當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 《正比例的意義》教案

《正比例的意義》教案

時(shí)間:2024-09-30 17:51:30 教案 我要投稿

《正比例的意義》教案

  作為一位不辭辛勞的人民教師,就有可能用到教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。教案應(yīng)該怎么寫才好呢?以下是小編為大家整理的《正比例的意義》教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

《正比例的意義》教案

《正比例的意義》教案1

  一、教材分析

  1、教學(xué)內(nèi)容:

  人教版六年級(jí)下冊(cè)P39正比例的意義。

  2、教材的地位和作用:

  這部分內(nèi)容是在學(xué)生學(xué)習(xí)了比和比例的基礎(chǔ)上進(jìn)行教學(xué)的,著重使學(xué)生理解正比例的意義。正比例關(guān)系是比較重要的一種數(shù)量關(guān)系,學(xué)生理解并掌握這種數(shù)量關(guān)系,可以加深對(duì)比例的理解,并能應(yīng)用它解決一些簡(jiǎn)單的實(shí)際問題。同時(shí)通過正比例的教學(xué)進(jìn)一步滲透函數(shù)思想,為學(xué)生今后學(xué)習(xí)打下基礎(chǔ)。

  3、教學(xué)重點(diǎn),難點(diǎn)、關(guān)鍵:

  教學(xué)重點(diǎn)是理解正比例的意義,難點(diǎn)是能準(zhǔn)確判斷成正比例的量,關(guān)鍵是發(fā)現(xiàn)正比例量的特征。

  4、教學(xué)目標(biāo):

  根據(jù)本課的具體內(nèi)容,新課標(biāo)有關(guān)要求和學(xué)生的年齡特點(diǎn),我從知識(shí)技能、過程與方法、情感態(tài)度三個(gè)方面確立了本課的教學(xué)目標(biāo)。

  知識(shí)與技能:學(xué)生認(rèn)識(shí)成正比例的量以及正比例關(guān)系,并能正確判斷成正比例的量。

  過程與方法:學(xué)生經(jīng)歷從具體實(shí)例中認(rèn)識(shí)成正比例的量的過程,通過察、比較、分析、歸納等數(shù)學(xué)活動(dòng),發(fā)現(xiàn)正比例量的特征,并嘗試抽象概括正比例的意義。

  情感態(tài)度:在主動(dòng)參與數(shù)學(xué)活動(dòng)的過程中,進(jìn)一步體會(huì)數(shù)學(xué)和日常生活的密切聯(lián)系,增強(qiáng)從生活現(xiàn)象中探索數(shù)學(xué)知識(shí)和規(guī)律的意識(shí)。

  二、學(xué)況分析

  六年級(jí)學(xué)生具備一定的分析綜合、抽象概括的數(shù)學(xué)能力。在學(xué)習(xí)正比例之前已經(jīng)學(xué)習(xí)過比和比例,以及常見的數(shù)量關(guān)系。本節(jié)課在此基礎(chǔ)上,進(jìn)一步理解比值一定的變化規(guī)律。學(xué)生容易掌握的是:判斷有具體數(shù)據(jù)的兩個(gè)量是否成正比例;比較難掌握的是:離開具體數(shù)據(jù),判斷兩個(gè)量是否成正比例。

  三、教法

  遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,通過游戲引入、自主探究、合作學(xué)習(xí)等方式進(jìn)行教學(xué),讓學(xué)生在自主、合作、探究的過程中歸納正比例的特征。

  四、學(xué)法

  引導(dǎo)學(xué)生在觀察比較的基礎(chǔ)上,獨(dú)立思考、小組合作交流。具體表現(xiàn)在學(xué)會(huì)思考,學(xué)會(huì)觀察,學(xué)會(huì)表達(dá),并對(duì)學(xué)生進(jìn)行激勵(lì)性的評(píng)價(jià),讓學(xué)生樂于說,善于說。

  五、教學(xué)過程

  本節(jié)課我安排了六個(gè)教學(xué)環(huán)節(jié)

  第一個(gè)環(huán)節(jié):游戲?qū),激發(fā)興趣

  用游戲的方法將學(xué)生帶入輕松愉快的學(xué)習(xí)氛圍,激發(fā)學(xué)生的'學(xué)習(xí)興趣,活躍課堂氣氛,同時(shí)也為后面教學(xué)做好了鋪墊,使學(xué)生很快進(jìn)入學(xué)習(xí)狀態(tài)。

  第二環(huán)節(jié):引導(dǎo)觀察,啟發(fā)思考

  教學(xué)中讓學(xué)生自己計(jì)算游戲得分,并引導(dǎo)學(xué)生進(jìn)行觀察,從而得出:得分隨著贏的次數(shù)的變化而變化,他們是兩種相關(guān)聯(lián)的量,初步滲透正比例的概念。

  第三環(huán)節(jié):創(chuàng)設(shè)情景,觀察實(shí)驗(yàn)

  用多媒體呈現(xiàn)數(shù)據(jù)的獲取過程,讓學(xué)生直觀地感受到水的體積和高度是兩個(gè)相關(guān)聯(lián)的量以及二者之間的變化規(guī)律。

  第四環(huán)節(jié):探究成正比例的量

  學(xué)生在反復(fù)觀察、思考,討論、交流的過程中自己建立概念,深刻的體驗(yàn)使學(xué)生感受到獲得新知的樂趣。

  第五環(huán)節(jié):鞏固練習(xí),拓展提高

  第六環(huán)節(jié):全課小結(jié)

  六、效果預(yù)測(cè)

  在教學(xué)的始終,我一直引導(dǎo)學(xué)生主動(dòng)探索正比例的意義,加上課件的輔助教學(xué)和課堂練習(xí),學(xué)生在理解掌握并且運(yùn)用新知上,一定會(huì)輕松自如。所以,我預(yù)測(cè)本節(jié)課學(xué)生在知識(shí)、能力和情感上都能全面促進(jìn),達(dá)到預(yù)定的教學(xué)目的。

《正比例的意義》教案2

  教學(xué)目標(biāo):

  1、使學(xué)生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

  2、培養(yǎng)學(xué)生概括能力和分析判斷能力。

  3、培養(yǎng)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題的能力。

  教學(xué)重點(diǎn):

  成正比例的量的特征及其判斷方法。

  教學(xué)難點(diǎn):

  理解兩個(gè)變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量的變化規(guī)律.

  教法:

  啟發(fā)引導(dǎo)法

  學(xué)法:

  自主探究法

  教具:

  課件

  教學(xué)過程:

  一、定向?qū)W(xué)(5分)

  1、已知路程和時(shí)間,求速度

  2、已知總價(jià)和數(shù)量,求單價(jià)

  3、已知工作總量和工作時(shí)間,求工作效率

  4、導(dǎo)入課題

  今天我們來學(xué)習(xí)成正比例的量。

  5、出示學(xué)習(xí)目標(biāo)

  1、理解正比例的意義。

  2、能根據(jù)正比例的意義判斷兩種量是不是成正比例。

  二、自主學(xué)習(xí)(8分)

  自學(xué)內(nèi)容:書上45頁(yè)例1

  自學(xué)時(shí)間:8分鐘

  自學(xué)方法:讀書法、自學(xué)法

  自學(xué)思考:

  1、舉例說明什么是成正比例的量,成正比例的量要具備幾個(gè)條件?

  2、正比例關(guān)系式是什么?

 。1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定,這兩個(gè)量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。例如底面積一定,體積和高成正比例。

 。2)構(gòu)成正比例關(guān)系的兩種量,必須具備三個(gè)條件:一是必須是兩種相關(guān)聯(lián)的量,二是一種量變化另一種量也隨著變化,三是比值(商)一定

 。3)如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

  y/x=k(一定)

 。4)不計(jì)算,根據(jù)圖像判斷,如果杯中水的高度是7厘米,那么水的.體積是175立方米?225立方厘米的水有9厘米。

  2、歸類提升

  引導(dǎo)學(xué)生小結(jié)成正比例的量的意義和關(guān)系式。

  三、合作交流(5分)

  第46頁(yè)正比例圖像

  1、正比例圖像是什么樣子的?

  2、完成46頁(yè)做一做

  3、各組的b1同學(xué)上臺(tái)講解

  四、質(zhì)疑探究(5分)

  1、第49頁(yè)第1題

  2、第49頁(yè)第2題

  3、你還有什么問題?

  五、小結(jié)檢測(cè)(8分)

  1、什么是正比例關(guān)系?如何判斷是不是正比例關(guān)系?

  2、檢測(cè)

  1、49頁(yè)第3題。

  六、堂清作業(yè)(9分)

  練習(xí)九頁(yè)第4、5題。

  板書設(shè)計(jì):

  成正比例的量

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定,這兩個(gè)量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  關(guān)系式:

  y/x=k

《正比例的意義》教案3

  教學(xué)重點(diǎn)和難點(diǎn)

  理解正比例的意義,掌握正比例變化的規(guī)律。

  教學(xué)過程設(shè)計(jì)

  (一)復(fù)習(xí)準(zhǔn)備

  請(qǐng)同學(xué)口述三量關(guān)系:

  (1)路程、速度、時(shí)間;(2)單價(jià)、總價(jià)、數(shù)量;(3)工作效率、時(shí)間、工作總量。

  (學(xué)生口述關(guān)系式、老師板書。)

  (二)學(xué)習(xí)新課

  今天我們進(jìn)一步研究這些數(shù)量關(guān)系中的一些特征,請(qǐng)同學(xué)們回答老師的問題。

  幻燈出示:

  一列火車1小時(shí)行60千米,2小時(shí)行多少千米?3小時(shí)、4小時(shí)、5小時(shí)……各行多少千米?

  生:60千米、120干米、180千米……

  師:根據(jù)剛才口答的問題,整理一個(gè)表格。

  出示例1。(小黑板)

  例1一列火車行駛的時(shí)間和所行的路程如下表。

  師:(看著表格)回答下面的問題。表中有幾種量?是什么?

  生:表中有兩種量,時(shí)間和路程。

  師:路程是怎樣隨著時(shí)間變化的?

  生:時(shí)間1小時(shí),路程是60千米;2小時(shí),路程為120千米;3小時(shí),路程為180千米……

  師:像這樣一種量變化,另一種量也隨著變化,這兩種量就叫做兩種相關(guān)聯(lián)的量。

  (板書:兩種相關(guān)聯(lián)的量)

  師:表中誰和誰是兩種相關(guān)聯(lián)的量?

  生:時(shí)間和路程是兩種相關(guān)聯(lián)的量。

  師:我們看一看他們之間是怎樣變化的?

  生:時(shí)間由1小時(shí)變2小時(shí),路程由60千米變?yōu)?20千米……時(shí)間擴(kuò)大了,路程也隨著擴(kuò)大,路程隨著時(shí)間的變化而變化。

  師:現(xiàn)在我們從后往前看,時(shí)間由8小時(shí)變?yōu)?小時(shí)、6小時(shí)、4小時(shí)……路程又是如何變化的?

  生:路程由480千米變?yōu)?20千米、360千米……

  師:從上面變化的情況,你發(fā)現(xiàn)了什么樣的規(guī)律?(同桌進(jìn)行討論。)

  生:時(shí)間從小到大,路程也隨著從小到大變化;時(shí)間從大到小,路程也隨著從大到小變化。

  師:我們對(duì)比一下老師提出的兩個(gè)問題,互相討論一下,這兩種變化的原因是什么?

  (分組討論)

  師:請(qǐng)同學(xué)發(fā)表意見。

  生:第一題時(shí)間擴(kuò)大了,行的路程也隨著擴(kuò)大;第二題時(shí)間縮小了,所行的路程也隨著縮短了。

  師:我們對(duì)這種變化規(guī)律簡(jiǎn)稱為“同擴(kuò)同縮”。(板書)讓我們?cè)倏匆豢,它們擴(kuò)大縮小的變化規(guī)律是什么?

  師:根據(jù)時(shí)間和路程可以求出什么?

  生:可以求出速度。

  師:這個(gè)速度是誰與誰的比?它們的結(jié)果又叫什么?

  生:這個(gè)速度是路程和時(shí)間的比,它們的結(jié)果是比值。

  師:這個(gè)60實(shí)際是什么?變化了嗎?

  生:這個(gè)60是火車的速度,是路程和時(shí)間的比值,也是路程和時(shí)間的商,速度不變。

  駛多少千米,速度都是60千米,這個(gè)速度是一定的,是固定不變的量,我們簡(jiǎn)稱為定量。

  師:誰是定量時(shí),兩種相關(guān)聯(lián)的量同擴(kuò)同縮?

  生:速度一定時(shí),時(shí)間和路程同擴(kuò)同縮。

  師:對(duì)。這兩種相關(guān)聯(lián)的量的商,也就是比值一定時(shí),它們同擴(kuò)同縮。我們看著表再算一算表中路程與時(shí)間相對(duì)應(yīng)的商是不是一定。

  (學(xué)生口算驗(yàn)證。)

  生:都是60千米,速度不變,符合變化的規(guī)律,同擴(kuò)同縮。

  師:同學(xué)們總結(jié)得很好。時(shí)間和路程是兩種相關(guān)聯(lián)的量,路程是隨著時(shí)間的變化而變化的:時(shí)間擴(kuò)大,路程也隨著擴(kuò)大;時(shí)間縮小,路程也隨著縮小。擴(kuò)大和縮小的規(guī)律是:路程和時(shí)間的比的比值總是一樣的。

  師:誰能像老師這樣敘述一遍?

  (看黑板引導(dǎo)學(xué)生口述。)

  師:我們?cè)倏匆活},研究一下它的變化規(guī)律。

  出示例2。(小黑板)

  例2某種花布的米數(shù)和總價(jià)如下表:

  (板書)

  按題目要求回答下列問題。(幻燈)

  (1)表中有哪兩種量?

  (2)誰和誰是相關(guān)聯(lián)的量?關(guān)系式是什么?

  (3)總價(jià)是怎樣隨著米數(shù)變化的?

  (4)相對(duì)應(yīng)的總價(jià)和米數(shù)的比各是多少?

  (5)誰是定量?

  (6)它們的變化規(guī)律是什么?

  生:(答略)

  師:比較一下兩個(gè)例題,它們有什么共同點(diǎn)?

  生:都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化。

  師:對(duì)。兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。這就是今天我們學(xué)習(xí)的新內(nèi)容。(板書課題:正比例的意義)

  師:你能按照老師說的敘述一下例1中兩個(gè)相關(guān)聯(lián)的量之間的關(guān)系嗎?

  生:路程隨著時(shí)間的變化而變化,它們的比值(也就是速度)一定,所以路程和時(shí)間是成正比例的量,它們的關(guān)系是正比例關(guān)系。

  師:想一想例2,你能敘述它們是不是成正比例的量?為什么?(兩人互相試說。)

  師:很好。請(qǐng)打開書,看書上是怎樣總結(jié)的`?

  (生看書,并畫出重點(diǎn),讀一遍意義。)

  師:如果表中第一種量用x表示,第二種量用y表示,定量用k表示,誰能用字母表示成正比例的兩種相關(guān)聯(lián)的量與定量的關(guān)系?

  師:你能舉出日常生活中成正比例關(guān)系的兩種相關(guān)聯(lián)的量的例子嗎?

  生:(答略)

  師:日常生活和生產(chǎn)中有很多相關(guān)聯(lián)的量,有的成正比例關(guān)系,有的是相關(guān)聯(lián),但不成比例關(guān)系。所以判斷兩種相關(guān)聯(lián)的量是否成正比例關(guān)系,要抓住相對(duì)應(yīng)的兩個(gè)量是否商(比值)一定,只有商(比值)一定時(shí),才能成正比例關(guān)系。

  (三)鞏固反饋

  1.課本上的“做一做”。

  2.幻燈出示題,并說明理由。

  (1)蘋果的單價(jià)一定,買蘋果的數(shù)量和總價(jià)( )。

  (2)每小時(shí)織布米數(shù)一定,織布總米數(shù)和時(shí)間( )。

  (3)小明的年齡和體重( )。

  (四)課堂總結(jié)

  師:今天主要講的是什么內(nèi)容?你是如何理解的?

  (生自己總結(jié),舉手發(fā)言。)

  師:打開書,并說出正比例的意義。有什么不明白的地方提出來。

  (五)布置作業(yè)

  (略)

  課堂教學(xué)設(shè)計(jì)說明

  第一部分:復(fù)習(xí)三量關(guān)系,為本節(jié)內(nèi)容引路。

  第二部分:新課從創(chuàng)設(shè)正比例表象入手,引導(dǎo)學(xué)生主動(dòng)、自覺地觀察、分析、概括,緊緊圍繞判斷正比例的兩種相關(guān)聯(lián)的兩個(gè)量、商一定展開思路,結(jié)合例題中的數(shù)據(jù)整理知識(shí),發(fā)現(xiàn)規(guī)律,由討論表象到抽象概念,使知識(shí)得到深化。

  第三部分:鞏固練習(xí)。幫助學(xué)生鞏固新知識(shí),由此驗(yàn)證學(xué)生對(duì)知識(shí)的理解和掌握情況,幫助學(xué)生掌握判斷方法。最后指導(dǎo)學(xué)生看書,抓住本節(jié)重點(diǎn),突破難點(diǎn)。安排適當(dāng)?shù)木毩?xí)題,在反復(fù)的練習(xí)中,加強(qiáng)概念的理解,牢牢掌握住判斷的方法。合理安排作業(yè),進(jìn)一步鞏固所學(xué)知識(shí)。

  總之,在設(shè)計(jì)教案的過程中,力爭(zhēng)體現(xiàn)教師為主導(dǎo),學(xué)生為主體的精神,使學(xué)生認(rèn)識(shí)結(jié)構(gòu)不斷發(fā)展,認(rèn)識(shí)水平不斷提高,做到在加強(qiáng)雙基的同時(shí)發(fā)展智力,培養(yǎng)能力,并為以后學(xué)習(xí)打下良好的基礎(chǔ)。

  板書設(shè)計(jì)

《正比例的意義》教案4

  教學(xué)要求:

  1.使學(xué)生認(rèn)識(shí)正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。

  2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。

  教學(xué)重點(diǎn):

  認(rèn)識(shí)正比例關(guān)系的意義。

  教學(xué)難點(diǎn)

  掌握成正比例量的變化規(guī)律及其特征。

  教學(xué)過程:

  一、復(fù)習(xí)鋪墊

  1.說出下列每組數(shù)量之間的關(guān)系。

  (1)速度時(shí)間路程

  (2)單價(jià)數(shù)量總價(jià)

  (3)工作效率工作時(shí)間工作總量

  2.引入新課。

  上面是已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當(dāng)其中有一個(gè)量變化時(shí),另一個(gè)量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認(rèn)識(shí)這種變化規(guī)律。今天,先認(rèn)識(shí)正比例關(guān)系的意義。(板書課題)

  二、教學(xué)新課

  1.教學(xué)例1。

  出示例l。讓學(xué)生計(jì)算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學(xué)生觀察表里兩種量變化的數(shù)據(jù),思考:

  (1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?

  (2)路程和時(shí)間相對(duì)應(yīng)數(shù)值的比的比值各是多少?這兩種量變化有什么規(guī)律?

  引導(dǎo)學(xué)生進(jìn)行討論,得出:

  (1)表里的兩種量是所行時(shí)間和所行路程。路程和時(shí)間是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)路程隨著時(shí)間的變化而變化。

  (2)時(shí)間擴(kuò)大,路程也擴(kuò)大;時(shí)間縮小,路程也縮小。

  (3)可以看出它們的變化規(guī)律是:路程和時(shí)間比的比值總是一定的。(板書:路程和時(shí)間比的比值一定)因?yàn)槁烦毯蜁r(shí)間對(duì)應(yīng)數(shù)值比的比值都是50。提問:這里比值50是什么數(shù)量?(誰能說出它的數(shù)量關(guān)系式?想一想,這個(gè)式子表示的是什么意思?(把上面板書補(bǔ)充成:速度一定時(shí),路程和時(shí)間比的比值一定)

  2.教學(xué)例2。

  出示例2和思考題。要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。學(xué)生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的變化規(guī)律是什么?枝數(shù)比的比值一定)你是怎樣發(fā)現(xiàn)的?比值1.6是什么數(shù)量,你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個(gè)式子表示的意思?(把板書補(bǔ)充成c單價(jià)一定時(shí),總價(jià)和枝數(shù)比的比值一定)

  3.概括。

  (1)綜合例1、例2的共同點(diǎn)。

  提問:請(qǐng)大家比較例l和例2,你發(fā)現(xiàn)這兩個(gè)例題有什么共同的地方?(①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對(duì)應(yīng)數(shù)值的比的比值一定)

  (2)概括正比例關(guān)系的意義。

  像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請(qǐng)同學(xué)們看課本第40頁(yè)最后一節(jié)。說明:根據(jù)剛才學(xué)習(xí)例1、例2時(shí)發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢?指出:這個(gè)式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時(shí)就說x和y成正比例關(guān)系。所以,兩個(gè)量成正比例關(guān)系,我們就用式子=k (一定)來表示。

  4.具體認(rèn)識(shí)。

  (1)提問:例l里有哪兩種相關(guān)聯(lián)的'量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?

  (2)做練習(xí)八第1題。

  讓學(xué)生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的,要知道兩個(gè)量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時(shí)比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時(shí)比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。

  5.教學(xué)例3。

  出示例3,讓學(xué)生思考。提問:怎樣判斷是不是成正比例?哪位同學(xué)說說零件總數(shù)和時(shí)間成不成正比例?為什么?請(qǐng)同學(xué)們看一看例3,書上怎樣判斷的,我們說得對(duì)不對(duì)。追問:判斷兩種量是不是成正比例要怎樣想?強(qiáng)調(diào):關(guān)鍵是列出關(guān)系式,看是不是比值一定。

  三、鞏固練習(xí)

  現(xiàn)在,我們根據(jù)上面的判斷方法來做一些題。

  1.做“練一練”第l題。

  指名學(xué)生口答,說明理由。可以結(jié)合寫出數(shù)量關(guān)系式。

  2.做“練一練”第2題。

  指名口答,并要求說明理由。

  3.做練習(xí)八第2題。

  小黑板出示。讓學(xué)生把成正比例關(guān)系的先勾出來。指名口答,選擇幾題讓學(xué)生說一說怎樣想的?(必要時(shí)寫出關(guān)系式讓學(xué)生判斷)

  4.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?

  一種蘋果,買5千克要10元。照這樣計(jì)算,買15千克要30元。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?

  五、家庭作業(yè)

  練習(xí)八第3題。

《正比例的意義》教案5

  教學(xué)要求:

  1.使學(xué)生認(rèn)識(shí)正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。

  2.進(jìn)一步培養(yǎng)學(xué)生觀察、分析、綜合和概括等能力,讓學(xué)生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學(xué)生判斷、推理的能力。

  教學(xué)重點(diǎn):

  認(rèn)識(shí)正比例關(guān)系的意義。

  教學(xué)難點(diǎn):

  掌握成正比例量的變化規(guī)律及其特征。

  教學(xué)過程:

  一、復(fù)習(xí)鋪墊

  1.說出下列每組數(shù)量之間的關(guān)系。

  (1)速度時(shí)間路程

  (2)單價(jià)數(shù)量總價(jià)

  (3)工作效率工作時(shí)間工作總量

  2.引入新課。

  上面是已經(jīng)學(xué)過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當(dāng)其中有一個(gè)量變化時(shí),另一個(gè)量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認(rèn)識(shí)這種變化規(guī)律。今天,先認(rèn)識(shí)正比例關(guān)系的意義。(板書課題)

  二、自主探究:

  1.教學(xué)例1。

  出示例l。讓學(xué)生計(jì)算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學(xué)生觀察表里兩種量變化的數(shù)據(jù),思考:

  (1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?

  (2)長(zhǎng)方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點(diǎn)嗎?

 。3)分別找出面積與款項(xiàng)對(duì)應(yīng)的數(shù),面積與寬的比各是幾比幾?比值各是多少?

  引導(dǎo)學(xué)生進(jìn)行討論,得出:

  (1)表里的兩種量是長(zhǎng)方形的寬與面積(長(zhǎng)與面積)。寬與面積(長(zhǎng)與面積)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)面積隨著寬(長(zhǎng))的變化而變化。

  (2)寬(長(zhǎng))擴(kuò)大,面積也擴(kuò)大;寬(長(zhǎng))縮小,面積也縮小。

  (3)可以看出它們的變化規(guī)律是:面積與寬(面積與長(zhǎng))比的比值總是一定的。(板書:面積和寬比的比值一定)因?yàn)槊娣e和寬(面積與長(zhǎng))對(duì)應(yīng)數(shù)值比的比值都是5(2)。提問:這里比值5(2)是什么數(shù)量?誰能說出它的數(shù)量關(guān)系式?板書:面積/寬=長(zhǎng)(一定)面積/長(zhǎng)=寬(一定)想一想,這個(gè)式子表示的是什么意思?(把上面板書補(bǔ)充成:長(zhǎng)一定時(shí),面積和寬比的比值一定寬一定時(shí),面積和長(zhǎng)比的比值一定)

  2.教學(xué)例2。

  出示例2。要求學(xué)生按剛才學(xué)習(xí)例1的方法學(xué)習(xí)例2,然后把你學(xué)習(xí)中的發(fā)現(xiàn)綜合起來告訴大家。學(xué)生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個(gè)式子表示的意思?(把板書補(bǔ)充成單價(jià)一定時(shí),總價(jià)和數(shù)量比的比值一定)

  3.概括正比例的意義。

  (1)綜合例1、例2的共同點(diǎn)。

  提問:請(qǐng)大家比較例l和例2,你發(fā)現(xiàn)這兩個(gè)例題有什么共同的地方?(①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對(duì)應(yīng)數(shù)值的比的比值一定)

  (2)概括正比例關(guān)系的意義。

  像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請(qǐng)同學(xué)們看課本第95頁(yè)最后連個(gè)自然段。說明:根據(jù)剛才學(xué)習(xí)例1、例2時(shí)發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢?指出:這個(gè)式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時(shí)就說x和y成正比例關(guān)系。所以,兩個(gè)量成正比例關(guān)系,我們就用式子=k(一定)來表示。

  4.教學(xué)例3學(xué)生看書自學(xué),小組討論,集體交流。

 。1)數(shù)量與時(shí)間是不是兩種相關(guān)聯(lián)的量?

 。2)數(shù)量與時(shí)間有什么關(guān)系?他們的比值是誰?比值是不是不變的.?

 。3)判斷數(shù)量與時(shí)間是不是成正比例?

  5.完成97頁(yè)練一練。

  三、鞏固練習(xí)

  1.(1)提問:例l里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?

  2.做練習(xí)十一第1題。

  讓學(xué)生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的正比例的意義,要知道兩個(gè)量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時(shí)比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時(shí)比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。

  3.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?

  一種蘋果,買5千克要10元。照這樣計(jì)算,買15千克要30元。

  四、課堂小結(jié)

  這節(jié)課學(xué)習(xí)了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?關(guān)鍵是列出關(guān)系式,看是不是比值一定。

  五、家庭作業(yè)

  練習(xí)十一第2~6題。

《正比例的意義》教案6

  教學(xué)目標(biāo):

  1、學(xué)生根據(jù)具體情境教學(xué),結(jié)合實(shí)例認(rèn)識(shí)正比例,理解正比例的意義,正比例的意義教學(xué)設(shè)計(jì)。

  2、能根據(jù)正比例的意義,判斷兩個(gè)相關(guān)聯(lián)的量是不是成正比例。

  3、結(jié)合豐富的事例,認(rèn)識(shí)正比例,體會(huì)數(shù)學(xué)源于生活,進(jìn)一步提高學(xué)習(xí)興趣。教學(xué)重點(diǎn):

  結(jié)合豐富的事例,認(rèn)識(shí)正比例。能根據(jù)正比例的意義,判斷兩個(gè)相關(guān)聯(lián)的量是不是成正比例。

  教學(xué)難點(diǎn):

  能根據(jù)正比例的意義,判斷兩個(gè)相關(guān)聯(lián)的量是不是成正比例。

  教學(xué)關(guān)鍵:

  理解成正比例的兩個(gè)量的意義。

  教學(xué)過程:

  一、復(fù)習(xí)準(zhǔn)備:

  口答

  1、已知路程和時(shí)間,怎樣求速度?

  2、已知總價(jià)和數(shù)量,怎樣求單價(jià)?

  3、已知工作總量和工作時(shí)間,怎樣求工作效率?

  二、數(shù)學(xué)活動(dòng)。在學(xué)活動(dòng)的過程中,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,并樂于與人交流。

  活動(dòng)一:在情境中感受兩種相關(guān)聯(lián)的量之間的變化規(guī)律。

  (一)情境一:

  課件出示:

  1、觀察圖,分別把正方形的周長(zhǎng)與邊長(zhǎng),面積與邊長(zhǎng)的變化情況填入表格中。請(qǐng)根據(jù)你的觀察,把數(shù)據(jù)填在表中。

  2、填完表以后思考討論,教案《正比例的意義教學(xué)設(shè)計(jì)》。正方形的面積與邊長(zhǎng)的變化是否有關(guān)系?它們的變化分別有怎樣的規(guī)律?規(guī)律相同嗎?說說從數(shù)據(jù)中發(fā)現(xiàn)了什么?

  3、小結(jié):正方形的周長(zhǎng)和面積都隨邊長(zhǎng)的增加而增加,在變化過程中,正方形的周長(zhǎng)與邊長(zhǎng)的比值一定都是一定的。

  特點(diǎn)是:

  ①兩種相關(guān)聯(lián)的量

 、谝环N量擴(kuò)大(或縮小)另一種量也擴(kuò)大(或縮小)

 、蹆煞N量中相對(duì)應(yīng)的兩個(gè)量的比的比值是一定的。

  4、正方形的面積與邊長(zhǎng)的比是邊長(zhǎng),是一個(gè)不確定的值。

  學(xué)生在小組內(nèi)練說發(fā)現(xiàn)的規(guī)律,初步感知正比例的判定。

  (二)情境二:

  1、一種汽車行駛的速度為90千米/小時(shí)。汽車行駛的時(shí)間和路程如下:

  2、請(qǐng)把下表填寫完整。3、從表中你發(fā)現(xiàn)了什么規(guī)律?說說你發(fā)現(xiàn)的規(guī)律:路程與時(shí)間的比值(速度)相同。

  (三)情境三:1、一些人買一種蘋果,購(gòu)買蘋果的質(zhì)量和應(yīng)付的錢數(shù)如下。

  2、把表填寫完整。3、從表中發(fā)現(xiàn)了什么規(guī)律?應(yīng)付的錢數(shù)與質(zhì)量的比值(也就是單價(jià))相同。

  3、說說以上兩個(gè)例子有什么共同的特點(diǎn)。

  小結(jié):路程隨時(shí)間的變化而變化,路程與時(shí)間的比值相同;應(yīng)付的錢數(shù)隨購(gòu)買蘋果的質(zhì)量的變化而變化,應(yīng)付的錢數(shù)與質(zhì)量的比值相同。

  4、正比例關(guān)系:觀察思考成正比例的量有什么特征?

  小結(jié):

  (1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。這就是我們今天要學(xué)習(xí)的內(nèi)容。

  追問:判斷兩種相關(guān)聯(lián)的量成不成正比例的關(guān)鍵是什么?(比值是不是一定)

  (2)字母表達(dá)關(guān)系式。

  如果字母y和x分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,正比例關(guān)系怎樣用字母表示出來?=k(一定)

  (3)質(zhì)疑。

  師:根據(jù)正比例的意義以及表示正比例關(guān)系的式子想一想:構(gòu)成正比例關(guān)系的`兩種量必須具備哪些條件?

  三、鞏固練習(xí)

  (一)想一想:請(qǐng)生用自己的語言說一說。與同桌交流,再集體匯報(bào)

  1、正方形的周長(zhǎng)與邊長(zhǎng)成正比例嗎?面積與邊長(zhǎng)呢?為什么?

  2、根據(jù)小明和爸爸的年齡變化情況

  把表填寫完整。父子的年齡成正比例嗎?為什么?

  (二):練一練。教師適度點(diǎn)撥引導(dǎo),強(qiáng)調(diào)正比例關(guān)系判斷的關(guān)鍵。先自己獨(dú)立完成,然后集體訂正,說理由。

  1、判斷下面各題中的兩個(gè)量,是否成正比例,并說明理由。

  (1)每袋大米的質(zhì)量一定,大米的總質(zhì)量和袋數(shù)。

  (2)一個(gè)人的身高和年齡。

  (3)寬不變,長(zhǎng)方形的周長(zhǎng)與長(zhǎng)。

  2、根據(jù)下表中平行四邊形的面積與高相對(duì)應(yīng)的數(shù)值,判斷當(dāng)?shù)资?厘米的時(shí)候,它們是是成正比例,并說明理由。

  3、買郵票的枚數(shù)與應(yīng)付的錢數(shù)成正比例嗎?填寫表格。先填寫表格,再說明理由

  4、畫一畫,你會(huì)有新的發(fā)現(xiàn)。

  彩帶每米4元,購(gòu)買2米、3米…彩帶分別需要多少錢?

 、偬钜惶睿(長(zhǎng)度:米,價(jià)格:元)

  ②畫一畫,把上表中長(zhǎng)度和價(jià)錢對(duì)應(yīng)的點(diǎn)描在坐標(biāo)紙上,再順次連接起來?窗l(fā)現(xiàn)了什么?

  板書:

  正比例的意義

  ①兩種相關(guān)聯(lián)的量

 、谝环N量擴(kuò)大(或縮小)另一種量也擴(kuò)大(或縮小)

  ③兩種量中相對(duì)應(yīng)的兩個(gè)量的比的比值是一定的

  路程÷時(shí)間=速度(一定)總價(jià)÷數(shù)量=單價(jià)(一定)

  =k(一定)

《正比例的意義》教案7

  1、成正比例的量

  教學(xué)內(nèi)容:成正比例的量

  教學(xué)目標(biāo):

  1.使學(xué)生理解正比例的意義,會(huì)正確判斷成正比例的量。

  2.使學(xué)生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關(guān)簡(jiǎn)單問題。

  教學(xué)重點(diǎn):正比例的意義。

  教學(xué)難點(diǎn):正確判斷兩個(gè)量是否成正比例的關(guān)系。

  教學(xué)過程:

  一揭示課題

  1.在現(xiàn)實(shí)生活中,我們常常遇到兩種相關(guān)聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?

  在教師的此導(dǎo)下,學(xué)生會(huì)舉出一些簡(jiǎn)單的例子,如:

 。1)班級(jí)人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。

 。2)送來的牛奶包數(shù)多了,牛奶的總質(zhì)量也多了;包數(shù)少了,總質(zhì)量也少了。

 。3)上學(xué)時(shí),去的速度快了,時(shí)間用少了;速度慢了,時(shí)間用多了。

 。4)排隊(duì)時(shí),每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。

  2.這種變化的量有什么規(guī)律?存在什么關(guān)系呢?今天,我們首先來學(xué)習(xí)成正比例的量。板書:成正比例的量

  二探索新知

  1.教學(xué)例1

 。1)出示例題情境圖。

  問:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。

 。2)出示表格。

  高度/㎝24681012

  體積/㎝350100150200250300

  底面積/㎝2

  問:你有什么發(fā)現(xiàn)?

  學(xué)生不難發(fā)現(xiàn):杯子的底面積不變,是25㎝2。

  板書:

  教師:體積與高度的比值一定。

 。2)說明正比例的意義。

  ①在這一基礎(chǔ)上,教師明確說明正比例的意義。

  因?yàn)楸拥牡酌娣e一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應(yīng)增加,水的高度降低,體積也相應(yīng)減少,而且水的體積和高度的比值一定。

  板書出示:像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值一定,這兩種理就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

 、趯W(xué)生讀一讀,說一說你是怎么理解正比例關(guān)系的。

  要求學(xué)生把握三個(gè)要素:

  第一,兩種相關(guān)聯(lián)的量;

  第二,其中一個(gè)量增加,另一個(gè)量也增加;一個(gè)量減少,另一個(gè)量也減少。

  第三,兩個(gè)量的比值一定。

 。3)用字母表示。

  如果用字母X和Y表示兩種相關(guān)聯(lián)的量,用K表示它們的比值(一定),比例關(guān)系可以用正的式子表示:

 。4)想一想:

  師:生活中還有哪些成正比例的量?

  學(xué)生舉例說明。如:

  長(zhǎng)方形的.寬一定,面積和長(zhǎng)成正比例。

  每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例。

  衣服的單價(jià)一不定期,購(gòu)買衣服的數(shù)量和應(yīng)付錢數(shù)成正比例。

  地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。

  2.教學(xué)例2。

 。1)出示表格(見書)

  (2)依據(jù)下表中的數(shù)據(jù)描點(diǎn)。(見書)

 。3)從圖中你發(fā)現(xiàn)了什么?

  這些點(diǎn)都在同一條直線上。

 。4)看圖回答問題。

 、偃绻兴母叨仁7㎝,那么水的體積是多少?

  生:175㎝3。

 、隗w積是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

 、郾兴母叨仁14㎝,那么水的體積是多少?描出這一對(duì)應(yīng)的點(diǎn)是否在直線上?

  生:水的體積是350㎝3,相對(duì)應(yīng)的點(diǎn)一定在這條直線上。

 。5)你還能提出什么問題?有什么體會(huì)?

  通過交流使學(xué)生了解成正比例量的圖像特往。

  3.做一做。

  過程要求:

 。1)讀一讀表中的數(shù)據(jù),寫出幾組路程和時(shí)間的比,說一說比值表示什么?

  比值表示每小時(shí)行駛多少千米。

 。2)表中的路程和時(shí)間成正比例嗎?為什么?

  成正比例。理由:

 、俾烦屉S著時(shí)間的變化而變化;

 、跁r(shí)間增加,路程也增加,時(shí)間減少,路程也隨著減少;

 、鄯N程和時(shí)間的比值(速度)一定。

  (3)在圖中描出表示路程和時(shí)間的點(diǎn),并連接起來。有什么發(fā)現(xiàn)?所描的點(diǎn)在一條直線上。

 。4)行駛120KM大約要用多少時(shí)間?

  (5)你還能提出什么問題?

  4.課堂小結(jié)

  說一說成正比例關(guān)系的量的變化特征。

  三鞏固練習(xí)

  完成課文練習(xí)七第1~5題。

  2、成反比例的量

  教學(xué)內(nèi)容:成反比例的量

  教學(xué)目標(biāo):

  1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。

  2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。

  教學(xué)重點(diǎn):反比例的意義。

  教學(xué)難點(diǎn):正確判斷兩種量是否成反比例。

  教學(xué)過程:

  一導(dǎo)入新課

  1.讓學(xué)生說一說成正比例的兩種量的變化規(guī)律。

  回答要點(diǎn):

 。1)兩種相關(guān)聯(lián)的量;

  (2)一個(gè)量增加,另一個(gè)量也相應(yīng)增加;一個(gè)量減少,另一個(gè)量也相應(yīng)減少;

  (3)兩個(gè)量的比值一定。

  2.舉例說明。

  如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。

  理由:

 。1)每袋大米質(zhì)量一定,大米的總質(zhì)量隨著袋數(shù)的變化而變化;

 。2)大米的袋數(shù)增加,大米的總質(zhì)量也相應(yīng)增加,大米的袋數(shù)

  減少,大米的總質(zhì)量也相應(yīng)減少;

  (3)總質(zhì)量與袋數(shù)的比值一定。

  所以,大米的袋數(shù)與總質(zhì)量成正比例。

  板書:

  3.揭示課題。

  今天,我們一起來學(xué)習(xí)反比例。兩種量是什么樣的關(guān)系時(shí),這兩種量成反比例呢?

  板書課題:成反比例的量[ 內(nèi) 容 結(jié) 束 ]

《正比例的意義》教案8

  教學(xué)內(nèi)容

  教科書第52頁(yè)例1,第55頁(yè)課堂活動(dòng)第1題及練習(xí)十二1,2,3題。

  教學(xué)目標(biāo)

  1.使學(xué)生通過具體問題情境認(rèn)識(shí)成正比例的量,理解其意義,并能判斷兩種量是否成正比例關(guān)系,能找到生活中成正比例的實(shí)例,并進(jìn)行交流。

  2.通過探索正比例意義的教學(xué)活動(dòng),使學(xué)生感受事物中充滿著運(yùn)動(dòng)、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  3.通過觀察、交流、歸納、推斷等教學(xué)活動(dòng),感受數(shù)學(xué)思維過程的合理性,培養(yǎng)學(xué)生的觀察能力、推理能力、歸納能力和靈活應(yīng)用知識(shí)的能力。

  教學(xué)重點(diǎn)

  認(rèn)識(shí)成正比例的量,理解其意義,并能判斷兩種量是否成正比例關(guān)系。

  教學(xué)難點(diǎn)

  理解正比例的意義,感受事物中充滿著運(yùn)動(dòng)、變化的思想,并且特定的事物發(fā)展、變化是有規(guī)律的。

  教學(xué)準(zhǔn)備

  教具:多媒體課件。

  學(xué)具:作業(yè)本,數(shù)學(xué)書。

  教學(xué)過程

  一、聯(lián)系生活,復(fù)習(xí)引入

 。1)下面是居委會(huì)張阿姨負(fù)責(zé)的小區(qū)水費(fèi)收繳情況,用這個(gè)表中的.數(shù)能寫成多少個(gè)有意義的比?哪些比能組成比例?把能組成的比例都寫出來。

 。2)揭示課題。

  教師:在上面的表中,有哪兩種量?(水費(fèi)和用水量、總價(jià)和數(shù)量)在我們平時(shí)的生活中,除了這兩種量,我們還要遇到哪些數(shù)量呢?

  教師:這些數(shù)量之間藏著不少的知識(shí),今天這節(jié)課我們就來研究這些數(shù)量間的一些規(guī)律和特征。

  二、自主探索,學(xué)習(xí)新知

  1.教學(xué)例1

  用課件在剛才準(zhǔn)備題的表格中增加幾列數(shù)據(jù),變成表。

  教師:請(qǐng)同學(xué)們觀察這張表,先獨(dú)立思考后再討論、交流:從這張表中你發(fā)現(xiàn)了什么規(guī)律?并根據(jù)這種規(guī)律幫助張阿姨把表格填寫完整。

  教師根據(jù)學(xué)生的回答將表格完善,并作必要的板書。

  教師:同學(xué)們發(fā)現(xiàn)表格中的水費(fèi)隨著用水量的增加也在不斷增加,像這樣水費(fèi)隨著用水量的變化而變化,我們就說水費(fèi)和用水量是相互關(guān)聯(lián)的。

  板書:相關(guān)聯(lián)

  教師:你們還發(fā)現(xiàn)哪些規(guī)律?

  學(xué)生在這里主要體會(huì)水費(fèi)除以用水量得到的每噸水單價(jià)始終是不變的,教師可根據(jù)學(xué)生的回答板書出來,便于其他學(xué)生觀察:

  教師:水費(fèi)除以用水量得到的單價(jià)相等也可以說是水費(fèi)與用水量的比值相等,也就是一個(gè)固定的數(shù)。

  板書:

  2.教學(xué)試一試

  教師:我們?cè)賮硌芯恳粋(gè)問題。

  課件出示第52頁(yè)下面的試一試。

  學(xué)生先獨(dú)立完成。

  教師:你能用剛才我們研究例1的方法,自己分析這個(gè)表格中的數(shù)據(jù)嗎?

  教師根據(jù)學(xué)生的回答歸納如下:

  表中的路程和時(shí)間是相關(guān)聯(lián)的量,路程隨著時(shí)間的變化而變化。

  時(shí)間擴(kuò)大若干倍,路程也擴(kuò)大相同的倍數(shù);時(shí)間縮小若干倍,路程縮小相同的倍數(shù)。

  路程與時(shí)間的比值是一定的,速度是每時(shí)80 km,它們之間的關(guān)系可以寫成路程時(shí)間=速度(一定)

  3.教學(xué)議一議

  教師:我們研究了上面生活中的兩個(gè)問題,誰能發(fā)現(xiàn)它們之間的共同點(diǎn)呢?

  引導(dǎo)學(xué)生歸納出這兩個(gè)問題中都有相關(guān)聯(lián)的量,一種量擴(kuò)大或縮小若干倍,另一種量也隨著擴(kuò)大或縮小相同的倍數(shù),所以它們的比值始終是一定的。

  教師:像上面這樣的兩種量,叫做成正比例的量,它們的關(guān)系叫做成正比例關(guān)系。

  4.教學(xué)課堂活動(dòng)

  教師:請(qǐng)大家說一說生活中還有哪些是成正比例的量。

  三、夯實(shí)基礎(chǔ),鞏固提高

 。1)完成練習(xí)十二的第1題。

  教師:請(qǐng)同學(xué)們用所學(xué)知識(shí)判斷一下,下面表中的兩種量成正比例關(guān)系嗎?為什么?

  學(xué)生獨(dú)立思考,先小組內(nèi)交流再集體交流。

  (2)完成練習(xí)十二的第2題。

  四、全課小結(jié)

  教師:這節(jié)課你們學(xué)到了哪些知識(shí)?用了哪些學(xué)習(xí)方法?還有哪些不懂的問題?

《正比例的意義》教案9

  教學(xué)內(nèi)容:

  教科書第19—21頁(yè)正比例的意義,練習(xí)六的1—3題。

  教學(xué)目的:

  1.使學(xué)生理解正比例的意義,能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。

  2.初步培養(yǎng)學(xué)生用事物相互聯(lián)系和發(fā)展變化的觀點(diǎn)來分析問題。

  3.初步滲透函數(shù)思想。

  教具準(zhǔn)備:投影儀、投影片、小黑板。

  教學(xué)過程:

  一、復(fù)習(xí)

  用,投影片逐一出示下面的題目,讓學(xué)生回答。

  1.已知路程和時(shí)間,怎樣求速度?板書:=速度

  2.已知總價(jià)和數(shù)量,怎樣求單價(jià)?板書:=單價(jià)

  3.己知工作總量和工作時(shí)間,怎樣求工作效率?板書:

 。焦ぷ餍

  4,已知總產(chǎn)量和公頃數(shù),怎樣求公頃產(chǎn)量?板書:=公頃產(chǎn)量

  二、導(dǎo)人新課

  教師:這是我們過去學(xué)過的一些常見的數(shù)量關(guān)系。這節(jié)課我們進(jìn)一步來研究這些數(shù)量關(guān)系中的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系。(板書課題:正比例的意義)

  三、新課

  1.教學(xué)例1。

  用小黑板出示例1:一列火車行駛的時(shí)間和所行的路程如下表:

  提問:

  “誰來講講例1的意思?”(火車1小時(shí)行駛60千米,2小時(shí)行駛120千米……)

  “表中有哪幾種量?”

  “當(dāng)時(shí)間是1小時(shí),路程是多少?當(dāng)時(shí)間是2小時(shí),路程又是多少?……”

  “這說明時(shí)間這種量變化了,路程這種量怎么樣了?”(也變化了。)

  教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)“時(shí)間和路程是兩種相關(guān)聯(lián)的量,路程是怎樣隨著時(shí)間變化而變化的呢?”

  教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時(shí)間擴(kuò)大2倍,對(duì)應(yīng)的路程也擴(kuò)大2倍3時(shí)間擴(kuò)大3倍,對(duì)應(yīng)的路程也擴(kuò)大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時(shí)間縮小8倍,對(duì)應(yīng)的路程也縮小8倍;時(shí)間縮小7倍,對(duì)應(yīng)的路程也縮小7倍……時(shí)間縮小2倍,對(duì)應(yīng)的路程也縮小2倍。通過觀察,我們發(fā)現(xiàn)路程是隨著時(shí)間的變化而變化的。時(shí)間擴(kuò)大路程也擴(kuò)大,時(shí)間縮小路程也縮小。它們擴(kuò)大、縮小的規(guī)律是怎么樣的呢?

  讓每一小組(8個(gè)小組)的同學(xué)選一組相對(duì)應(yīng)的數(shù)據(jù),計(jì)算出它們的比值。教師板書出來:=60.=60,=60……讓學(xué)生雙察這些比和它們的比值,看有什么規(guī)律。教師板書:相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定。

  然后教師指著=60,=60 = 60……問:“比值60,實(shí)際上是火車的什么:你能將這些式子所表示的意義寫成一個(gè)關(guān)系式嗎?板書:=速度(—定)

  教師小結(jié):通過剛才的觀察和分析.我們知道路程和時(shí)間是兩種什么樣的量?(兩種相關(guān)聯(lián)的量。)路程和時(shí)間這兩種量的變化規(guī)律是什么呢?(路程和時(shí)間的比的比值(速度)總是一定的。)

  2.教學(xué)例2。

  出示例2:在一間布店的柜臺(tái)上,有一張寫著某種花布的米數(shù)和總價(jià)的表。

  讓學(xué)生觀察上表,并回答下面的問題:

  (1)表中有哪兩種量?

  (2)米數(shù)擴(kuò)大,總價(jià)怎樣?米數(shù)縮小,總價(jià)怎樣?

  (3)相對(duì)應(yīng)的總價(jià)和米數(shù)的`比各是多少?比值是多少?

  當(dāng)學(xué)生回答完第二個(gè)問題后,教師板書:=3.1,=3.1,=3.1……

  然后進(jìn)一步問:

  “這個(gè)比值實(shí)際上是什么?你能用一個(gè)關(guān)系式表.示它們的關(guān)系嗎?”板書:=單價(jià)(一定)

  教師小結(jié):通過剛才的思考和分析,我們知道總價(jià)和米數(shù)也是兩種相關(guān)聯(lián)的量,總價(jià)是隨著米數(shù)的變化而變化的,米數(shù)擴(kuò)大,總價(jià)也隨著擴(kuò)大;米數(shù)縮小,總價(jià)也隨著縮小。它們擴(kuò)大、縮小的規(guī)律是:總價(jià)和米數(shù)的比的比值總是一定的。

  3.抽象概括正比例的意義。

  教師:請(qǐng)同學(xué)們比較一下剛才這兩個(gè)例題,回答下面的問題;

  (1)都有幾種量?

  (2)這兩種量有沒有關(guān)系?

  (3)這兩種量的比值都是怎樣的?

  教師小結(jié):通過比較,我們看出上面兩個(gè)例題,有一些共同特點(diǎn):都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。(板書出教科書上第’20頁(yè)的倒數(shù)第二段。)

  接著指著例1的表格說明:在例1中,路程隨著時(shí)間的變化而變化,它們的比值(速度)保持一定,所以路程和時(shí)間是成正比例的量。隨后讓學(xué)生想一想:在例2中,有哪兩種相關(guān)聯(lián)的量:它們是不是成正比例的量?為什么?

  最后教師提出:如果我們用字母X,y表示兩種相關(guān)聯(lián)的量.用字母K表示它們的比值,你能將正比例關(guān)系用字母表示出來嗎?

  學(xué)生回答后,教師板書:=K(一定)

  4,教學(xué)例3。

  出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

  教師引導(dǎo):

  “面粉的總重量和袋數(shù)是不是相關(guān)聯(lián)的量?”·

  “面粉的總重量和袋數(shù)有什么關(guān)系?它們的比的比值是什么?這個(gè)比值是否—定?”(板書:=每袋面粉的重量(一定))

  “已知每袋面粉的重量一定,就是面粉的總重量和袋數(shù)的比的比值是一定的,所以面粉的總重量和袋數(shù)成正比例。”

  5.鞏固練習(xí)。

  讓學(xué)生試做第21頁(yè)“做一做”中的題目。其中(3)要求學(xué)生說明這個(gè)比值所表示的意義,學(xué)生說成是生產(chǎn)效率和每天生產(chǎn)的噸數(shù)都可以。

  四、課堂練習(xí)

  完成練習(xí)六的第1—3題。

  第1題,做題前,讓學(xué)生想一想:成正比例的量要滿足哪幾個(gè)條件?然后讓學(xué)生算出各表中兩種相對(duì)應(yīng)的數(shù)的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關(guān)系式進(jìn)行判斷。第(3)小題,要問一問學(xué)生為什么正方形的邊長(zhǎng)和面積不成比例。(因?yàn)橄鄬?duì)應(yīng)的正方形的邊長(zhǎng)和面積的比的比值不相等。)

  第2題,先讓學(xué)生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。

  第3題,可先讓同桌的同學(xué)互相舉例,然后再指名舉出成正比例的例子。

《正比例的意義》教案10

  素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1.使學(xué)生理解正比例的意義。

  2.能根據(jù)正比例的意義判斷兩種量是不是成正比例。

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.培養(yǎng)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題的能力。

  2.培養(yǎng)學(xué)生抽象概括能力和分析判斷能力。

 。ㄈ┑掠凉B透點(diǎn)

  1.通過引導(dǎo)學(xué)生用發(fā)展變化的觀點(diǎn)來分析問題,使學(xué)生進(jìn)一步受到辯證唯物主義觀點(diǎn)的啟蒙教育。

  2.進(jìn)一步滲透函數(shù)思想。

  教學(xué)重點(diǎn):

  使學(xué)生理解正比例的意義。

  教學(xué)難點(diǎn):

  引導(dǎo)學(xué)生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的變化規(guī)律,即它們相對(duì)應(yīng)的數(shù)的比值一定,從而概括出正比例關(guān)系的概念。

  教具學(xué)具準(zhǔn)備:

  投影儀、投影片、小黑板。

  教學(xué)步驟

  一、鋪墊孕伏

  用投影逐一出示下列題目,請(qǐng)同學(xué)回答:

  1.已知路程和時(shí)間,怎樣求速度?

  2.已知總價(jià)和數(shù)量,怎樣求單價(jià)?

  3.已知工作總量和工作時(shí)間,怎樣求工作效率?

  二、探究新知

  1.導(dǎo)入新課:這些都是我們已經(jīng)學(xué)過的常見的數(shù)量關(guān)系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關(guān)系中的一些特征。

  2.教學(xué)例1

 。1)投影出示:一列火車1小時(shí)行駛60千米,2小時(shí)行駛120千米,3小時(shí)行駛180千米,4小時(shí)行駛240千米,5小時(shí)行駛300千米,6小時(shí)行駛360千米,7小時(shí)行駛420千米,8小時(shí)行駛480千米……

 。2)出示下表,并根據(jù)上述內(nèi)容填表。

  一列火車行駛的時(shí)間和所行的路程如下表

 。3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?

  學(xué)生交流時(shí),使之明確。

 、俦碇杏袝r(shí)間和路程兩種量。

 、诋(dāng)時(shí)間是1小時(shí),路程則是60千米,時(shí)間是2小時(shí),路程是120千米……時(shí)間變化,路程也隨著變化,時(shí)間擴(kuò)大,路程隨著擴(kuò)大;時(shí)間縮小,路程也隨著縮小。

  教師點(diǎn)撥:

  像這樣,時(shí)間變化,路程也隨著變化,我們就說,時(shí)間和路程是兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)

 、廴绻麑W(xué)生沒有問題,教師提示:請(qǐng)每位同學(xué)任選一組相對(duì)應(yīng)的數(shù)據(jù),計(jì)算出路程與時(shí)間的比的比值。

  教師問:根據(jù)計(jì)算,你發(fā)現(xiàn)了什么?

  引導(dǎo)學(xué)生得出:相對(duì)應(yīng)的'兩個(gè)數(shù)的比值都是60或都一樣,固定不變等。

  教師指出:相對(duì)應(yīng)的兩個(gè)數(shù)的比的比值都一樣或固定不變,在數(shù)學(xué)上叫做“一定”。(板書:相對(duì)應(yīng)的兩個(gè)數(shù)的比值一定)

 、鼙戎60,實(shí)際就是火車的速度。用式子表示它們的關(guān)系就是:

 。4)教師小結(jié):

  剛才同學(xué)們通過填表、交流,我們知道時(shí)間和路程是兩種相關(guān)聯(lián)的量,路程隨著時(shí)間的變化而變化。時(shí)間擴(kuò)大,路程隨著擴(kuò)大;時(shí)間縮小,路程也隨著縮小。它們擴(kuò)大、縮小的規(guī)律是:路程和時(shí)間的比的比值總是一定的。

  3.教學(xué)例2

  (1)出示例2:在一間布店的柜臺(tái)上,有一張寫著某種花布的米數(shù)和總價(jià)的表。

 。2)觀察上表,引導(dǎo)學(xué)生明確:

  ①表中有數(shù)量(米數(shù))和總價(jià)這兩種量,它們是兩種相關(guān)聯(lián)的量。

  ②總價(jià)隨米數(shù)的變化情況是:

  米數(shù)擴(kuò)大,總價(jià)隨著擴(kuò)大;米數(shù)縮小,總價(jià)也隨著縮小。

 、巯鄬(duì)應(yīng)的總價(jià)和米數(shù)的比的比值是一定的。

  ④比值3.1,實(shí)際就是這種花布的單價(jià)。用式子表示它們的關(guān)系就是:

 。3)師生小結(jié):通過剛才的觀察和分析,我們知道總價(jià)和米數(shù)也是兩種什么樣的量?(兩種相關(guān)聯(lián)的量)為什么?(總價(jià)隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴(kuò)大,總價(jià)隨著擴(kuò)大;米數(shù)縮小,總價(jià)隨著縮小。)它們擴(kuò)大、縮小的規(guī)律是怎樣的?(總價(jià)和米數(shù)的比的比值總是一定的。)

  4.抽象概括正比例的意義。

 。1)比較例1、例2,思考并討論,這兩個(gè)例子有什么共同點(diǎn)?

 。2)學(xué)生初步交流時(shí)引導(dǎo)學(xué)生明確:

 、倮1中有路程和時(shí)間兩種量;例2中有米數(shù)和總價(jià)兩種量。即它們都有兩種相關(guān)聯(lián)的量;

 、诶1中時(shí)間變化,路程就隨著變化;例2中米數(shù)變化,總價(jià)也隨著變化。

  教師點(diǎn)撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)

 、劾1中路程與時(shí)間的比的比值一定:例2中總價(jià)與米數(shù)的比的比值一定。概括地講就是:兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定。

 。▽W(xué)生答不出來時(shí),教師引導(dǎo)、點(diǎn)撥,并補(bǔ)充板書:兩種量中)

 。3)引導(dǎo)學(xué)生抽象概括出兩例的共同點(diǎn):

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定。

 。4)教師指明:兩種相關(guān)聯(lián)的量,一種變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  (補(bǔ)充板書:如果這成正比例的量正比例關(guān)系)

  這就是我們這節(jié)課學(xué)習(xí)的“正比例的意義”(板書課題)

 。5)看書19、20頁(yè)的內(nèi)容,進(jìn)一步理解正比例的意義。

 。6)教師說明:在例1中,路程隨著時(shí)間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時(shí)間是成正比例的量。

  (7)想一想:在例2中,有哪兩種相關(guān)聯(lián)的量?它們是不是成正比例的量?為什么?

 。8)教師提出:如果字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

 。9)教師提出:根據(jù)正比例的意義以及表示正比例關(guān)系的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?

  5.教學(xué)例3

 。1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?

 。2)根據(jù)正比例的意義,由學(xué)生討論解答。

 。3)匯報(bào)判斷結(jié)果,并說明判斷的根據(jù)。

  教師板書:

  面粉的總重量和袋數(shù)是兩種相關(guān)聯(lián)的量。

  所以面粉的總重量和袋數(shù)成正比例。

  6.反饋練習(xí)

  讓學(xué)生試做第21頁(yè)的做一做,并訂正。

  三、鞏固發(fā)展

  1.完成練習(xí)三第1題。

  先想一想成正比例的量要滿足哪幾個(gè)條件?再算出各表相對(duì)應(yīng)數(shù)的比的比值。如果相等,列關(guān)系式判斷。第(3)題不成比例,訂正時(shí)要學(xué)生說明為什么?

  先讓學(xué)生自己判斷,再訂正。

  四、全課小結(jié)(師生共同進(jìn)行)

  通過這節(jié)課的學(xué)習(xí),你都知道了什么?怎樣判斷兩種量是否成正比例?

【《正比例的意義》教案】相關(guān)文章:

《正比例的意義》教案10篇10-02

《正比例的意義》教案(10篇)09-18

《正比例的意義》教案精選10篇10-15

《正比例的意義》教案9篇08-10

《正比例的意義》教學(xué)反思07-04

《正比例的意義》教學(xué)反思08-24

正比例意義教學(xué)反思11-10

正比例的意義教學(xué)反思08-21

正比例的意義教學(xué)反思(15篇)07-29

正比例意義教學(xué)反思15篇06-24