分數(shù)的基本性質(zhì)的教案
作為一位無私奉獻的人民教師,常常要寫一份優(yōu)秀的教案,教案是教學藍圖,可以有效提高教學效率。那要怎么寫好教案呢?以下是小編幫大家整理的分數(shù)的基本性質(zhì)的教案,希望能夠幫助到大家。
分數(shù)的基本性質(zhì)的教案1
教學目標
1、理解和掌握分數(shù)的基本性質(zhì),知道分數(shù)的基本性質(zhì)與整數(shù)除法中商不變的性質(zhì)之間的聯(lián)系。
2、能運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同而大小相等的分數(shù)。
3、培養(yǎng)學生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯(lián)系的”辯證唯物主義觀點。
教學重難點
理解分數(shù)基本性質(zhì)的含義,掌握分數(shù)基本性質(zhì)的推導過程。運用分數(shù)的基本性質(zhì)解決實際問題。
教學工具
課件
教學過程
一、復習舊知,溝通聯(lián)系。
1、口答下面各題。
12÷3 =(12×10)÷(3×□)
18 ÷6 =(18÷□)÷(6÷ 3)
你是根據(jù)什么填的?還記得商不變的規(guī)律是怎樣敘述的嗎?
4 ÷5=()÷3
你是根據(jù)什么填的?分數(shù)與除法之間有什么關系?
2、猜想。
同學們,在除法里,有商不變的規(guī)律,而分數(shù)與除法是有聯(lián)系的,那么,請同學們猜測一下,在分數(shù)里會不會也有類似的性質(zhì)存在呢?
在分數(shù)里究竟有沒有類似的性質(zhì)存在,如果有,它又是怎樣的呢?今天我們一起來研究這個問題。
二、探究新知,揭示規(guī)律。
1、感知規(guī)律
。1)動手操作
①小組合作分別把三張一樣大的圓形紙片平均分成兩份、四份、八份。
、谕可喊哑骄殖蓛煞莸膶⑵渲械囊环萃可项伾,把平均分成四份的將其中的兩份涂上顏色,把平均分成八份的將其中的四份涂上顏色。
③把涂色部分用分數(shù)表示出來。
、鼙纫槐龋哼@3個分數(shù)之間有什么關系?
生通過動手操作,發(fā)現(xiàn)這三個分數(shù)之間是相等的關系。
學生匯報后,教師用電腦演示。
生觀察分子分母變化規(guī)律發(fā)現(xiàn):分數(shù)的分子和分母同時乘相同的數(shù),分數(shù)大小不變。
。2)繼續(xù)發(fā)現(xiàn)
師課件出示三個大小形狀完全相同的長方形,請學生用分數(shù)表示涂色部分,并觀察涂色部分,看有什么發(fā)現(xiàn)。
生發(fā)現(xiàn)涂色部分是相同的.。
觀察分子分母的變化規(guī)律發(fā)現(xiàn):分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)大小不變。
也不能同時除以0。
2、抽象概括,總結規(guī)律。
引導學生觀察、比較,回憶知識的形成過程,總結概括出分數(shù)的基本性質(zhì)。不完善的互相補充。(討論為什么0除外)
想一想:根據(jù)分數(shù)與除法的關系,以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?
3、運用規(guī)律,自學例題。
。1)分組討論。
把和分別化成分母是12而大小不變的分數(shù)。分子應怎樣變化?變化的依據(jù)是什么?
。2)匯報討論情況。
。3)小結:我們可以應用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同而大小相等的分數(shù)。
三、多層練習,鞏固深化
1、基本練習。
根據(jù)分數(shù)的基本性質(zhì),把下列等式補充完整。
學生口答后,要求說出是怎樣想的。
2、判斷。(手勢表示,并說明理由。)
。1)分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。()
。2)把15/20的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。()
。3)的分子乘以3,分母除以3,分數(shù)的大小不變。()
3、把2/3和4/24化成分母是12而大小不變的分數(shù)。
四、今天你有哪些收獲。
分數(shù)的基本性質(zhì)的教案2
教學目標:使同學進一步熟悉分數(shù)的基本性質(zhì),能正確地應用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)做分母(或分子),而大小不變的分數(shù)。
教學重點:應用分數(shù)基本性質(zhì),把一個分數(shù)化成指定分母(或分子)做分母(或分子),而大小不變的分數(shù)
教學難點:能正確應用分數(shù)基本性質(zhì)解決有關的問題。
教學課型:新授課
教具準備:課件
教學過程:
一,遷移類推,導入新課
1,口答:什么是分數(shù)的基本性質(zhì)
2,在下面的括號內(nèi)填上適當?shù)臄?shù)。 [課件1]
3/4=( )/8 1/2=( )/10 6/( )=2/7
2/3=( )/18=16/24 12/24=( )/( )
二,探求新知,提高能力
教學P108 。例 2: 把2/3和10/24化成分母是12而大小不變的分數(shù)。
提問:A,怎樣使2/3的分母變成12
B,根據(jù)分數(shù)的基本性質(zhì),要使分數(shù)2/3的大小不變,分子應怎樣變化
板書: 2/3=2×4/3×4=8/12
C,怎樣使10/24的分母變成12
D,根據(jù)分數(shù)的基本性質(zhì),要使分數(shù)10/24的大小不變,分子應怎樣變化
板書: 10/24=10÷2/24÷2=5/12
補充例題: 把2和3/7,5/8化成分母是它們的最小公倍數(shù)而大小不變的分數(shù)。
分析: A,想想,它們的最小公倍數(shù)是幾
B,2是個整數(shù),怎樣化成分數(shù)呢 以多少做分母,分子又是多少呢
※ P108 。做一做1,2
三,鞏固練習,強化提高
1,P109 。2
2,P109 。4
3,P110 。10
提問:這道題是在什么情況下份數(shù)的大小發(fā)生變化這個變化有沒有規(guī)律呢
述:一個分數(shù)的分母不變,分子擴大(或縮。┤舾杀,分數(shù)大小也擴大(或縮。┫嗤谋稊(shù);假如分子不變,分母擴大(或縮小)若干倍,分數(shù)大小反而縮。ɑ蚍炊鴶U大)相同的倍數(shù)。即:一個分數(shù)的`分母不變,分子乘以3,這個分數(shù)就擴大3倍;假如分子不變,分母除以5,這個分數(shù)就擴大5倍。
2,P110 。11
§ 要根據(jù)分數(shù)和除法關系,把分數(shù)的基本性質(zhì)和除法中商不變的性質(zhì)聯(lián)系起來考慮,進行填空。
3,P110 ?紤]題
§ 先用5升水桶量出5升水,倒入7升水桶中;再用5升水桶量出5升水,倒?jié)M已裝入5升的7升水桶,這時5升水桶里剩下3升水;將7升水桶中的水倒掉,把5升水桶中的3升水倒入7升水桶中;再用5升水桶量出5升水,倒?jié)M已裝3升的7升水桶,剩下的就是1升水。
四,家作
P110 。7,8,9
分數(shù)的基本性質(zhì)的教案3
教學目的
1.使學生理解和掌握分數(shù)的基本性質(zhì),能應用“性質(zhì)”解決一些簡單問題.
2.培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.
3.滲透“形式與實質(zhì)”的辯證唯物主義觀點,使學生受到思想教育.
教學過程
一、談話.
我們已經(jīng)學習了分數(shù)的意義,認識了真分數(shù)、假分數(shù)和帶分數(shù),掌握了假分數(shù)與帶分數(shù)、
整數(shù)的互化方法.今天我們繼續(xù)學習分數(shù)的有關知識.
二、導入新課.
(一)教學例1.
出示例1:用分數(shù)表示下面各圖中的陰影部分,并比較它們的大。
1.分別出示每一個圓,讓學生說出表示陰影部分的分數(shù).
。1)把這個圓看做單位1,陰影部分占圓的幾分之幾?
。2)同樣大的圓,陰影部分占圓的幾分之幾?
。3)同樣大的圓,陰影部分用分數(shù)表示是多少?
2.觀察比較陰影部分的大。
。1)從4 幅圖上看,陰影部分的大小怎么樣?(陰影部分的大小相等.)
(2)陰影部分的大小相等,可以用等號連接起來.(把圖上陰影部分畫上等號)
3.分析、推導出表示陰影部分的分數(shù)的大小也相等:
。1)4幅圖中陰影部分的大小相等.那么,表示這4 幅圖的4個分數(shù)的大小怎么樣呢?
(這4個分數(shù)的大小也相等)
。2)它們的大小相等,也可以用等號連接起來(把4個分數(shù)用等號連起來).
4.觀察、分析相等的分數(shù)之間有什么關系?
。1)觀察 轉化成 , 的分子、分母發(fā)生了什么變化?
。 的分子、分母都乘上了2或 的分子、分母都擴大了 2倍.)
。2)觀察
(二)教學例2.
出示例2:比較 的`大。
1.出示圖:我們在三條同樣的數(shù)軸上分別表示這三個分數(shù).
2.觀察數(shù)軸上三個點的位置,比較三個分數(shù)的大小:
從數(shù)軸上可以看出:
3.觀察、分析形式不同而大小相等的三個分數(shù)之間有什么聯(lián)系和變化規(guī)律.
。1)這三個分數(shù)從形式上看不同,但是它們實質(zhì)上又都相等.
。ń處煱鍟 )
。2)你們分析一下, 、 各用什么樣的方法就都可以轉化成 了呢?
三、抽象概括出分數(shù)的基本性質(zhì).
1.觀察前面兩道例題,你們從中發(fā)現(xiàn)了什么變化規(guī)律?
“分數(shù)的分子分母都乘上或都除以相同的數(shù)(零除外),分數(shù)的大小不變.”(板書)
2.為什么要“零除外”?
3.教師小結:這就是今天這節(jié)課我們學習的內(nèi)容:“分數(shù)的基本性質(zhì)”
。ò鍟骸盎拘再|(zhì)”)
4.誰再說一遍什么叫分數(shù)的基本性質(zhì)?
教師板書字母公式:
四、應用分數(shù)基本性質(zhì)解決實際問題.
1.請同學們回憶,分數(shù)的基本性質(zhì)和我們以前學過的哪一個知識相類似?
。ê统ㄖ猩滩蛔兊男再|(zhì)相類似.)
。1)商不變的性質(zhì)是什么?
。ǔㄖ校怀龜(shù)和除數(shù)都乘上或都除以相同的數(shù)(零除外),商的大小不變.)
。2)應用商不變的性質(zhì)可以進行除法簡便運算,可以解決小數(shù)除法的運算.
2.分數(shù)基本性質(zhì)的應用:
我們學習分數(shù)的基本性質(zhì)目的是加深對分數(shù)的認識,更主要的是應用這一知識去解
決一些有關分數(shù)的問題.
3.教學例3.
例3 把 和 化成分母是12而大小不變的分數(shù).
板書:
教師提問:
(1) ?為什么?依據(jù)什么道理?
。 ,因為分母2乘上6等于12,要使分數(shù)的大小不變,分子1也要乘上6.所以, )
。2)這個“6”是怎么想出來的?
。ㄟ@樣想:2×?=12,2ד6”=12,也可以看12是2的幾倍:12÷2=6,那么分子1也擴大6倍)
(3) ?為什么?依據(jù)的什么道理?
。 ,因為分母24除以2等于12,要使分數(shù)的大小不變,分子10也得除以2,所以, )
。4)這個“2”是怎么想出來的?
。ㄟ@樣想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也應是新分子的2倍,所以新的分子應是10÷2=5)
五、課堂練習.
1.把下面各分數(shù)化成分母是60,而大小不變的分數(shù).
2.把下面的分數(shù)化成分子是1,而大小不變的分數(shù).
3.在( )里填上適當?shù)臄?shù).
4. 的分子增加2,要使分數(shù)的大小不變,分母應該增加幾?你是怎樣想的?
5.請同學們想出與 相等的分數(shù).
規(guī)律:這個分數(shù)的值是 ,然后只要按自然數(shù)的順序說出分子是1、2、3、4、……分母是分子的4倍為:4、8、12、16……無數(shù)個.
六、課堂總結.
今天這節(jié)課我們學習了什么知識?懂得了一個什么道理?分數(shù)的基本性質(zhì)是什么?這是學習分數(shù)四則運算的基礎,一定要掌握好.
七、課后作業(yè).
1.指出下面每組中的兩個分數(shù)是相等的還是不相等的.
2.在下面的括號里填上適當?shù)臄?shù).
分數(shù)的基本性質(zhì)的教案4
教學目標
1、進一步理解通分的意義,
2、掌握通分的方法。能熟練的把異分母分數(shù)化成與它們相等的同分母分數(shù)。
3、能靈活的運用通分的.方法進行分數(shù)的大小比較。
教學重難點:運用通分的方法進行分數(shù)大小比較
教學準備:分數(shù)卡片
一、回顧
1、什么是通分?怎樣通分?
2、我們可以在什么時候應用通分?
3、互動:相互出題練習相互交流(3分鐘)
二、教學例5
出示例題:小芳和小明看一本同樣的故事書。
學生提出問題。
分析解答。
師:誰看的頁數(shù)多?
這個問題實質(zhì)是什么?
生:比較兩個分數(shù)的大小。
師:小組研究,比較兩個分數(shù)的大小。
方法一:畫圖比較
方法二:通分比較
轉化成同分母的分數(shù)
方法三:化成小數(shù)再比較
學生匯報,分類領悟比較的方法。
注意方法的規(guī)范。
你還有什么別的比較方法嗎?
。和ǚ值姆椒ㄔ诒容^分數(shù)大小中的運用
三、鞏固練習
1.先通分,再比較下面各組分數(shù)的大小66頁練一練
2、練習十二第五題
先明確題目的要求有兩個。
4、自由練習
分小組編擬交換練習
四、全課
五、課堂作業(yè):第7題,第8題
分數(shù)的基本性質(zhì)的教案5
教學內(nèi)容:省編義務教材第十冊第91—93頁例1、例2。
教學目標:
1、體驗分數(shù)基本性質(zhì)的探究過程,建構分數(shù)基本性質(zhì)的意義內(nèi)涵。
2、溝通分數(shù)的基本性質(zhì)和商不變性質(zhì)的內(nèi)在聯(lián)系,實現(xiàn)新知化歸舊知,并與后面約分和通分的學習作好前期孕伏。
3、通過猜想、驗證、得出結論這充分自主的數(shù)學活動,促進學生學習經(jīng)驗的不斷積累。
課前準備:
課件,學具袋一個(線段圖紙、長方形、繩子)、探究紙一張
教學過程:
1.創(chuàng)設情境,作好鋪墊
出示四分之二后說:老師的信封里有一道算式,這道算式和這個分數(shù)的值相等,你們猜這是一道怎樣的算式?(除法算式。)你能具體猜出是怎樣一道除法算式。(2÷4)
為什么你會猜是一道除法算式?(分數(shù)與除法有密切的關系)
除法與分數(shù)有什么樣的關系?
。ê诎迳铣鍪荆罕怀龜(shù)÷除數(shù)=)
根據(jù)2÷4這道除法算式,每人都試著說一道與它相等的除法算式。(根據(jù)學生板書:1÷23÷64÷85÷10100÷……)
為什么你認為100÷與2÷4的商是一樣的?(2和4同時乘以50商不變,這是根據(jù)商不變性質(zhì))
什么是商不變性質(zhì)?(出示:被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)(0除外),商不變。)
2、遷移猜想,引疑激思
分數(shù)與除法有這樣的關系,除法中有商不變性質(zhì),那你們猜分數(shù)中有可能存在著類似的性質(zhì)嗎?(有)你能具體說一說?
交流得出:分子和分母同時乘以或除以相同的'數(shù)(0除外),分數(shù)的大小不變。
3、自主探究,驗證猜想
也許你們的猜想是正確的,科學家的發(fā)現(xiàn)往往也是從猜想開始的,但是只有通過驗證得到的結論才是科學的,這節(jié)課我們也學著來做一名小數(shù)學家。
(1)初步驗證
、俪鍪荆禾骄繄蟾鎲,讓學生讀要求:
a.同桌合作:兩人各寫一個分數(shù),將它的分子、分母同時乘以或除以一個相同的數(shù),算出新的分數(shù)。
b.選擇合理的方法驗證所前后兩個分數(shù)是否相等。
c.填寫好探究報告單。
選擇探究的
分 數(shù)
分子和分母同時乘以或除以
一個相同的數(shù)
得到的
分 數(shù)
選擇的分數(shù)與得到的分數(shù)是否相等
相等( ) 不相等( )
猜想是否成立
成立( ) 不成立( )
選擇的分數(shù)與得到的分數(shù)是否相等相等()不相等()
猜想是否成立成立()不成立()
。候炞C方法可用折紙、畫線段圖、計算、實物……
②學生合作進行探究。
③全班交流:
a、同桌一起上來,拿好探究報告單及驗證材料等。
b、兩人合作,一人講解、一人驗證演示。
c、得到結論:
(交流2-3組后)問全班同學:你們得到怎樣的結論?(一致通過)
剛才我們通過集體努力用不同的方法、不同的分數(shù)驗證了我們的猜想是成立的。這就是分數(shù)的基本性質(zhì),板書:分數(shù)的基本性質(zhì)。(齊讀)
4、議論爭辯,頓悟創(chuàng)新
讀一讀分數(shù)的基本性質(zhì),你認為哪些字詞是比較重要的。這里的“相同的數(shù)”指的是什么數(shù)?為什么要“0除外”?
5、訓練技能,激勵發(fā)展
剛才我們通過自己的猜想、驗證得出的這條規(guī)律,學習了分數(shù)的基本性質(zhì),到底有什么作用呢?讓我們一起來體會一下。
(1)練習明目的
根據(jù)分數(shù)的基本性質(zhì),填空。
1/2=()/8=5/()=()/6=7/()
采取師生對數(shù)的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。
(2)慧眼辯是非
。3)變式練思維
把下面每組中的異分母分數(shù)化成同分母分數(shù)。
A、3/4,4/7B、5/6,4/9C、3/5,5/8
分數(shù)的分母相同了,有什么作用?揭示學習分數(shù)的基本性質(zhì)的重要性,鼓勵學生學好、用好。
。4)競賽促智慧
、僭1—9九個數(shù)字中任選一些數(shù)字組成大小相等的分數(shù)。
可以有:1/2=3/6=4/81/3=2/62/3=4/6這三組。
并讓學生繼續(xù)往下說,從而得出:任何一個分數(shù)與之相等的分數(shù)有無數(shù)個。
②出示:1/a=7/b(說明:a、b都不是0。)
搶答:a=2、a=3、a=6、b=28、b=56時a或b的值。
連貫口答:a=1、2、3、4、5……時b的值。(滲透正比例)
討論:a、b之間的關系是怎樣的?為什么會存在這樣的關系?依據(jù)是什么?
6、回顧,掌握方法
今天這節(jié)課我們學習的分數(shù)的基本性質(zhì),回憶一下我們是怎樣學習的?
學生可能會回答:
生1:我們是根據(jù)“商不變的性質(zhì)”來學習“分數(shù)的基本性質(zhì)”的。
生2:我們是通過猜測的方法學的。
生3:我們還用驗證的方法學習。
……
結果語:是的,這節(jié)課,我們利用除法和分數(shù)的關系以及商不變性質(zhì),猜想出分數(shù)的基本性質(zhì),并且進行了驗證與運用,其實數(shù)學知識都是相互聯(lián)系的,學習數(shù)學就要學會利用已有知識,去學習新的知識,這就是學習數(shù)學的一把金鑰匙。老師把這把金鑰匙送給每一位同學。
分數(shù)的基本性質(zhì)的教案6
教材簡析:
分數(shù)的基本性質(zhì)是以分數(shù)大小相等這一概念為基礎的。因為分數(shù)與整數(shù)不同,兩個分數(shù)的大小相等,并不意味著兩個分數(shù)的分子、分母分別相同。教學時,可引導學生觀察一組相等分數(shù)的分子、分母是按什么規(guī)律變化的,再結合分數(shù)的意義歸納出分數(shù)的基本性質(zhì)。由于分數(shù)和整數(shù)除法存在著內(nèi)在聯(lián)系,所以分數(shù)的基本性質(zhì)也可以利用整數(shù)除法中商不變的性質(zhì)來說明。
設計理念:
分數(shù)的基本性質(zhì)是約分和通分的基礎,而約分、通分又是分數(shù)四則運算的重要基礎,因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。因此我把學生的學習定位在自主建構知識的基礎上,建立了猜想試驗分析合情推理探究創(chuàng)造的`教學模式。
在課堂上,我先通過故事讓學生進入情境,然后讓學生去猜想、觀察、試驗、感悟,進而得出結論。當學生得出分數(shù)的分子、分母都乘或除以同一個數(shù),分數(shù)的大小不變之后,再結合商不變的性質(zhì)深入理解,把知識融會貫通。整個教學過程注重讓學生經(jīng)歷了探索知識的過程,使學生知道這些知識是如何被發(fā)現(xiàn)的,結論是如何獲得的,體現(xiàn)了方法比知識更重要這一新的教學價值觀,構建了新的教學模式。
《數(shù)學課程標準》指出:學生是學習數(shù)學的主人,教師是數(shù)學學習的組織者、引導者與合作者。這就要求我們在教學活動中應該為學生提供大量數(shù)學活動的機會,讓學生去探索、交流、發(fā)現(xiàn),從而真正落實學生的主體地位。
教學目標:
1、使學生理解和掌握分數(shù)的基本性質(zhì),能應用性質(zhì)解決一些簡單問題.
2、培養(yǎng)學生觀察、分析、思考和抽象、概括的能力.
3、滲透形式與實質(zhì)的辯證唯物主義觀點,使學生受到思想教育.
教學重點:
使學生理解和掌握分數(shù)的基本性質(zhì),培養(yǎng)學生的抽象、概括的能力。
教學難點:
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關的問題。
教具準備:
每生三張正方形紙
教學方法:
演示法、觀察法、討論法、交流法。
分數(shù)的基本性質(zhì)的教案7
教學前的思考:
一、一則Flash動畫故事引入:從前有座山,山里有座廟,廟里有個老和尚和一個小和尚,哦!不對,是三個小和尚。小和尚最喜歡吃老和尚烙的餅了。有一天,老和尚做了三塊一樣大小的餅,想給小和尚吃,還沒給,小和尚就叫開了。矮和尚說:“我要一塊!”高和尚說:“我要兩塊!”胖和尚說:“我不要多,只要四塊!”老和尚聽了二話沒說,立刻把一塊餅平均分成四塊,取其中的一塊給了矮和尚;把第二塊餅平均分成八塊,取其中的兩塊給了高和尚;把第三塊餅平均分成十六塊,取其中的四塊給了胖和尚,一一滿足了他們的要求。同學們,你知道哪個和尚吃的多嗎?---教師播放這則故事為學生提供“猜想”素材!安孪、驗證”不但是科學研究的方法,也是一種很好的數(shù)學學習方法。由此我聯(lián)想到“性質(zhì)”的學習過程是否也可以讓學生在猜想、驗證中主動生成。
二、學生動手操作,用事實說明,作好新知鋪墊:在揭題前,我設計了讓學生動手操作的方法,用三個同樣大小的圓折紙、涂色,來調(diào)動學生的多種感觀,充分感知數(shù)學事實,引導學生觀察、思考,激發(fā)學生的求知欲,活躍課堂氣氛,為“驗證”“性質(zhì)”作好鋪墊。
三、得出結論后,滲透“形式與實質(zhì)”的辯證觀點:揭示“性質(zhì)”后,教師讓學生回顧故事內(nèi)容,驗證“猜想”到底哪個和尚吃的多,從形式上看矮和尚吃的多,但比較的事實說明吃的一樣多。教師再一次列舉生活中的事例說明“形式與實質(zhì)”的辯證觀點。
教學設計:
一 故事提供“猜想”素材:Flash動畫故事引入.(教師出示課件)
師:今天老師很高興和同學們在一起共同學習,同學們心情怎樣?
生:高興!
師: 老師給大家?guī)砹艘粋禮物,請同學們仔細欣賞。(教師出示Flash動畫故事,學生欣賞。同時教師提出欣賞要求,)
師:(欣賞后)同學們,你知道哪個和尚吃的多嗎?
生1:胖和尚吃的多。
生2:矮和尚吃的多。
……
師:到底誰回答得對呢?上完這節(jié)課你們一定能得到準確的答案.(通過欣賞為學生提供素材,設懸念,留給學生獨立思考的空間)
二 用事實“驗證”,完整性質(zhì)。
1.實際操作列等式證實分數(shù)大小相等。
師:請同學們以小組為單位,拿出三個大小相等的圓來,分別用陰影部分表示每個圓的
(教師觀察,學生小組合作,有平均分的,有涂色的,小組成員配合默契)
師:比較一下陰影部分的大小,結果怎樣?陰影部分相等,說明這三個分數(shù)怎樣?
生:陰影部分的大小相等。
師:陰影部分相等說明這三個分數(shù)怎樣?
生:三個分數(shù)相等。
(隨著學生的回答,老師將板書的三個分數(shù)用“=”連接。)
2.觀察課件證實分數(shù)大小相等。
師:(出示課件)老師有三個同樣大小的長方形,誰能用分數(shù)表示出黃色部分呢?
師:這三個分數(shù)所表示的長度怎樣?這又說明了什么?
(隨著學生回答老師在三個分數(shù)間用“=”連接。)
3.初步概括分數(shù)基本性質(zhì).
師:仔細觀察兩個等式,每個等式的三個分數(shù)什么變了?什么沒變?
生:第一個等式中的三個分數(shù)分子、分母都變了,但分數(shù)的大小沒變。(師進行評價)
師:同學們從左到右觀察第一個等式,想一下,這三個分數(shù)的分子、分母怎樣變化才保證了分數(shù)的大小不變的?
(教師請同學們小組討論,學生各抒己見,爭論不休,氣氛活躍。)
師:誰能用一句話把這個變化規(guī)律敘述出來呢?(師指名口述)
生1:從左往右看,分數(shù)的分子、分母同時擴大了,也就是分子分母都乘了一個相同的數(shù),但三個分數(shù)的大小沒有變。(生2進行了補充)
師:你們觀察的真仔細!請大家給點掌聲好嗎?
(學生掌聲起,激情高長,課堂教學充滿活力。)
師:(出示課件)請看大屏幕,老師是這樣敘述的“分數(shù)的分子、分母都乘上同一個數(shù),分數(shù)大小不變”。
師:同學們從左到右仔細觀察第二個等式,這三個分數(shù)的分子、分母發(fā)生了怎樣的變化,才保證了分數(shù)大小不變呢?誰能用一句話把這個變化規(guī)律敘述出來?
(小組討論后,同法讓學生小結規(guī)律,并請同學給予評價,讓學生抒發(fā)自己的見解,體現(xiàn)課堂教學的民主化。然后教師在課件中補充“或除以”三個字。)
4、完整分數(shù)基本性質(zhì):
師:(出示課件)請同學們填空:
(教師請一位會操作鼠標的同學在課件中填空)
師:第3題( )里可以填多少個數(shù)?第4題呢?
生:可以填無數(shù)個。
師:( )里填任何數(shù)都行嗎?哪個數(shù)不行?(學生交流后老師指名回答)
生:不能填零。
師:為什么不能填零?
生:分數(shù)的分母不能為零。
(教師對學生的回答進行評價)
師:所以我們總結的這條規(guī)律必須加上一個條件“零除外”
(教師在課件中填上“零除外”三個紅色的字,以便引起學生的注意。)
師:這個變化規(guī)律就是“分數(shù)的基本性質(zhì)”。(指名照課件主讀出性質(zhì))
三 深入理解分數(shù)基本性質(zhì)
1.學生自學,深入理解性質(zhì)。
師:請同學們把書翻到108頁,自讀分數(shù)的基本性質(zhì)。
師歸問:分數(shù)的基本性質(zhì)里哪幾個詞比較重要?為什么“都”和“相同”很重要?為什么“分數(shù)大小不變”也很重要?為什么“零除外”也很重要?
生:因為都乘上或除以相同的'數(shù)(0除外),分數(shù)的大小才不會變化。(同學評價)
2.學生獨立完成做一做1。(完成后小組內(nèi)互相評價)
3.找出與
相等的分數(shù):
(教師出示課件,請一位同學在課件中連線,教師進行評價)
4.請同學們自學并完成例2、(教師巡視,個別進行輔導)
……
四 照應Flash動畫故事,滲透“形式與實質(zhì)”的辯證觀點
教師在黑板上出示自制的三個同樣大小的圓餅
師:現(xiàn)在誰知道三個和尚,誰吃的多呢?(學生爭先恐后的想回答老師提出的問題)
生:三個和沿吃的一樣多。
師:同學們以后思考問題一定要多動腦筋,了解實質(zhì)后才能得出正確答案,我們不能從形式上看著事物去做出判斷。
……
五 課堂小結:這節(jié)課你有什么收獲?(學生板書課題)
教學后的感悟:
1.教學的整個過程是學生親自驗證的過程,通過“驗證”學生感受了數(shù)學的嚴謹性。設計以“猜想--判斷--觀察--驗證--概括--深化--提高”的環(huán)節(jié),把知識的形成過程展現(xiàn)在學生的面前,使學生在掌握分數(shù)的基本性質(zhì)的同時,感知到數(shù)學知識的形成過程,在這一過程中注意滲透學生自學方法、解決問題的策略、體會數(shù)學知識與生活的緊密聯(lián)系,同時教給學生學會學習,學會思考的方法。在師生共同協(xié)作的過程中,達到課堂教學方法的最優(yōu)化,提高了課堂教學效益。
2.猜想素材有利于激發(fā)學生主動學習的興趣和熱情,有利于學生思維的碰撞,開啟了學生發(fā)自內(nèi)心的探索學習。
3.教學中取舍教材、取舍手段,著眼于學生的學習。教學中既運用了信息技術,又把傳統(tǒng)教學手段有機地結合,讓資源充分、有效地發(fā)揮作用,優(yōu)化教師的教學手段,提高課堂教學效率。
分數(shù)的基本性質(zhì)的教案8
這節(jié)課,戴老師教師教態(tài)自然、語言清晰、數(shù)學語言表述準確。著重培養(yǎng)了學生通過動手操作的活動來讓學生主動探究分數(shù)的基本性質(zhì),掌握分數(shù)的基本性質(zhì)在生活中的實際應用,同時培養(yǎng)了學生積極參與,團結合作,主動探索,引導觀察鈫捬罷夜媛桑發(fā)現(xiàn)規(guī)律,我覺得這是一堂充滿生命活力的課堂,能促進學生全面發(fā)展的課堂,體現(xiàn)新課標理念的課堂,從中我得到了一些鮮活的經(jīng)驗和有益的啟示。具體概括以下幾點?
一、教學思路清晰,目標明確,重難點突出。
教師根據(jù)教學內(nèi)容,因材施教地制定了教學思路。這節(jié)課以鈥湸瓷棖榫車既胄驢沃傅嘉探索,整個教學思路清晰。這節(jié)課戴老師突出培養(yǎng)學生動手操作,主動探究的訓練,通過用三張同樣大的長形紙折一張的、涂色等活動來探索分數(shù)分子、分母的變化規(guī)律,從而讓學生發(fā)現(xiàn)規(guī)律,突出重難點的內(nèi)容,整個教學做到詳略得當,重難點把握準確。這樣設計符合學生年齡特點和認知規(guī)律,體現(xiàn)了以學生為主體的學習過程,培養(yǎng)了學生的學習能力?
二、創(chuàng)設情境,重視操作活動,發(fā)揮主體作用。
老師能創(chuàng)造機會,讓學生各種感官參與學習,把學生推到主體地位。讓學生獲得豐富感性認識,使抽象知識具體化、形象化。引導學生比較觀察三幅圖的異同之處,分數(shù)的分子分母的'變化過程,從而證實變化的規(guī)律,整個操作過程層次分明,通過折涂,學生動手、動腦、動口,人人參與學習過程,不是操作而操作,而是把操作,理解概念,讓學生觀察三個圖形來說明概念,降低了難度。通過操作,讓學生既學得高興又充分理解知識。形象直觀地推導了分數(shù)的基本性質(zhì)的概念,這樣概念形成過程十分清晰,充分培養(yǎng)了學生自主探索的能力,把被動地接受知識變?yōu)橹鲃拥孬@取知識,達到教學目的。
三、練習設計具有層次性,開放性。
由淺入深由易到難的設計,既使學生牢固的掌握了所學的知識,鞏固了本節(jié)課的基礎知識,又訓練了學生的思維。激發(fā)了學生的學習興趣。
分數(shù)的基本性質(zhì)的教案9
教學目標:
1、經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)基本性質(zhì),把一個數(shù)化成指定分母(或分子)大小不變的分數(shù)。
3、經(jīng)歷觀察、操作和討論等數(shù)學活動,體驗數(shù)學學習的樂趣及數(shù)學與日常生活密切聯(lián)系。
教學重點:
運用分數(shù)的基本性質(zhì),把一個數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
教學難點:
聯(lián)系分數(shù)與除法的關系,理解分數(shù)的基本性質(zhì),溝通知識間的聯(lián)系。
教學準備:
多媒體課件 長方形白紙、圓片,彩色筆等。
教學過程:
一、 創(chuàng)設情境,激趣導入
師:同學們,新的學期到來了,你們剛入校園時覺得我們學校都發(fā)生了哪些變化,(換了新課桌,有了新的洗手間,有了文化走廊,有了開心農(nóng)場),說到開心農(nóng)場,還有一個小故事,開學初,校長決定把這塊地的三分之一分給四年級,六分之二分給五年級,九分之三分給六年級,四年級同學認為校長不公平,分給六年級的同學多而分給他們的少,校長聽了,笑了,誰能根據(jù)自己的預習告訴老師校長笑什么?
生1:四、五、六年級分的地一樣多。
生2:……
師:到底校長分的公平不公平,我們來做個實驗吧?
二、動手操作,探究新知
1、小組合作,實驗探究。
師:請同學們拿出你們準備好的學具,按平時的分組習慣四人一組,用你們的學具來代替這塊地,像校長一樣來分地吧。
2、匯報結果
師生交流:你們是怎樣做的?誰能說一說,請幾個同學上臺演示并口述演示過程。
生1:用三張同樣的長方形的紙來代替這塊地,分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生2:用三個同樣的圓片分別涂出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生3:用三條線段分別畫出其中的三分之一,六分之二,九分之三。經(jīng)過對比發(fā)現(xiàn)三塊地一樣多。
生4:把分數(shù)化成小數(shù),他們的商也一樣,所以三塊地的面積一樣大 。
生5:……
3、課件展示,得出結論。師:校長分的和你們一樣嗎?我們再來看看小電腦是如何拼的,(利用優(yōu)質(zhì)資源課件演示分地的過程,師生共同觀察總結得到校長分的地一樣多。)
(設計意圖:這樣設計的目的是為了更有利于學生主體個性的發(fā)揮,在探究活動中充分發(fā)揮學生的個體的潛能,給學生足夠的時間和想象的空間,進行小組合作式的探究活動,讓學生自由的猜想,使實驗成為自己的需要,同時讓學生思考用什么方法驗證,使學生帶著濃濃的興趣進入探究新的學習活動之中。)
4、探索分數(shù)的基本性質(zhì)。
師:三個年級分的地一樣多,那么你們覺得、 這三個分數(shù)的大小怎么樣?
生:相等。
師:同學們請看這組分數(shù)有什么特點?(板書 =)
生:分數(shù)的分子分母發(fā)生了變化分數(shù)的大小不變。
師:請同學們從左往右仔細觀察,第一個分數(shù)和第二個分數(shù)相比分子分母發(fā)生了什么變化?第一個和第二個,第二個和第三個呢?
生:分子分母同時乘2,……
師:誰能用一句換來描述一下這個規(guī)律?
生:給分數(shù)的分子分母同時乘相同的數(shù)。(師隨著板書)
師:同學們在反過來從右往左觀察,分數(shù)的分子、分母有什么變化規(guī)律?
生:分數(shù)的分子分母同時除以相同的數(shù)。
師:像這樣給分數(shù)的分子分母同時乘或(除以)相同的數(shù),分數(shù)的大小不變。就是我們這節(jié)課學習的新知識。(板書 分數(shù)的基本性質(zhì))。
師:結合我們的預習,對于分數(shù)的基本性質(zhì)同學們還有什么不同的.意見?
生:0除外。
師:為什么0要除外?
生:因為分數(shù)的分母不能為0.
師:(補充板書0除外)在分數(shù)的基本性質(zhì)中,那幾個詞比較重要?
生:同時 相同 0除外
師:(把這三個詞用紅筆加重)同學們有沒有發(fā)現(xiàn)分數(shù)的基本性質(zhì)和誰比較相似?
生:商不變的性質(zhì)。
師:為什么?
生:我們學過分數(shù)與除法的關系,被除數(shù)相當于分子,除數(shù)相當于分母,所以他們是相通的。
師:數(shù)學知識中有許多知識如像商不變性質(zhì)與分數(shù)的基本性質(zhì)是一致的。因此平時學習中我們要觸類旁通,靈活運用,才會舉一反三。
三、應用新知,練習鞏固。
(一) 練一練
(二)摸球游戲。老師手中有一個箱子,里面裝有許多水果,水果上面寫著不同的分數(shù),如果你摸到一個水果,說出一個與它大小相等,而分子分母不同的新分數(shù),這個水果就獎勵給你。
(二) 判斷(搶答)
1、 分數(shù)的分子、分母都乘過或除以相同的數(shù)分數(shù)的大小不變。( )
2、 把的分子縮小5倍,分母也縮小5倍分數(shù)的大小不變。( )
3、 給分數(shù)的分子加上4,要是分數(shù)的大小,分母也要加上4。( )
(四)測一測
1、把和都化成分母是10而大小不變的分數(shù)。
2、把和都化成分子是4而大小不變的分數(shù)。
3、的分子增加2,要是分數(shù)大小不變,分母應增加幾?
四、總結。
1、這節(jié)課大家表現(xiàn)的都很棒,誰能說說你這節(jié)課你都知道哪些知識?
2、把板書最后補充成一條魚,希望大家擁有一雙明亮的眼睛,肚子里裝滿知識,在知識的海洋里遨游。(完成板書)
五、作業(yè)
練習冊2、4題
板書設計:
分數(shù)的基本性質(zhì)
給分數(shù)的分子分母同時乘或除以相同的數(shù)(0除外)分數(shù)的大小不變。
分數(shù)的基本性質(zhì)的教案10
一、 教材
根據(jù)課程標準的要求,基于對教學內(nèi)容的把握,本課時我確定的教學目標為:
1.理解和掌握分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2.通過猜想、驗證、歸納、總結等活動,經(jīng)歷分數(shù)的基本性質(zhì)的探究過程,體會舉具體事例、數(shù)形結合的思考方法,感受抽象、推理的基本數(shù)學思想。
3.在自主探究與合作交流的過程中,感受數(shù)學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣。我確定本目標的依據(jù)有三點:
一是基于對課程標準的理解。
《義務教育數(shù)學課程標準(20xx年版)》在學段目標的第二學段指出學生要“在觀察、實驗、猜想、驗證等活動中,發(fā)展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的思考過程”。
二是基于對教材的認識。
《分數(shù)的基本性質(zhì)》是在學生學習了分數(shù)的意義、分數(shù)與除法的關系、商不變性質(zhì)等知識的基礎上進行教學的,它是以后學習約分、通分的依據(jù),而約分和通分則是分數(shù)四則混合運算的重要基礎,因此,理解分數(shù)的基本性質(zhì)顯得尤為重要。
三是基于對學情的認識。
作為舊課新上,如何讓學生在重新學習的過程中對學習活動任然保持濃厚興趣,從探究活動中得到新的發(fā)展,上出數(shù)學味,上出新意,我在思考。本節(jié)課常規(guī)的是創(chuàng)設情境,在情景中提煉出等式,最終形成性質(zhì)。因此在教學時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結論,從等式的驗證上升到規(guī)律的發(fā)現(xiàn)和歸納,經(jīng)歷定律由特殊到一般的歸納推理過程,在這個過程中積累數(shù)學經(jīng)驗、滲透數(shù)學思想、掌握數(shù)學方法。
據(jù)此,
我將教學重點確定為:通過猜想、驗證、歸納、總結等活動,讓學生經(jīng)歷分數(shù)的基本性質(zhì)的探究過程。教學難點確定:理解和掌握分數(shù)的基本性質(zhì)。
二、教法
課程標準指出教師要關注已有的知識經(jīng)驗及認知水平,發(fā)揮組織者、引導者、合作者的作用。本節(jié)課我綜合采用了引導發(fā)現(xiàn)法、啟發(fā)式教學法,直觀演示法,組織學生經(jīng)歷實驗、猜測、驗證、得出結論的過程。
三、說學法
學生是學習的主體,學生的學習活動應該是生動的、活潑的、富有個性的,因此,在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法,引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數(shù)學活動經(jīng)驗。
四、說教學過程
本著讓學生
“主動參與、樂于探究、學有所得”的理念,結合五年級學生的認知水平和年齡特點,結合教材的'編排意圖和學情特點,我設計了如下教學環(huán)節(jié):1. 聯(lián)系舊知,質(zhì)疑引思。 2.自主操作,驗證猜想 3.知識應用,鞏固提高4.回顧總結,完善認知。
環(huán)節(jié)一:聯(lián)系舊知,質(zhì)疑引思。
“疑是思之始,學之端。”思考這樣一連串的問題,目的是喚醒學生已有的知識經(jīng)驗;迅速地點燃孩子們求知欲望;引發(fā)學生的數(shù)學思考,為主動探究新知識積聚動力。
環(huán)節(jié)二:操作體驗,概括規(guī)律
1.觀察發(fā)現(xiàn),提出猜想。
通過找與1/2相等的分數(shù),思考證明方法,觀察等式,發(fā)現(xiàn)規(guī)律,于是提出猜想
2.舉例操作,驗證猜想。
課標指出“學生應當有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節(jié)課驗證環(huán)節(jié),將“分子分母怎樣變才使得分數(shù)的大小不變”設定為研究的關鍵點,然后圍繞這一關鍵點讓學生展開了操作、感悟、分析、推理等一系列的數(shù)學活動,引導學生通過比較全面的大量的例子來驗證結論,在觀察、實驗、猜測、驗證的活動中發(fā)展合情推理能力。讓學生試著用數(shù)學的思維去思考,體驗如何運用新舊知識間的聯(lián)系和遷移去分析和解決問題,培養(yǎng)學生好學善思的良好品質(zhì)。
3.概括性質(zhì),深化理解
通過觀察算式,經(jīng)歷由特殊到一般的歸納推理,發(fā)現(xiàn)分數(shù)的基本性質(zhì)。
4.運用規(guī)律,完成例2
嘗試運用發(fā)現(xiàn)的規(guī)律,解決問題。
環(huán)節(jié)三:知識應用,鞏固提高
在有層次的練習過程中,形成技能,發(fā)展學生的智力,達成本節(jié)課的教學目標,突出重點,突破難點。本節(jié)課,我設計了兩個層次的練習。一是點對點的基礎練習,二是靈活運用所學知識解決生活中實際問題。
環(huán)節(jié)四:回顧總結,完善認知
通過回顧,梳理所學的知識,提煉數(shù)學方法,聯(lián)系新舊知識,使學生的認知結構得到補充和完善。
有人說的好,教育是一門永無止境的藝術,我知道這節(jié)課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。
分數(shù)的基本性質(zhì)的教案11
教學目標:1,使同學理解分數(shù)的基本性質(zhì),并會應用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
2,培養(yǎng)同學發(fā)現(xiàn)問題和解決問題的能力。滲透"事物之間是相互聯(lián)系"的辯證唯物主義觀點。
教學重點:掌握分數(shù)的基本的性質(zhì),能運用分數(shù)的基本性質(zhì)解決有關的問題。
教學難點:理解分數(shù)的基本的性質(zhì)。
教學課型:新授課
教具準備:課件
教學過程:
一,復習鋪墊,準備遷移 [課件1]
1,120÷30的商是多少 被除數(shù)和除數(shù)都擴大3倍,商是多少被除數(shù)和除數(shù)都縮小10倍呢
2,比較下列每組數(shù)的大小。
3/4( )3/5 15/20( )4/20
3,把下面的分數(shù)改寫成兩個數(shù)相除的形式。
2/3=( )÷( ) 5/8=( )÷( )
二,探索新知,發(fā)展智能
1,同學操作:將手中的紙圓片平均分成若干份。
2,反饋。
(1)提問:A,若要求剪下其中的一半,想想剪下的份數(shù)各自占圓的幾分之幾
B,雖然每個同學所剪的份數(shù)不同,但它們之間大小關系怎樣
板書: 1/2=2/4=3/6
C,觀察一下:這些分數(shù)的分子,分母變化有什么規(guī)律
。2)引導同學概括出分數(shù)的基本性質(zhì),并與前面的猜測相回應。
。3)小結:這里的"相同的數(shù)",是不是任何數(shù)都可以呢
。愠猓
板書:分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(0除外),分數(shù)的.大小不變。
3,分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。
提問:在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。想一想:根據(jù)分數(shù)與除法的關系以和整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎
4,鞏固認識。
P109 。1
。2)說數(shù)接龍。
5/6=5+5/( )……
三,運用延伸,深化概念
1,要求大小不變。[課件2]
1/3=( )/6 10/15=( )/6 1/4=5/( )
2,下面分數(shù)中哪兩個分數(shù)相等 [課件3]
3/4 21/32 15/20 1/5 4/20
習后提問:A,依據(jù)是什么
B,3/4和1/5哪個大 你是怎么比較出來的
C,那么,從中你又有什么新發(fā)現(xiàn) 你的新發(fā)現(xiàn)是什么
四,全課總結
提問: A,這節(jié)課你學習了什么
B,運用分數(shù)的性質(zhì),你能做什么
C,本節(jié)課你還有哪些疑問 你還想從哪些方面去探索分數(shù)
的知識呢
五,家作
P109 。3,5,6
板書設計: 分數(shù)的基本性質(zhì)
1/2=2/4=3/6
分數(shù)的分子和分母同時乘上或者除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)的基本性質(zhì)的教案12
教學目標:
1.經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
2.經(jīng)歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數(shù)的基本性質(zhì)作出簡要的、合理的說明。培養(yǎng)學生的觀察、比較、歸納、總結概括能力。能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學生的歸納、推理能力。
3.經(jīng)歷觀察、操作和討論等數(shù)學學習活動,使學生進一步體驗數(shù)學學習的樂趣。體驗數(shù)學與日常生活密切相關。
教學重點:
理解分數(shù)的基本性質(zhì)。
教學難點:
能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)
教學過程:
一、創(chuàng)設情境,激趣引新,
1、師:故事引入,揭示課題
同學們,你們聽說過阿凡提的故事嗎?今天老師這里有一個 老爺爺分地的數(shù)學故事,你們想聽嗎?(課件出示畫面)誰愿意把這個故事講給大家聽?指名讀故事(盡可能有感情地)
故事:有位老爺爺要把一塊地分給他的三個兒子。老大分到了這塊地的,老二分到了這塊地的 ,老三分到了這塊的。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈大笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
2、師:你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?
3、學生猜想后暢所欲言。
4、同學們的想法真多!聰明的阿凡提是怎么讓三兄弟停止爭吵的?
二、探究新知,解決問題
1、 動手操作、形象感知
。1)、三兄弟分的地真得一樣多嗎?你能用自己的方法證明嗎?
。2)學生獨立操作驗證。
方法1、涂、折、畫的方法
方法2、計算的方法。
方法3:商不變的性質(zhì)。
(3)觀察,說說你發(fā)現(xiàn)了什么?
2、出示做一做(1)
。1)請同學們認真觀察,同桌之間說一說這三個圖形的涂色部分分別表示什么意義,并用分數(shù)表示出來。
。3)觀察,說說你發(fā)現(xiàn)了什么? = = (課件揭示)
(4)交流:你還有什么發(fā)現(xiàn)?
分數(shù)的分子和分母變化了,分數(shù)的大小不變。
分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲艘韵嗤臄(shù))(課件演示)
3、出示做一做圖片(2),學生獨立填寫分數(shù)。
(1)說說你是怎么想的?
。2)交流,你發(fā)現(xiàn)了什么?(分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。)(板書:都除以相同的數(shù))
4、想一想:引導歸納分數(shù)的基本性質(zhì)
。1)從剛才的演示中,你發(fā)現(xiàn)了什么?
板書:分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的'大小不變。
。2)補充分數(shù)的基本性質(zhì):課件出示兩個式子,問學生對不對?講解關鍵詞都、
相同的數(shù)、0除外。 都可以換成哪個詞?同時。
板書:分數(shù)的分子、分母都乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。
(3)揭題:分數(shù)的基本性質(zhì)。先讓學生在課本中找出分數(shù)基本性質(zhì)中的關鍵字詞并做上記號(畫起來或圈出來),要求關鍵的字詞要重讀。(課件揭示)
5、梳理知識,溝通聯(lián)系:分數(shù)基本性質(zhì)與學過的什么知識有聯(lián)系?你能舉例說說嗎?
師:我們學習了分數(shù)與除法的關系,知道分數(shù)可以寫成除法的形式,F(xiàn)在我們把商不變性質(zhì),分數(shù)基本性質(zhì),分數(shù)與除法的關系這三者聯(lián)系起來,你發(fā)現(xiàn)了什么?(生舉例驗證,如:3/4=34=(33)(43)=912=9 /12)(課件揭示)
師:其實,數(shù)學知識中有許多地方是像商不變性質(zhì)和分數(shù)基本性質(zhì)一樣相互溝通的,同學們要學會靈活運用,才能做到舉一反三,觸類旁通,取得事半功倍的效果。你們想挑戰(zhàn)嗎?
6、趣味比拼,挑戰(zhàn)智慧
給你們一分鐘時間,寫出幾個相等的分數(shù),看誰寫得既對又多。
交流匯報后,提問:如果給你時間,你還能不能寫,到底能寫幾個?
三、多層練習,鞏固深化。
1、考考你(第43頁試一試和練一練第2題)。
2/3=( )/18 6/21=2/( )
3/5 =21/( ) 27/39=( )/13
5/8=20/( ) 24/42=( )/7
4/( )=48/60 8/12=( )/( )
2、涂一涂,填一填。(練一練第1題)
3、請你當法官,要求說出理由.(手勢表示。)
。1)分數(shù)的分子、分母都乘或除以相同的數(shù),分數(shù)的大小不變。( )
。2)把 15/20的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大 小不變。( )
。3)3/4的分子乘3,分母除以3,分數(shù)的大小不變。( )
。4) 10/24=102/242=103/243 ( )
。5)把3/5的分子加上4,要使分數(shù)的大小不變,分母也要加上4。( )
。6)3/4=30/4 0=30/4 0 ()
4、找一找:課件出示信息:請幫小熊和小山羊找回大小相等的分數(shù)。
5、(1)把5/6和1/4都化成分母是12而大小不變的分數(shù);
(2)把2/3和3/4都化成分子是6而大小不變的分數(shù) 6、2/5分子增加2,要使分數(shù)的大小不變,分母應該增加幾?你是怎樣想的?
四、拾撿碩果,拓展延伸。
1、看到同學們這么自信的回答,老師就知道今天大家的收獲不少,誰來說說這節(jié)課你都收獲了哪些東西?
。ɑ蛴梅謹(shù)表示這節(jié)課的評價,快樂和遺憾各占多少?)
2、學了這節(jié)課,現(xiàn)在你知道阿凡提為什么會笑,如果你是阿凡提,你會對三兄弟說些什么?從這個故事中,你還知道了什么?師總結:看來學好數(shù)學還是很重要的!祝賀同學們都跟阿凡提一樣聰明。ǐI上有節(jié)奏的掌聲)
3、拓展延伸
師:最后,阿凡提為了考考同學們,他特意挑選了一道題,要同學們選擇來完成,有信心去完成嗎?
比一比:三杯同樣多的牛奶,小明喝了其中一杯牛奶的2/3,小紅喝了另一杯牛奶的5/6,小芳喝了最后一杯的9/12,三人誰喝得最多?誰喝得最少?
五、動腦筋退場
讓學生拿出課前發(fā)的分數(shù)紙。要求學生看清手中的分數(shù)。與1/2相等的,報出自己的分數(shù)后站在教室的前面,與2/3相等的站在教室的后面,與3/4相等的站在教室的左邊, 與4/5相等的站在教室的左邊。
分數(shù)的基本性質(zhì)的教案13
教學目標
1.使學生對數(shù)的整除的有關概念掌握得更加系統(tǒng)、牢固.
2.進一步弄清各概念之間的聯(lián)系與區(qū)別.
3.使學生對最大公約數(shù)和最小公倍數(shù)的求法掌握得更加熟練.
4.掌握分數(shù)、小數(shù)的基本性質(zhì).
教學重點
通過對主要概念進行整理和復習,深化理解,形成知識網(wǎng)絡.
教學難點
弄清概念間的聯(lián)系和區(qū)別,理解易混淆的概念.
教學步驟
一、鋪墊孕伏.
教師談話:同學們,昨天老師讓大家在課下復習了第十冊課本中約數(shù)和倍數(shù)一章的內(nèi)容,
在這一章中我們學過了哪些概念呢?請同學們分組討論,討論時由一名同學做記錄.(學生匯報討論結果)
揭示課題:在數(shù)的整除這部分知識中,有這么多的概念,那么這些概念之間又有怎樣的聯(lián)系呢?這節(jié)課,我們就把這些概念進行整理和復習.
二、探究新知.
(一)建立知識網(wǎng)絡.【演示課件“數(shù)的整除”】
1.思考:哪個概念是最基本的概念?并說一說概念的內(nèi)容.
反饋練習:
在12÷3=4 4÷8=0.5 2÷0.l=20 3.2÷0.8=4中,被除數(shù)能除盡除數(shù)的有( )個;被除數(shù)能整除除數(shù)的有( )個.
教師提問:這四個算式中的被除數(shù)都能除盡除數(shù),為什么只有這一個算式中的除數(shù)能整除被除數(shù)呢?整除與除盡到底有怎樣的關系呢?
教師說明:能除盡的不一定都能整除,但能整除的一定能除盡.
2.說出與整除關系最密切的概念,并說一說概念的內(nèi)容.
反饋練習:下面的說法對不對,為什么?
因為15÷5=3,所以15是倍數(shù),5是約數(shù). ( )
因為4.6÷2=2.3,所以4.6是2的倍數(shù),2是4.6的約數(shù). ( )
明確:約數(shù)和倍數(shù)是互相依存的,約數(shù)和倍數(shù)必須以整除為前提.
3.教師提問:
由一個數(shù)的倍數(shù),一個數(shù)的約數(shù)你又想到什么概念?并說一說這些概念的內(nèi)容.
根據(jù)一個數(shù)所含約數(shù)的個數(shù)的不同,還可以得到什么概念?
互質(zhì)數(shù)這個概念與哪個概念有關系?它們之間有怎樣的關系呢?
互質(zhì)數(shù)這個概念與公約數(shù)有關系,公約數(shù)只有1的兩個數(shù)叫做互質(zhì)數(shù).
4.討論互質(zhì)數(shù)與質(zhì)數(shù)之間有什么區(qū)別?
互質(zhì)數(shù)講的是兩個數(shù)的關系,這兩個數(shù)的公約數(shù)只有1,質(zhì)數(shù)是對一個自然數(shù)而言的,它只有1和它本身兩個約數(shù).
5.教師提問:
如果我們把24寫成幾個質(zhì)數(shù)相乘的形式,那么這幾個質(zhì)數(shù)叫做24的什么數(shù)?
只有什么數(shù)才能做質(zhì)因數(shù)?
什么叫做分解質(zhì)因數(shù)?
只有什么數(shù)才能分解質(zhì)因數(shù)?
6.教師提問:
誰還記得,能被2、5、3整除的數(shù)各有什么特征?
由一個數(shù)能不能被2整除,又可以得到什么概念?
。ǘ┍容^方法.
1.練習:求16和24的最大公約數(shù)和最小公倍數(shù).
2.思考:求最大公約數(shù)和最小公倍數(shù)有什么聯(lián)系和區(qū)別?
。ㄈ┓謹(shù)、小數(shù)的基本性質(zhì).
1.教師提問:
分數(shù)的`基本性質(zhì)是什么?
小數(shù)的基本性質(zhì)是什么?
2.練習.
。1)想一想,小數(shù)點移動位置,小數(shù)大小會發(fā)生什么變化?
(2)
(3)下面這組數(shù)有什么特點?它們之間有什么規(guī)律?
0.108 1.08 10.8 108 1080
三、全課小結.
這節(jié)課我們把數(shù)的整除的有關知識進行了整理和復習,進一步弄清了各概念之間的
聯(lián)系和區(qū)別,并且強化了對知識的運用.
四、隨堂練習
1.判斷下面的說法是不是正確,并說明理由.
。1)一個數(shù)的約數(shù)都比這個數(shù)的倍數(shù)。
。2)1是所有自然數(shù)的公約數(shù).
。3)所有的自然數(shù)不是質(zhì)數(shù)就是合數(shù).
。4)所有的自然數(shù)不是偶數(shù)就是奇數(shù).
(5)含有約數(shù)2的數(shù)一定是偶數(shù).
(6)所有的奇數(shù)都是質(zhì)數(shù),所有的偶數(shù)都是合數(shù).
。7)有公約數(shù)1的兩個數(shù)叫做互質(zhì)數(shù).
2.下面的數(shù)哪些含有約數(shù)2?哪些是3的倍數(shù)?哪些能同時被2、3整除?哪些能同時被2、5整除?哪些能同時被3、5整除?哪些能同時被2、3、5整除?
18 30 45 70 75 84 124 140 420
3.填空.
在1到20中,奇數(shù)有( );偶數(shù)有( );質(zhì)數(shù)有( );合數(shù)有( );
既是質(zhì)數(shù)又是偶數(shù)的數(shù)是( ).
4.按要求寫出兩個互質(zhì)的數(shù).
。1)兩個數(shù)都是質(zhì)數(shù).
(2)兩個數(shù)都是合數(shù).
。3)一個數(shù)是質(zhì)數(shù),一個數(shù)是合數(shù).
5.說出下面每組數(shù)的最大公約數(shù)和最小公倍數(shù).
42和14 36和9
13和5 6和11
6.0.75=12÷( )=( ) :12=
五、布置作業(yè)
1.把下面各數(shù)分解質(zhì)因數(shù).
24 45 65 84 102 475
2.求下面每組數(shù)的最大公約數(shù)和最小公倍數(shù).
36和48 16、32和24 15、30和90
六、板書設計
數(shù)的整除分數(shù)、小數(shù)的基本性質(zhì)
數(shù)學教案-數(shù)的整除 分數(shù)、小數(shù)的基本性質(zhì)
分數(shù)的基本性質(zhì)的教案14
教學目標
1 、知識與技能:
使學生理解和掌握分數(shù)的基本性質(zhì),能應用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母而大小不變的分數(shù)。
2、過程與方法:
學生通過觀察、比較、發(fā)現(xiàn)、歸納、應用等過程,經(jīng)歷探究分數(shù)的基本性質(zhì)的過程,初步學習歸納概括的方法。
3 、情感態(tài)度與價值觀:
激發(fā)學生積極主動的情感狀態(tài),體驗互相合作的樂趣。
教學重難點
1、教學重點:
使學生理解分數(shù)的基本性質(zhì)。
2、教學難點:
讓學生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應用它解決相關的問題。
教學工具
課件
教學過程
一、故事情境引入
1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的xx,老二分到了這塊地的xx。老三分到了這塊的xx。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑了起來,給他們講了幾句話,三兄弟就停止了爭吵。
你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話?
2、120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?
120÷30= 4(120×3)÷(30×3)= 4(120÷10)÷(30÷10)= 4
3、說一說:
。1)商不變的性質(zhì)是什么?
。2)分數(shù)與除法的關系是什么?
4、讓學生大膽猜測:
在除法里有商不變的性質(zhì),在分數(shù)里會不會也有類似的性質(zhì)存在呢?這個性質(zhì)是什么呢?
。S著學生的回答,教師板書課題:分數(shù)的基本性質(zhì)。)
二、新知探究
1、動手操作,驗證性質(zhì)。
。1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。
你發(fā)現(xiàn)了什么?
。2)觀察比較后引導學生得出:
它們的分子、分母各是按照什么規(guī)律變化的?
(3)從左往右看:
平均分的份數(shù)和表示的份數(shù)有什么變化?
引導學生初步小結得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。
。4)從右往左看:
引導學生觀察明確:
xx的分子、分母同時除以2,得到什么?
板書:
讓學生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。
。5)引導學生概括出分數(shù)的基本性質(zhì),并與前面的猜想相回應。
。6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)
(7)小結:
分數(shù)的分子、分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變。這就叫做分數(shù)的基本性質(zhì)。
2、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。
在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。
想一想:根據(jù)分數(shù)與除法的關系以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?
3、學習把分數(shù)化成指定分母而大小不變的分數(shù)。
教學例2
。ㄒ唬┌逊謹(shù)化成分母是12而大小不變的`分數(shù)。
。1)出示例2,幫助學生理解題意。
(2)啟發(fā):要把化成分母是12而大小不變的分數(shù),分子應該怎樣變化?變化的根據(jù)是什么?
(3)讓學生在書上填空,請一名學生口答。教師板書:
(二)鞏固提升
1、下面算式對嗎?如果有錯,錯在哪里?為什么會這樣錯。
2、判斷,并說明理由。
。1)分數(shù)的分子、分母都乘以或除以相同的數(shù),分數(shù)的大小不變。(×)
。2)把x的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。(√)
(3)把x分子乘以3,分母除以3,分數(shù)的大小不變。(×)
課后小結
這節(jié)課我們學習了什么內(nèi)容?你們有了什么收獲呀?
利用分數(shù)的基本性質(zhì)時,應該明確一下幾點:
①分子、分母進行的是同一種運算,只能是乘以或除以。
、诜肿、分母乘或除以的是相同的數(shù)。而且必須是同時運算。
、鄯肿、分母同時乘或除以的數(shù)不能使0。
④分數(shù)的大小是不變的。
板書
分數(shù)的基本性質(zhì)。
分數(shù)的分子和分母同時除以相同的數(shù),分數(shù)的大小不變。
分數(shù)的分子、分母同時除以相同的數(shù)(0除外),分數(shù)的大小不變。這就叫做分數(shù)的基本性質(zhì)。
分數(shù)的基本性質(zhì)的教案15
(一)激趣引思、提出要求
同學們,你們聽過阿凡提的故事嗎?今天老師也帶來了一則阿凡提的故事。讓我們一一看!誰來讀一讀?(指名讀)你知道,阿凡提為什么會笑嗎?他對三兄弟講了哪些話呢?
有一些同學知道,還有一些同學不知道。不過沒有關系,等我們學習了今天的內(nèi)容之后,我相信在座的每一位同學都能夠回答。你們有信心嗎?恩,好,那我們就開始上課了!
。ǘ┳灾魈骄,發(fā)現(xiàn)規(guī)律
1、出示例1的四幅圖。
我們先來看一道題目。分別用分數(shù)表示每個圖里的涂色部分。
。1)誰來說第一個?
全部答完后問:這里的1/3誰來說說它表示什么含義呢?3/9呢?
同學們,你們比較比較這幾幅圖的陰影部分,想想看,你發(fā)現(xiàn)了什么呢?也就是說,哪3個分數(shù)是相等的呢?
。2)師:這里有個1/2,你能說一個和1/2相等的分數(shù)嗎?
2/4、4/8、8/16......還有吧,是不是還可以說出好多好多啊?
那,這些分數(shù)是不是相等呢?咱們口說無憑,咱們來做個小實驗證明它門是相等的,好不好?
先別急,先來看看有哪些實驗要求。
咱們這個實驗的目的上一什么?驗證什么?
咱們實驗的方法有哪些呢?
實驗有什么要求?操作有序什么意思呢?要聽從小組長的安排
1、實驗目的:驗證猜想
2、方法:折一折、分一分、畫一畫、算一算......
3、要求:小組合作,明確分工,操作有序
我們要來比一比,哪個小組做的實驗既快又好。一會兒,我們把他的作品展示一下。好,開始!
學生操作,老師巡視指導。
集體交流結果。
咱們剛才通過做實驗,發(fā)現(xiàn)這些分數(shù)的大小怎樣?也就是分數(shù)的大小不變。這些分數(shù)的大小相等,可是它們的分子、分母變了吧!怎么回事呢?這里面有什么規(guī)律呢?你發(fā)現(xiàn)了什么?能不能告訴老師。
把你的發(fā)現(xiàn)先和同桌交流交流。
生1:我發(fā)現(xiàn)由到,分子被擴大了2倍,分母也被擴大了2倍,所以它們是相等的。
師:還有誰想說說你的發(fā)現(xiàn)?
生2:我發(fā)現(xiàn)由到,分子被擴大了3倍,分母也被擴大了3倍,所以它們的大小相等。
師:換一組數(shù)據(jù)來說說自己的發(fā)現(xiàn)?
生:由到,分子、分母都被縮小了3倍,它們的大小不變。
師:剛才同學們都說了自己的發(fā)現(xiàn),想想看,要使分數(shù)的大小不變分數(shù)的分子和分母應該怎樣變化就能使分數(shù)的大小不變了呢?
師:為什么要0除外?
師:這就是咱們今天學習的“分數(shù)的基本性質(zhì)”(板書課題)
師:誰來說說看,分數(shù)的基本性質(zhì)是什么呢?
生:一個分數(shù)的分子和分母同時乘或除以一個相同的數(shù)(0除外),它們的.大小不變。
我們一齊讀一遍。
師:這個分數(shù)的基本性質(zhì)跟咱們以前學的什么知識有點相似?除法中商不變的性質(zhì)你還記得嗎?
同學們想想看,這兩個性質(zhì)之間有什么關系呢?
根據(jù)分數(shù)與除法的關系,被除數(shù)相當于分數(shù)的分子,除數(shù)相當于分數(shù)的分母,在除法當中有商不變的性質(zhì),那在分數(shù)中也有它的基本性質(zhì)。
師:好,那現(xiàn)在你知道阿凡提為什么會笑嗎?他又說了哪些話呢?
師:2/6到3/9分子分母怎樣變化的?分子和分母同時乘了1.5,呢也就是說這里相同的數(shù)不僅可以指整數(shù),還可以指小數(shù)。
。ㄈ╈柟叹毩,強化記憶
好,那下面咱們就用今天學的知識來做幾道題,好不好?
1、把書翻到61頁,練一練第一題,請你涂一涂填一填。我看誰的動作最快。
集體交流。
2、下面我們來填空補缺想理由。(出示練一練第二題)
他們這樣填是根據(jù)什么?
3、出示練習十一第二題
獨立完成,集體訂正。
(四)課堂作業(yè),運用知識
練習十一第三題
。ㄎ澹┱n堂,認識自己
今天這節(jié)課,你學到了什么?
【分數(shù)的基本性質(zhì)的教案】相關文章:
分數(shù)的基本性質(zhì)教案09-23
分數(shù)的基本性質(zhì)教案04-12
分數(shù)的基本性質(zhì)說課稿03-19