16

二次根式教案六篇01-18

二次根式數(shù)學(xué)教案04-03

二次根式教案10篇02-06

二次根式教案九篇02-04

二次根式教案4篇02-06

二次根式教案三篇01-25

二次根式教案3篇02-05

二次根式教案15篇02-27