《3的倍數(shù)的特征》教案
作為一名無私奉獻的老師,總不可避免地需要編寫教案,借助教案可以提高教學質量,收到預期的教學效果。教案應該怎么寫呢?以下是小編收集整理的《3的倍數(shù)的特征》教案,歡迎閱讀與收藏。
教學目標:
1、理解3的倍數(shù)的特征,掌握一個數(shù)是否是3的倍數(shù)的判斷方法。
2、培養(yǎng)分析、比較及綜合概括能力。
3、培養(yǎng)合作交流的意識,掌握歸納的方法,獲取一定的學習經(jīng)驗。
教學重點:
掌握3的倍數(shù)的特征,正確判斷一個數(shù)是否是3的倍數(shù)。
教學難點:
探索3的倍數(shù)的特征。
教學過程:
一、【創(chuàng)設情景,明確目標】(3分鐘)
(一)創(chuàng)設情景,反饋預習
1、師:課前我們已經(jīng)完成了導學案自主預習部分,我們已經(jīng)知道了2、5的倍數(shù)特征,下面的數(shù)你能判斷出下面的數(shù)哪些是2的倍數(shù),哪些是5的倍數(shù),哪些即是2的又是5的倍數(shù)呢?
P:16、24、85、102、138、170、
2的倍數(shù):16、24、102、138、170
5的倍數(shù):85、170
即是2的倍數(shù)又是5的倍數(shù):170
師:說一說,你是怎么想的?
生1:個位上是02468就是2的倍數(shù)。個位是上0或者5的數(shù)就是5的倍數(shù)。一個數(shù)既是2的倍數(shù),又是5的倍數(shù),它的個位上一定是0.
2、看來要想判斷一個數(shù)是否是2或者5的倍數(shù),只需要看這個數(shù)個位上的數(shù)。可是,為什么只需要觀察個位上的數(shù)呢?為什么其他位上的數(shù)就不用觀察呢?
生:2的倍數(shù)的個位數(shù)是0、2、4、6、8;5的倍數(shù)個位上是0、5。
師:那么3的倍數(shù)有什么特征呢?是不是還看個位數(shù)呢?這就是這節(jié)課我們要研究的內容。
3、教師板書課題:3的倍數(shù)的特征。
(二)明確目標,引領方法
1、出示學習目標(見學案),生自讀目標。
2、同伴說說自己的理解,談談如何實現(xiàn)目標。
【設計意圖】交流預習內容,解決預習中的問題;明確學習目標,帶著目標進行合作學習。
二、【自主學習,同伴合作】(15分鐘)
。ㄒ唬┳灾鲗W習,自我感知
1、小棒游戲,探究規(guī)律
師:首先我們來做一個擺小棒的游戲,怎么玩呢?(拿6根小棒)找一個同學在這張數(shù)位表上隨意用小棒擺出一個數(shù),我能馬上猜出它是不是3的倍數(shù)。信不信?
師:你來!
師:為了驗證我猜得對不對,再請一個同學到前面的展臺上用計算器來算一算,跟我比比速度。
學生擺出:51
師:51是3的倍數(shù)。我算的比計算器快吧?
師:能擺一個三位數(shù)嗎?
學生擺出:312
師:312是3的倍數(shù)。
師:再來一個難點的。
學生擺出:1123
師:1123不是3的倍數(shù)。
師:想知道老師為什么判斷的這么快嗎?相信通過下面的操作你能發(fā)現(xiàn)其中的秘訣。
2、小組合作探究
(1)用3根小棒擺一個數(shù),這些都是3的倍數(shù)嗎?
師:我們一起來看探究要求:用相應根數(shù)的小棒在數(shù)位表上各擺出3個數(shù)。
小組內合理分工,請大家看一下導學案的合作要求
、俑鶕(jù)要求每人用3根小棒擺一個數(shù),并思考是不是3的倍數(shù),3人擺數(shù),1人記錄。
②用計算器算一算,將3的倍數(shù)圈出來。
、圩屑氂^察表格,從中你發(fā)現(xiàn)了什么?
(2)用4根再擺出一些數(shù),這些都是3的倍數(shù)嗎?
。3)用6根再擺出一些數(shù),這些都是3的倍數(shù)嗎?
(4)擺出3的倍數(shù)與所需的小棒的根數(shù)有什么聯(lián)系?3的倍數(shù)有什么特征?
預設
第一組:用3根小棒擺:2、12、102,都分別是3的倍數(shù)。
第二組:用4根小棒擺:22、1111、1102,都不是3的倍數(shù)。
第三族,用6根小棒擺:都是3的倍數(shù)。
問題:你發(fā)現(xiàn)了什么?
生:我們發(fā)現(xiàn)了3根、6根小棒擺出來的數(shù)都是3的倍數(shù)。
師評價:關鍵要看小棒的根數(shù),了不起的發(fā)現(xiàn)。
生:只要小棒的根數(shù)是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
師:你們認為除了3根、6根,還有其它情況是嗎?具體解釋一下。
生:9根、12根、15根……都行——
。5)真的是這么回事嗎?以9為例擺擺看。
師:來,說說你們小組擺出了哪個數(shù),它是不是3的倍數(shù)?
生:我用9根小棒擺出了36,36是3的倍數(shù)。
師:哪個小組還想出三位數(shù)、四位數(shù)或是更大的數(shù)?
生:我用9根小棒擺出了216,216是3的倍數(shù)。
生:我用9根小棒擺出了3015,3015是3的倍數(shù)。
師:說得完嗎?
生:說不完。
師:大家用九根小棒擺出來的數(shù)都是3的倍數(shù)嗎?那你認為他們小組的結論合理嗎?
生:很合理。
師:大家說著,我把它記錄下來(板書):只要小棒的根數(shù)是3的倍數(shù),擺出來的數(shù)就是3的倍數(shù)。
師:由擺數(shù)所用小棒的根數(shù)我們就能快速判斷出一個數(shù)是不是3的倍數(shù)。
3、總結提升
師:通過擺小棒,我們能判斷出一個數(shù)是不是3的倍數(shù),現(xiàn)在不擺了,也不撥了,通過上面的兩次操作,能不能說說什么樣的數(shù)是3的倍數(shù)?
師:小組內交流一下。
小組活動。
師:誰來說說?
生1:各個數(shù)位上的數(shù)加起來是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
生2:各個數(shù)位上數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
生3:只要各個數(shù)位上數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
師:無論是小棒的根數(shù)還是各個數(shù)位上珠子的顆數(shù),實際上也就是各個數(shù)位上數(shù)的和。只要各個數(shù)位上數(shù)的和是3的倍數(shù),這個數(shù)就是3的倍數(shù)。
4、探究原因,區(qū)別理解
。1)要想判斷一個數(shù)是否是2或者5的倍數(shù),只需要看這個數(shù)個位上的數(shù)。可是,為什么只需要觀察個位上的數(shù)呢?為什么其他位上的數(shù)就不用觀察呢?
研究16
師:上節(jié)課我們講過,16是2的倍數(shù),它是由一個十和六個一組成的,那么想想把一個十,兩個兩個的分,會出現(xiàn)什么結果?(也就是說如果把16兩個兩個地分,正好可以分完,沒有余數(shù))
但既然十位上沒有剩余,那十位上的數(shù)還需要觀察嗎?(我們只需要觀察個位上的6根小棒就可以,把它兩個兩個地分能正好分完)
用剛才的方法判斷5的倍數(shù)為什么也只觀察個位?(因為一個百被5分完沒有余數(shù))
看來判斷2、5不受百位和十位的影響,只需要觀察個位上的數(shù)就可以。
通過剛才地研究,我們更加熟練了判斷2、5倍數(shù)的方法,還知道了為什么只需要觀察個位上的數(shù)就可以了。
。2)問:為什么3的倍數(shù)特征要看各個數(shù)位相加的和呢?
舉例24是不是3的倍數(shù),但是個位4是嗎?這是為什么?自己分一分,畫一畫,看看24為什么是3的倍數(shù)?
一個十3個3個分余1根,第二個余1根,兩個各余1根,在和個位繼續(xù)分,
138分一分,試一試,看看是不是3的倍數(shù)
一個百3個3個分最后剩1根,三個十3個3個分,每個余1根,所以剩三個一,個位傻上還剩一個8,合起來繼續(xù)分,12個繼續(xù)分。
。2)總結:梳理一下:24、138,分一遍,你發(fā)現(xiàn)什么?(剩余就是3的倍數(shù)。數(shù)位是幾,余數(shù)就是幾)無論百位上是幾,3個3個分完,就剩幾。
P:剩余的小棒正好是每個數(shù)位加起來的數(shù)。(因為這些數(shù)位和剩下的數(shù)相同,所以可以直接把數(shù)位上的數(shù)相加,如果和是3的倍數(shù),那么這個數(shù)就是3的倍數(shù),如果不是,就不是3的倍數(shù)。)
三、【鞏固拓展,形成能力】(10分鐘)
。ㄒ唬╈柟逃柧殻粚嵒A
1、口頭練習:是不是3的倍數(shù)都有這個規(guī)律呢?隨便寫一個數(shù):先用除法算算是不是3的倍數(shù),再算一算各個數(shù)位上的和是不是3的倍數(shù)?
把一個數(shù)各個數(shù)位上的數(shù)相加是3的倍數(shù)……
2、圈出下面是3的倍數(shù)的數(shù):42、78、111、165、655、5988
3、□2,這是一個兩位數(shù),十位被遮蓋住了,如果它是3的倍數(shù),猜一猜,這個數(shù)可能是幾?為什么?
。A設:生1:1。
師:可以嗎?還有其他答案嗎?
生2:1,4,7都可以。
師:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍數(shù),所以填1、4、7都可以。
師:恭喜你,三種可能都被你們猜中了!
師:如果它既是2的倍數(shù),又是3的倍數(shù)呢?
生:24。
師:為什么只有24可以呢?
生:因為只有24既是2的倍數(shù),又是3的倍數(shù)。)
。ǘ┩卣褂柧殻`活創(chuàng)新
以前我們用除法來檢驗這個數(shù)是不是3的倍數(shù),今天我們又學了3的倍數(shù)特征,我們只需要求各個數(shù)位上的和是3的倍數(shù)就可以,但是如果遇到這樣的題怎么辦?(PPT)
13689362754、123456789
老師:如果用各個數(shù)位之和是3的倍數(shù),比較麻煩。
但是我們用劃掉3的倍數(shù)的方法求,這樣即便是很復雜的數(shù)也能特別輕易的解決。比如:13689362754,從左開始,1不夠,看13,是3的4倍,余1,和6組成16余1,18算完……
后面的練習我們下課完成,好,這節(jié)課不僅發(fā)現(xiàn)3的特征,還根據(jù)特點發(fā)現(xiàn)簡便地判斷方法,更可貴的發(fā)現(xiàn)了背后的道理。學習數(shù)學就是這樣,不僅要知其然還要知其所以然。希望同學們能在快樂的數(shù)學海洋里繼續(xù)愉快地暢游。這節(jié)課我們就上到這里,下課。
教師巡視,個別輔導。
(二)同伴討論,互助共進
完成學案中“同伴合作,互助共進”內容。
重點交流學生所舉的例子。
教師巡視,個別輔導。
【設計意圖】這一環(huán)節(jié)由學生自學和同伴合作,完成因數(shù)倍數(shù)的知識的學習。
四、【師生共學,交流分享】(5分鐘)
。ㄒ唬┬〗M展示,彰顯風采
指名小組進行匯報。
(二)師生完善,共同提高
1、學生糾正、補充、質疑
2、教師精講、點撥、評價
在學生討論比較充分的基礎上,教師進行點撥來完善學生對比的認識。
【設計意圖】通過教師的點撥完善學生對比的認識。
五、【鞏固拓展,形成能力】(10分鐘)
。ㄒ唬╈柟逃柧殻粚嵒A
先由學生自主完成學案中相應的內容,再同桌交流,完善答案。
1、是不是3的倍數(shù)都有這個規(guī)律呢?隨便寫一個數(shù):先用除法算算是不是是不是3的倍數(shù),再算一算各個數(shù)位上的和是不是3的倍數(shù)?
把一個數(shù)各個數(shù)位上的數(shù)相加是3的倍數(shù)……
2、看一看哪些是3的倍數(shù):42、78、111、165、655、5988
原來判斷是用除法,現(xiàn)在用加法。改革了
3、不用計算,能快速算出來那個式子有余數(shù)嗎?
802、3;342、3
4、下面的數(shù)是3的倍數(shù)嗎?888、555,那這樣的三位數(shù)都是三的倍數(shù)嗎?P:777、888,可以想成3個8相乘,像這樣的三位數(shù)一定是3的倍數(shù)
5、下面都是嗎?789、345、654
都是,有什么特點?相鄰、連續(xù)三個自然數(shù)。
是不是所有都是呢?舉例:123.為什么呢?
654,把大的給小的,把6給4,三個都是5了,把較大數(shù)給叫小叔一個,數(shù)字和不變,所以一定是3的倍數(shù)。
6、是嗎?363、669、993。是。有簡便的方法嗎?每個數(shù)學都是3的倍數(shù),這個數(shù)字和一定是3的倍數(shù)。
【《3的倍數(shù)的特征》教案】相關文章:
《3的倍數(shù)的特征》教案15篇02-27
《3的倍數(shù)的特征》說課稿03-11
《3的倍數(shù)的特征》的說課稿03-25
《3的倍數(shù)的特征》說課稿11-09
3的倍數(shù)的特征說課稿06-25
3的倍數(shù)特征說課稿07-06
3的倍數(shù)特征教學反思03-19