- 圓的面積教案 推薦度:
- 圓的面積教案 推薦度:
- 《圓的面積》教案 推薦度:
- 相關(guān)推薦
圓的面積教案(匯編15篇)
作為一名無私奉獻的老師,時常需要編寫教案,教案是教學活動的依據(jù),有著重要的地位。教案應(yīng)該怎么寫呢?以下是小編精心整理的圓的面積教案,希望對大家有所幫助。
圓的面積教案1
教學目標:
1、學生通過觀察、操作、分析和討論,推導出圓的面積公式。
2、能夠利用公式進行簡單的面積計算。
3、滲透轉(zhuǎn)化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。
教學重難點:滲透轉(zhuǎn)化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。
教學過程
一、嘗試轉(zhuǎn)化,推導公式
1、確定“轉(zhuǎn)化”的策略。
師:同學們,你們想一想,當我們還不會計算平行四邊形的面積的時候,是利用什么方法推導出了平行四邊形的面積計算公式呢?
引導學生明確:我們是用“割補法”將平行四邊形轉(zhuǎn)化成長方形的方法推導出了平行四邊形的面積計算公式。
師:同學們再想想,我們又是怎樣推導出三角形的面積計算公式的呢?
師:對了,我們將平行四邊形、三角形“轉(zhuǎn)化”成其它圖形的方法來推導出它們的面積計算公式。
2、嘗試“轉(zhuǎn)化”。
師:那么,怎樣才能把圓形轉(zhuǎn)化為我們已學過的其它圖形呢?(板書課題:圓的面積)
請大家看屏幕(利用課件演示),老師先給大家一點提示。
師:(教師配合課件演示作適當說明)如果我們把一個圓形平均分成16份(如圖三),其中的每一份(如圖四,課件閃爍其中1份)都是這個樣子的。同學們,你們覺得它像一個什么圖形呢?
師:是的,其中的每一份都是一個近似三角形。請同學們再想一想,這個近似三角形這一條邊(教師指示)跟圓形有什么關(guān)系呢?
引導學生觀察,明確這個近似三角形的兩條邊其實都是圓的半徑。
師:如果我們用這些近似三角形重新拼組,就可以將這個圓形“轉(zhuǎn)化”成其它圖形了。同學們,老師為你們每個小組都準備了一個已經(jīng)等分好了的圓形,請你們動手拼一拼,把這個圓形“轉(zhuǎn)化”成我們已學過的其它圖形,開始吧!
預(yù)設(shè):學生利用這種近似三角形拼組圖形會有一定的難度,教師要加強巡視和有針對性的指導,既鼓勵學生拼出自己想象中的圖形,又要引導他們拼出最簡單、最容易計算面積的'圖形。一般情況下,學生會拼出如下幾種圖形(如圖五、圖六、圖七)。
3、探究聯(lián)系。
師:同學們,“轉(zhuǎn)化”完了嗎?好,請大家來展示一下你們“轉(zhuǎn)化”后的圖形。
預(yù)設(shè):
分組逐個展示,并將其中“轉(zhuǎn)化”成長方形的一組的作品貼在黑板上。如果有小組轉(zhuǎn)化成了不規(guī)則的圖形,教師應(yīng)及時引導他們轉(zhuǎn)化為我們已學過的平面圖形。
師:好,各個小組都不錯,F(xiàn)在請同學們思考一個問題:你們把一個圓形“轉(zhuǎn)化”成了現(xiàn)在的圖形之后,它們的面積有沒有改變?請小組內(nèi)討論。
師:誰來告訴大家,它們的面積有沒有改變?
師:是的,沒有改變,就是說:這個近似的長方形的面積=圓的面積。
師:雖然我們現(xiàn)在拼成的是一個近似的長方形,但是如果把圓等分成32份、64份、128份、256份……一直這樣下去分成很多很多份,拼成的圖形就變?yōu)檎嬲拈L方形(課件演示,如圖八)。
4、推導公式。
師:現(xiàn)在我們就來看這個長方形。同學們,如果圓的半徑為r,你們知道這個長方形的長和寬分別是多少嗎?現(xiàn)在請小組為單位進行討論討論。
師:好,同學們,誰能首先告訴老師,這個長方形的寬是多少?
預(yù)設(shè):
根據(jù)學生的回答,教師演示課件,同時閃爍圓的半徑和長方形的寬,并標示字母r,如圖九。
師:那這個長方形的長是多少呢?(教師邊演示課件邊說明)這個長方形是由兩個半圓展開后拼成的,請大家看屏幕,這個紅色的半圓展開后,其中這條黃色的線段就是長方形的長(如圖十),請同學們仔細觀察(課件繼續(xù)演示如圖十一,半圓展開后再還原,再展開,),這個長方形的長究竟與圓的什么有關(guān)?究竟是多少呢?
預(yù)設(shè):
教師引導學生明白:這個長方形的長與圓的周長有關(guān),并且是圓的周長的一半(如果學生有困難的話,教師利用課件演示,如圖十二)。并且讓學生通過計算得出長方形的長就是πr。
師:現(xiàn)在我們已經(jīng)知道了這個長方形的長和寬(如圖十三),它的面積應(yīng)該是多少?那圓的面積呢?
預(yù)設(shè):
老師根據(jù)學生的回答進行相關(guān)的板書。
師:你們真了不起,學會了“轉(zhuǎn)化”的方法推導出圓的面積計算公式。現(xiàn)在請大家讀一讀,記一記,寫一寫圓的面積計算公式。
二、運用公式,解決問題
1、教學例1。
師:同學們,從這個公式我們可以看出,要求圓的面積,必須先知道什么?(出示例1)如果我們知道一個圓形花壇的直徑是20m,我們該怎樣求它的面積呢?請大家動筆算一算這個圓形花壇的面積吧!
預(yù)設(shè):
教師應(yīng)加強巡視,發(fā)現(xiàn)問題及時指導,并提醒學生注意公式、單位使用是否正確。
2、完成做一做。
師:真不錯!現(xiàn)在請同學們翻開數(shù)學課本第69頁,請大家獨立完成做一做的第1題。
訂正。
3、教學例2。
師:(出示例2)這是一張光盤,這張光盤由內(nèi)、外兩個圓構(gòu)成。光盤的銀色部分是一個圓環(huán)。請同學們小聲地讀一讀題。開始!
師:怎樣求這個圓環(huán)的面積呢?大家商量商量,想想辦法吧!
師:找到解決問題的方法了嗎?
師:好的,就按同學們想到的方法算一算這個圓環(huán)的面積吧!
預(yù)設(shè):
教師繼續(xù)對學困生加強巡視,如果還有問題的學生并給予指導。
交流,訂正。
三、課堂作業(yè)。
教材第70頁第2、3、4題。
四、課堂小結(jié)
師:同學們,通過這節(jié)課的學習,你有什么收獲?
課后作業(yè):完成數(shù)練第31頁。
圓的面積教案2
一、以舊引新(6分鐘)
1.復習正方形的面積公式和圓的面積公式。
2.回答下面各圓的面積。
1.說出S正=a2、S圓=πr2
2.左圓面積=π×22=4π
右圓面積=π×(2÷2)2=π
1.邊長是5cm的正方形面積是多少?
5×5=25(cm2)
2.如果r=4cm,則圓的面積是多少?
3.14×42
。3.14×16
。50.24(cm2)
二、動手操作,感知特點。(15分鐘)
1.探究外方內(nèi)圓圖形和外圓內(nèi)方圖形的特點。課件出示兩種圖形,
思考:
(1)外方內(nèi)圓的圖形是怎樣組成的?它有什么特點?
老師明確:外方內(nèi)圓的圖形稱為圓外切正方形。
。2)外圓內(nèi)方的圖形是怎樣組成的?它有什么特點?
老師明確:外圓內(nèi)方的圖形稱為圓內(nèi)接正方形。
2.引導學生畫一個邊長為8cm的正方形,然后在這個正方形內(nèi)畫一個最大的圓。
3.引導學生在圓內(nèi)畫一個最大的正方形。
4.將圖形分解,分解為同一個圓的外切正方形和內(nèi)接正方形兩個組合圖形。
1.
。1)外方內(nèi)圓的圖形是一個正方形內(nèi)有一個最大的圓,圓的直徑等于正方形的邊長。
。2)外圓內(nèi)方的圖形是一個圓內(nèi)有一個最大的正方形,正方形的對角線等于圓的直徑。
2.小組合作討論交流,然后說一說自己是怎么畫的——以正方形的邊長為直徑畫一個圓,正方形對角線的交點是這個圓的圓心。
3.小組合作討論交流,說出作圖的方法并明確:正方形的對角線等于圓的直徑。
4.小組合作,將一個圖形分解為同一個圓的外切正方形和內(nèi)接正方形兩個組合圖形。
3.請畫出一個半徑是4cm的圓,并畫出它的外切正方形和內(nèi)接正方形,并說明畫法。
三、探究思考,解決問題。(10分鐘)
1.計算圓外切正方形與圓之間部分的面積。
。1)課件出示半徑為1m的圓外接正方形。組織學生討論計算方法。
。2)組織學生算出正方形和圓之間部分的`面積。
2.計算出圓內(nèi)接正方形與圓之間部分的面積。
課件出示半徑為1m的圓的方形組合圖形,組織學生討論計算方法。
1.
。1)觀察圖形的特點,討論計算方法并嘗試匯報交流。
。2)分別算出這個圓和正方形的面積:
S圓=3.14×12=3.14m2
S正=2×2=4m2
S陰=S正-S圓
。4-3.14
=0.86m2
2.觀察圖形,發(fā)現(xiàn)圓的半徑與正方形的關(guān)系,討論計算方法并嘗試匯報交流。
4.王師傅做一個零件,零件的形狀是圓內(nèi)接正方形,已知圓的直徑為12cm,你能計算出正方形的面積嗎?
四、拓展應(yīng)用。(5分鐘)
1.如下圖,已知圓的半徑是3cm,求這個圓和正方形之間的面積。
2.下圖中正方形銅球的直徑是22.5mm,中間正方形的邊長是6mm,求這個銅球的面積是多少?
1.讀題,審題,明確題意后,嘗試獨立完成。
2.獨立完成,然后全班匯報。
5.計算陰影部分的面積。
×102π-102≈57(cm2)
五、全課總結(jié)。(5分鐘)
1.談?wù)勥@節(jié)課你有哪些體會。
2.布置作業(yè)。
學生談本節(jié)課學習的收獲。
教學過程中老師的疑問
圓的面積教案3
教學目標:
1、掌握扇形面積公式的推導過程,初步運用扇形面積公式進行一些有關(guān)計算;
2、通過扇形面積公式的推導,培養(yǎng)學生抽象、理解、概括、歸納能力和遷移能力;
3、在扇形面積公式的推導和例題教學過程中,滲透“從特殊到一般,再由一般到特殊”的辯證思想.
教學重點:扇形面積公式的導出及應(yīng)用.
教學難點:對圖形的分析.
教學活動設(shè)計:
。ㄒ唬⿵土暎▓A面積)
已知⊙O半徑為R,⊙O的面積S是多少?
S=πR2
我們在求面積時往往只需要求出圓的一部分面積,如圖中陰影圖形的面積.為了更好研究這樣的圖形引出一個概念.
扇形:一條弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫做扇形.
提出新問題:已知⊙O半徑為R,求圓心角n°的扇形的面積.
(二)遷移方法、探究新問題、歸納結(jié)論
1、遷移方法
教師引導學生遷移推導弧長公式的方法步驟:
。1)圓周長C=2πR;
(2)1°圓心角所對弧長=;
。3)n°圓心角所對的弧長是1°圓心角所對的弧長的n倍;
。4)n°圓心角所對弧長=.
歸納結(jié)論:若設(shè)⊙O半徑為R, n°圓心角所對弧長l,則(弧長公式)
2、探究新問題
教師組織學生對比研究:
。1)圓面積S=πR2;
(2)圓心角為1°的扇形的面積=;
。3)圓心角為n°的扇形的面積是圓心角為1°的扇形的面積n倍;
。4)圓心角為n°的扇形的面積=.
歸納結(jié)論:若設(shè)⊙O半徑為R,圓心角為n°的扇形的面積S扇形,則
S扇形= (扇形面積公式)
。ㄈ├斫夤
教師引導學生理解:
。1)在應(yīng)用扇形的面積公式S扇形=進行計算時,要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的;
。2)公式可以理解記憶(即按照上面推導過程記憶);
提出問題:扇形的面積公式與弧長公式有聯(lián)系嗎?(教師組織學生探討)
S扇形=lR
想一想:這個公式與什么公式類似?(教師引導學生進行,或小組協(xié)作研究)
與三角形的面積公式類似,只要把扇形看成一個曲邊三角形,把弧長l看作底,R看作高就行了.這樣對比,幫助學生記憶公式.實際上,把扇形的弧分得越來越小,作經(jīng)過各分點的半徑,并順次連結(jié)各分點,得到越來越多的小三角形,那么扇形的面積就是這些小三角形面積和的極限.要讓學生在理解的基礎(chǔ)上記住公式.
。ㄋ模⿷(yīng)用
練習:1、已知扇形的`圓心角為120°,半徑為2,則這個扇形的面積,S扇=____.
2、已知扇形面積為 ,圓心角為120°,則這個扇形的半徑R=____.
3、已知半徑為2的扇形,面積為 ,則它的圓心角的度數(shù)=____.
4、已知半徑為2cm的扇形,其弧長為 ,則這個扇形的面積,S扇=____.
5、已知半徑為2的扇形,面積為 ,則這個扇形的弧長=____.
。 ,2,120°, , )
例1、已知正三角形的邊長為a,求它的內(nèi)切圓與外接圓組成的圓環(huán)的面積.
學生獨立完成,對基礎(chǔ)較差的學生教師指導
。1)怎樣求圓環(huán)的面積?
(2)如果設(shè)外接圓的半徑為R,內(nèi)切圓的半徑為r, R、r與已知邊長a有什么聯(lián)系?
解:設(shè)正三角形的外接圓、內(nèi)切圓的半徑分別為R,r,面積為S1、S2.
S=.
∵ ,∴S=.
說明:要注意整體代入.
對于教材中的例2,可以采用典型例題中第4題,充分讓學生探究.
課堂練習:教材P181練習中2、4題.
(五)總結(jié)
知識:扇形及扇形面積公式S扇形= ,S扇形=lR.
方法能力:遷移能力,對比方法;計算能力的培養(yǎng).
。┳鳂I(yè) 教材P181練習1、3;P187中10.
圓的面積教案4
圓是小學階段最后學的一個平面圖形,學生從學習直線圖形的認識,到學習曲線圖形的認識,不論是學習內(nèi)容的本身,還是研究問題的方法,都有所變化,是學習上的一次飛躍。通過對圓的研究,使學生認識到研究曲線圖形的基本方法,同時滲透了曲線圖形與直線圖形的關(guān)系。這樣不僅擴展了學生的知識面,而且從空間觀念來說,進入了一個新的領(lǐng)域。
教學內(nèi)容
教科書第94頁圓面積公式的推導,第95頁的例3,練習二十四的第1~5題.
教學目的
使學生知道圓的面積的含義,理解和掌握圓的面積的計算公式,能夠正確地計算圓的面積.
教具、學具準備
教師仿照教科書第94頁上的圖用木板制作教具,準備長方形、平行四邊形、梯形和圓形紙片各一個;學生把教科書第187頁上面的圖剪下來貼在紙板上,作為操作用的學具.
教學過程
一、復習
1.教師:什么叫做面積?長方形的面積計算公式是什么?
2.教師:請同學們回憶一下平行四邊形、三角形和梯形的面積計算公式的推導過程.想一想這些推導過程有什么共同點?
二、新課
1.教學圓面積的含義及計算公式.
教師依次拿出長方形、平行四邊形、三角形和梯形圖,邊演示(然后貼在黑板上)邊說:“我們已經(jīng)學過這些圖形的面積,請同學們說一說這些圖形的面積有什么共同的地方?”使學生明確:這些圖形的面積都是由邊所圍成的平面的大。
教師再出示圓,提問:這是一個圓,誰能聯(lián)系前面這些圖形的面積說一說圓的面積是什么?讓大家討論.最后教師歸納出:圓所圍平面的大小叫做圓的面積.
教師:我們已經(jīng)知道了什么是圓的面積,請同學們聯(lián)系前面一些圖形的面積公式的推導過程想一想,怎樣能計算圓的面積呢?使學生初步領(lǐng)會到可以把圓轉(zhuǎn)化成一個已學過的圖形來推導圓面積的計算公式.
教師出示把圓平均分成16份的教具,讓學生想一想,能不能把這個圓拼成一個近似什么形狀的圖形.如果學生回答有困難,可提示學生看教科書第10頁上面的圖,并讓學生拿出學具,試著拼一拼,然后讓拼得正確的同學到前面演示一下拼的過程,再讓不會拼的同學拼一遍.
然后教師直接拿出把圓平均分成32份的教具拼成一個近似長方形,提問:“我們剛才把這個圓拼成了近似什么形狀的圖形?”(長方形.)請同學們觀察一下,把這個圓平均分的份數(shù)越多,這個圖形越怎么樣?(引導學生看出平均分的份數(shù)越多,這個圖形越近似于長方形.)拼成的'近似長方形與原來的圓相比,什么變了?什么沒變?(使學生看出形狀變了,但面積沒有變,圓的面積等于近似長方形的面積.)
教師在拼成的近似長方形的右邊畫一個長方形,指出:如果平均分的份數(shù)越多,拼成的近似長方形就越接近長方形.提問:“請同學們觀察一下,這個長方形的長與寬和原來的圓的周長與半徑之間有什么關(guān)系?”使學生在教師的引導下看出:這個近似長方形的長相當于圓的周長的一半,如果圓的半徑是r,即==πr;長方形的寬就是圓的半徑.接著提問:這個長方形的面積是多少?這個圓的面積呢?
學生說,教師板書:圓的面積=πr×r=πr2
教師:如果用S表示圓的面積,那么圓的面積計算公式就是:S=πr2.
教師:我們現(xiàn)在已經(jīng)知道了圓面積的計算公式,我們現(xiàn)在只要知道圓的什么就可以求出圓的面積?然后再讓學生說一說圓面積計算公式的推導過程.
2.教學例3.
教師出示例3,指名讀題,讓學生試著做,提醒學生不用寫公式,直接列算式就可以.
然后讓學生對照書上的解題過程,看自己做得對不對;如果錯了,錯在什么地方.教師要強調(diào)指出:列出算式后,要先算平方,再與π相乘.最后小結(jié)一下解題過程.
三、課堂練習
做練習二十四的第1~5題.
1.第1題,讓學生直接列式計算,指名板演,教師巡視,檢查學生有沒有把圓的面積公式寫成圓的周長公式來計算,書寫格式對不對,寫沒寫單位名稱.訂正時了解學生還存在什么問題,及時糾正.
2.第2題,讓學生獨立做,教師巡視,除了注意學生在做第1題時易犯的錯誤外,還要檢查學生有沒有把第(2)小題的直徑當半徑直接計算的,訂正時提醒學生做題時要認真審題.
3.第3題,讓學生自己做,集體訂正.
4.第4題,指名讀題,讓學生說一說這道題與第3題有什么不同的地方,能不能直接計算.使學生明確要先算出半徑,再計算.
5.第5題,讓學生讀題,看著右面的示意圖說一說題意,再讓學生做,集體訂正.
圓的面積教案5
教學內(nèi)容:
圓的面積(2)
教學目的:
5、使學生能夠正確并靈活的運用公式進行計算。
6、培養(yǎng)學生觀察、比較、分析、綜合能力并培養(yǎng)學生合作意識。
7、領(lǐng)會事物之間是聯(lián)系和發(fā)展的辯證唯物主義觀念以及透過現(xiàn)象看本質(zhì)的辯證思維方法。
教學重點:
1、學生能夠正確并靈活的運用公式進行計算。
2、培養(yǎng)學生觀察、比較、分析、綜合能力并培養(yǎng)學生合作意識。
教學難點:
使學生能夠正確并靈活的運用公式進行計算。
教學過程:
1、說一說你的計算方法:
r=3,c=_______
s=_______
2、上節(jié)課我們研究了圓的面積,如果求圓的'面積需要知道什么條件?怎么求?(需要知道r可以直接用公式計算。)
板書:
3、導入:如果知道直徑或周長,你能求出圓的面積嗎?還有哪些圖形的面積需要運用圓的面積的知識來解決的呢?今天我們繼續(xù)研究有關(guān)圓的面積的知識。
板書:圓的面積
(一)研究圓的面積的計算方法:
1、出示例4:街心花園中的圓形花壇周長是18.84米,花壇的面積是多少平方米?
。1)學生讀題。
(2)學生試做。
。3)全班匯報。
18.84÷3.14÷2=3(米)
3.14×32=28.26(平方米)
答:花壇的面積是28.26平方米?
。4)師問:3米表示什么?
28.26表示什么?
為什么兩個單位名稱不同?
小結(jié):看來,我們要想求圓的面積需要先求出圓的半徑。
2、反饋:
清華附小有一個圓形花圃,它的直徑是8米,它的面積是多少平方米?
。1)生試做。
。2)小組交流。
(3)全班交流。
小結(jié):通過剛才兩道題的練習,我們對圓的面積的計算又有了新的認識,知道周長或直徑也能求出圓的面積,看來事物間是相互聯(lián)系的。
(二)研究環(huán)形面積的計算方法:
1、出示例5:右圖中涂色部分是個環(huán)形,它的內(nèi)圓半徑是10厘米,外圓半徑是15厘米,它的面積是多少平方厘米?
。1)學生讀題。
。2)觀察:
a:哪里是內(nèi)圓和內(nèi)圓半徑?你能指一指嗎?
b:哪里是外圓和外圓半徑?你能指一指嗎?
外圓是由哪幾部分組成的?
C:哪里是環(huán)形面積?
D:請你觀察環(huán)形有什么特點?生活中在哪里見到過環(huán)形?
。ㄍ粋圓心;由內(nèi)圓和外圓之分;環(huán)形是一個中間鏤空的圓環(huán))
。3)你打算怎樣求出環(huán)形面積?(學生討論)
。4)學生試做。
。5)全班匯報:
a:外圓面積:3.14×152=706.5(平方米)
b:內(nèi)圓面積:3.14×102=314(平方米)
c:環(huán)形面積:706.5-314=392.5(平方米)
答:它的面積是392.5平方厘米?
。6)你是怎樣求的環(huán)形面積?你能列出綜合算式解答嗎?
板書:3.14×152-3.14×102=392.5(平方米)
。7)小結(jié)并質(zhì)疑:
根據(jù)環(huán)形的特點,我們可以用外圓面積減內(nèi)圓面積的方法求出環(huán)形的面積。你還有其他方法求出環(huán)形的面積嗎?小組討論。
。8)全班匯報:
根據(jù)綜合算式3.14×152-3.14×102=392.5(平方米),我利用乘法分配率推出了3.14×(152-102)=392.5(平方米)也就是用(R2-r2)π=S環(huán)
板書:S環(huán)=(R2-r2)π
(9)小結(jié):你們自己發(fā)現(xiàn)了兩種方法計算環(huán)形的面積,你們可真夠棒的。
(10)判斷:用算式(15-10)2×3.14計算環(huán)形面積可以嗎
圓的面積教案6
教學目標
1、使學生學會圓環(huán)面積的計算方法,以及圓形與矩形混合圖形的相關(guān)計算方法。
2、學會利用已有的知識,運用數(shù)學思想方法,推導出圓環(huán)面積計算公式,有關(guān)于圓形與正方形應(yīng)用的解答方法。
3、培養(yǎng)學生觀察、分析、推理和概括的能力,發(fā)展學生的空間概念。
教學重難點
1、教學重點
會利用圓和其他已學的相關(guān)知識解決實際問題。
2、教學難點
圓與其他圖形計算公式的混合使用。
教學工具
PPT卡片
教學過程
1、復習鞏固上節(jié)知識,導入新課
2、新知探究
2、1圓環(huán)面積
一、問題引入
同學們知道光盤可以用來做什么嗎?誰能來描述一下光盤的外觀。
回答(略)。
今天我們就來做一做與光盤相關(guān)的數(shù)學問題。
二、圓環(huán)面積求解
例2、光盤的銀色部分是一個圓環(huán),內(nèi)圓半徑是50px,外圓半徑是150px。圓環(huán)的面積是多少?
步驟:
師:求圓環(huán)面積需要先求什么?
生:內(nèi)圓和外圓的面積
師:同學們可以自己做一做,分組交流一下自己的解法。
師:給出計算過程與結(jié)果:
三、知識應(yīng)用
做一做第2題:
一個圓形環(huán)島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?
師:這是一道典型的圓環(huán)面積應(yīng)用題。通過直徑得到半徑,代入圓環(huán)面積公式,很簡單。
2、2圓與正方形
一、問題引入
師:同學們知道蘇州的園林吧。大家有沒有觀察過園林建筑的窗戶?它有很多很漂亮的設(shè)計,也有很多很常見的圖形,比如五邊形、六邊形、八邊形等等。其中外圓內(nèi)方或者外方內(nèi)圓是一種很常見的設(shè)計。
師:不僅是在園林中,事實上在中國的建筑和其他的設(shè)計中都經(jīng)常能見到“外圓內(nèi)方”和“外方內(nèi)圓”,比如這座沈陽的方圓大廈、商標等等。下面我們來認識一下這種圓形與正方形結(jié)合起來構(gòu)成的`圖形。
二、知識點
例3:圖中的兩個圓半徑是1m,你能求出正方形和圓之間部分的面積嗎?
步驟:
師:題目中都告訴了我們什么?
生:左圖圓的半徑=正方形的邊長的一半=1m;右圖圓的面積=正方形對角線的一半=1m
師:分別要求的是什么?
生:一個求正方形比圓多的面積,一個求圓比正方形多的面積。
師:應(yīng)該怎么計算呢?
歸納總結(jié)
如果兩個圓的半徑都是r,結(jié)果又是怎樣的呢?
當r=1時,與前面的結(jié)果完全一致。
四、知識應(yīng)用
70頁做一做:
下圖是一面我國唐代外圓內(nèi)方的銅鏡。銅鏡的直徑是600px。外面的圓與內(nèi)部的正方形之間的面積是多少?
師:同學們用我們剛剛學過的知識來解答一下這道題目吧。
解:銅鏡的半徑是300px
5、3隨堂練習
若還有足夠時間,課堂練習練習十五第5/6/7題。
(可以邀請同學板書解題過程)
6 小結(jié)
1、今天我們共同研究了什么?
今天我們在已知圓和正方形的面積公式的前提下,探索了圓環(huán)和“外圓內(nèi)方”“外方內(nèi)圓”圖形的面積計算方法。這不是要求同學們記住這些推導出來的公式,而是希望同學們能過明白推導的方法,以后遇到類似的問題可以自己運用學過的知識來解決問題。
2、在日常生活中經(jīng)常需要去求圓的面積,譬如說:蒙古包做成圓形的是因為可以最大化地利用居住面積,植物根莖的橫截面是圓形的,也是因為可以最大化的吸收水分。我們還可以再舉出其他的一些例子,如裝菜的盤子、車輪為什么要做成圓形的?大家需要多看多想!
7板書
例2解答步驟
圓的面積教案7
教學目標
1.理解圓柱表面積的意義,掌握圓柱表面積的計算方法。
2.能正確地計算圓柱的表面積。
3會解決簡單的實際問題。
4.初步培養(yǎng)學生抽象的邏輯思維能力。
教學重點
理解并掌握圓柱表面積的計算方法,并能正確進行圓柱表面積的計算。
教學難點
能充分運用圓柱表面積的相關(guān)知識靈活的解決實際問題。
教學過程
一復習舊知。
1計算下面圓柱的側(cè)面積。
(1)底面周長2.5米,高0.6米。
(2)底面直徑4厘米,高10厘米。
(3)底面半徑1.5分米,高8分米。
2求出下面長方體、正方體的表面積。
(1)長方體的長為4厘米,寬為7厘米,高為9厘米。
(2)正方體的棱長為6分米。
3討論說說長方體、正方體的表面積的意義及其表面積的計算方法。
學生甲:長方體、正方體的表面積指的是長方體、正方體的六個面的面積的總和。
學生乙:計算長方體的表面積時只要計算長方體相互對立的3個面的面積,3個面的面積相加再乘以2就是長方體的表面積。正方體的表面積是棱長乘以棱長再乘以6。
二新課導入。
1教師:以前我們學習了長方體、正方體的表面積的意義及其表面積的求法,那么圓柱體的表面積的計算和長方體、正方體的表面積的計算有什么區(qū)別和聯(lián)系呢?圓柱的表面積又是如何計算的呢?接下來我們一起來討論和探索這個問題。(板書:圓柱的表面積)
2學生討論:你認為圓柱的表面積是指哪一部分?它由幾個面組成?
(1)學生分組討論。
(2)學生匯報討論結(jié)果。
3反饋小節(jié):圓柱的表面積指的是圓柱的側(cè)面積和兩個底面積的總和,圓柱的表面積由一個側(cè)面機和兩個底面組成。(板書:圓柱的側(cè)面積+圓柱的兩個底面積=圓柱的表面積)
4教師進行圓柱模型表面展開演示。
(1)學生說說展開的側(cè)面是什么圖形。
學生:圓柱展開的側(cè)面是一個長方形。
(2)學生說說長方形的長和寬與圓柱的底面周長和高有什么關(guān)系?
學生:長方體的長(或?qū)?等于圓柱的底面積,長方體的寬(或長)等于圓柱的高。
(3)圓柱的側(cè)面積是怎樣計算的?抽生回答進行復習整理。(板書:圓柱的側(cè)面積=圓柱的底面周長×圓柱的高)
(3)圓柱的底面積怎么計算?(復習底面積的計算方法)。
5說說實際生活中有哪些圓柱體?哪些表面是完整的,哪些表面是不完整的?
學生舉例:完整的圓柱有兩個底面,不完整的圓柱只有一個底面(如水桶)或者根本就沒有底面(如煙囪)。
教師:所以我們每個同學在計算圓柱的表面積時要特別認真,要特別注意這個圓柱到底有幾個底面。
三新課教學。
1例2一個圓柱的高是4.5分米,底面半徑2分米,它的表面積是多少?(課件演示)
2學生嘗試練習,教師巡回檢查、指導。
3反饋評價:
(1)側(cè)面積:2×2×3.14=56.52(平方分米)
(2)底面積:3.14×2×2=12.56(平方分米)
(3)表面積:56.52+12.56=81.64(平方分米)
答:它的`表面積是81.64平方分米。
4學生質(zhì)疑。
5教師強調(diào)答題過程的清楚完整和計算的正確。
6教學小節(jié):在計算過程中你發(fā)現(xiàn)了什么?計算圓柱的表面積一般要分成幾步來計算呀?
四反饋練習:試一試。
1學生嘗試練習:要做一個沒有蓋的圓柱形鐵皮水桶,高50厘米,底面直徑為30厘米,至少需要多少鐵皮?(得數(shù)保留整數(shù))
2學生交流練習結(jié)果(注意計算結(jié)果的要求)。
3教師評議。
教師:在實際運用中四舍五入法和進一法有什么不同?
學生;計算使用材料的用量時為確保使用材料的充足通常都使用進一法,計算結(jié)果如果使用四舍五入法也許會出現(xiàn)使用材料不足的現(xiàn)象。
五拓展練習
1教師發(fā)給學生教具,學生分組進行數(shù)據(jù)測量。
2學生自行計算所需的材料。
3計算結(jié)果匯報。
教師:同學們的答案為什么會有不同?哪里出現(xiàn)偏差了?
學生甲:可能是數(shù)據(jù)的測量不準確。
學生乙:可能是計算出現(xiàn)錯誤。
教師:在實際運用中如果數(shù)據(jù)測量不準確或者計算出現(xiàn)錯誤,或許就會造成很大的經(jīng)濟損失,這種損失也許是不可估量的,但事實上它又是很容易避免的。所以我們每個同學都要養(yǎng)成認真、仔細的好習慣。
六鞏固練習。
1計算下面圖形的表面積(單位:厘米)(略)
2計算下面各圓柱的表面積。
(1)底面周長是21.52厘米,高2.5分米。
(2)底面半徑0.6米,高2米。
(3)底面直徑10分米,高80厘米。
3一個圓柱形的罐頭盒,底面直徑是16厘米,高是10厘米,它的表面積是多少厘米?
4一個圓柱鐵桶(沒蓋),高是5分米,底面半徑是2分米,做一個這樣的鐵桶,至少需要多少鐵皮?(得數(shù)保留一位小數(shù))
圓的面積教案8
教學目標:
1、知道圓的面積的含義,理解和掌握圓的面積的計算公式,能夠正確計算圓的面積。
2、理解圓的面積公式的推導過程,感受轉(zhuǎn)化的數(shù)學思想。
3、根據(jù)圓的半徑、直徑或周長來計算圓的面積,解決簡單的有關(guān)圓的面積計算的實際問題。
教學重難點:
重點:理解和掌握圓面積的計算方法。
難點:圓面積公式的推導。
準備:圓形紙片
一. 創(chuàng)設(shè)情境。
S:同學們,請看這里?(展示課件動畫)
S:現(xiàn)在小馬有一個問題:我的這個活動范圍是一個什么形狀? X:是圓形。(板書:圓)
S:小馬還有一個問題,我的活動范圍占地多大?這個多大指的是圓
的什么量呢?
X:是圓的面積。
S:對了,就是圓的面積,我們現(xiàn)在就來一起學習:圓的.面積。(板書課題)
二. 探索交流,學習新知。
1. 出示電子課本。
S:請大家請大家翻到課本67頁的彩圖,有一個問題:這個圓形草坪的占地面積是多少平方米?怎樣計算一個圓的面積呢?你認為怎么做,大膽來說一說。
X1:公式。
X2:轉(zhuǎn)化成學過的圖形來計算。
S:(好,轉(zhuǎn)化成學過的圖形來計算,看來這位同學預(yù)習的非常好,一下子就抓住了問題的重點。)要轉(zhuǎn)化成學過的圖形,這個方法不錯,那咱們來回想一下,咱們以前學過哪些圖形的面積?(單擊課件)
X:長方形,正方形,三角形,平行四邊形,梯形等等。
(單擊課件)
S:但是這么多學過的圖形,轉(zhuǎn)化成哪一個比較好呢?大家來選一選。 X:長方形,正方形,平行四邊形。
S:喔,這三個圖形比較簡單,所以我們應(yīng)該盡量轉(zhuǎn)化成簡單的圖形來做。請大家看黑板上的電子課本(電子課本)
S讀:在硬紙上畫一個圓。。。。。大家附頁1中的圓都準備好了
嗎?
X:準備好了。
S:請大家舉起來展示一下。好的請放下,老師想問大家,通過剪紙拼圖,你發(fā)現(xiàn)了什么?
X:(學生自由回答)
S:同學們回答的都很好,現(xiàn)在我來演示一下,大家看看還有沒有新的發(fā)現(xiàn)。
。ㄕn件演示)
2. 講解課件。
4份時S問:這個像是咱們以前學過的圖形嗎?
X:不像。
S:不像沒關(guān)系,咱們繼續(xù)分,再分成8份,這次呢?
X:有點像平行四邊形了。
S:繼續(xù)分。(演示到32份)
S:這下更像一個平行四邊形了,但是,這還沒完,咱們來回顧一下剛才我們的拼圖過程。(單擊課件)
S:咱們從圓開始,先是4份,它完全是一個不規(guī)則的四不像,再分成8份,還是不像,然后依次16份,32份,還可以繼續(xù)往下分的份數(shù)越來越多。。。。。最后,它會無限地接近一個什么形狀呢? X:平行四邊形。
X:長方形。
S:到底是長方形還是平行四邊形。
S:啟發(fā):平行四邊形和長方形的區(qū)別在哪里?平行四邊形的這兩條邊是斜的,而長方形是豎的。大家從這個4份的圖開始看可以觀察到,這條邊的傾斜度越來越小,最后它就會變得無限接近于90度的豎線,而這個圖形也會近似的什么圖形?
X:長方形。
。ò鍟洪L方形)
S:它不是真正的長方形,而是一個無限接近于長方形的近似長方形。 正如課本68頁最上面的這句話。
3. 電子課本P68
S:如果分的。。。。。。長方形。同時我們的小精靈又給我們提出了一個問題:拼成的。。。。。關(guān)系?
S:請大家注意看我的課件演示。(講解)
板書:長方形的面積= 長 *寬 圓的面積=圓周長的一半 * 半徑 =C*r 2
=2π
2r*r
=πr*r
2 =πr
2即 S=πr
S:從這條公式我們可以看出,要想求出圓的面積,只要知道什么就可以了?
X:半徑。
S:同學真聰明。好的,現(xiàn)在我們已經(jīng)掌握了圓面積的計算公式了,要不要試一試這條公式好不好用?
S:來看一下咱們這節(jié)課剛開始看到的這個圓形花壇,原來它的直徑有20m,要想求出它的面積,先要求出什么來?
X:半徑。
學生先做題,再用課件演示答案。
三. 拓展練習。
1. 回答(盡量不要動筆)。
2. 計算(78.5 m2)
S= πr2
2 = 3.14×5
。 3.14×5×5
。3.14×25
=78.5 (m2)
四. 回顧總結(jié)。
誰愿意和大家分享你的學習成果?(學生自己總結(jié))
老師補充:1.化圓為方。
2. S= πr2
3.計算圓面積的必要條件是什么(半徑)
板書:
1. 化圓為方。
圓的面積教案9
第一單元圓的周長和面積
一.本單元的基礎(chǔ)知識
本單元是在學習了常見的幾種簡單的幾何圖形如三角形、長方形、正方形、平行四邊形、梯形以及圓和球形的初步認識的基礎(chǔ)上進行教學的。
二.本單元的教學內(nèi)容
P2~22.本單元教材內(nèi)容包括圓的認識、圓的周長、圓的'面積,扇形和扇形統(tǒng)計圖,對稱圖形。
三.本單元的教學目標
1.認識圓,掌握圓的特征,知道是軸對稱圖形,會用工具畫圓。
2.理解直徑與半徑的相互關(guān)系,理解圓周率的意義,掌握圓周率的近似值。3.理解和掌握求圓的周長與面積。
四.本單元重難點和關(guān)鍵
1.教學重點:求圓的周長與面積。
2.教學難點:對圓周率“π”的真正理解;圓面積計算公式的推導以及畫具有定半徑或直徑的圓。
3.教學關(guān)鍵:能真正理解圓周率的意義;在理解的基礎(chǔ)上熟記一些主要的計算公式。
五.本單元的教學課時
13課時
圓的面積教案10
教學目標
1、使學生理解圓的面積的含義.經(jīng)歷體驗圓的面積公式的推導過程,理解和掌握圓的面積公式.
2、使學生能夠正確地計算圓的面積,培養(yǎng)學生解決簡單的實際問題的能力,滲透類比、極限的思想。
3、通過圓的面積公式推導過程,培養(yǎng)學生的合作精神和創(chuàng)新意識,培養(yǎng)觀察、猜想、驗證的實驗方法與態(tài)度。
教學重點
圓面積的公式推導的過程。
教學難點
理解圓經(jīng)過無數(shù)等分剪拼后可以拼成一個近似的長方形。并且發(fā)現(xiàn)拼成的長方形的長相當于圓周長的一半。
教具、學具準備
有關(guān)圓面積的課件,彩色圓形紙片(每小組1個),剪刀(每組2把).學生每人準備一個圓形物品。
教學過程
一、創(chuàng)設(shè)情境,提出問題
【課件演示】花園里新建了一個圓形花壇,為了讓花壇更漂亮,管理員叔叔打算給花壇鋪上草坪,需要多少平方米的.草坪呢?這實際上是要解決什么數(shù)學問題?
揭示課題:圓的面積
二、充分感知,理解圓的面積的意義。
提問:什么叫圓的面積呢?請大家拿出準備好的圓形紙片,用你喜歡的方式感受一下圓的面積,告訴大家圓的面積指的是什么?
課件顯示:圓所占平面的大小叫做圓的面積。
你認為圓面積的大小和什么有關(guān)?
三、自主探究,合作交流。
1、引導轉(zhuǎn)化:
回憶學過的一些平面圖形的面積的推導過程,這些圖形面積公式的推導過程有什么共同點?那么能不能把圓也轉(zhuǎn)化成學過的平面圖形來推導面積計算公式?
2、動手嘗試探索。
(1)分小組動手操作,剪一剪,拼一拼,看能拼成什么圖形?
(2)展示交流并介紹:你拼成了什么圖形?在拼的過程中你發(fā)現(xiàn)了什么?
如果我們再繼續(xù)等分下去,拼成的圖形會怎么樣?
小結(jié):隨著等分的份數(shù)無限增加,可以把圓剪拼成一個近似的長方形。
你能否根據(jù)圓與剪拼成的長方形之間的關(guān)系想出圓的面積公式?
3、學生合作探究,推導公式
圓的面積教案11
教材分析
圓的面積是六年級上冊的內(nèi)容,本單元是在學生掌握了直線圖形的周長和面積,并且對圓已有初步認識的基礎(chǔ)上進行學習的。從認識圓入手,到圓的周長和面積,與直線圖形的學習順序是一致的。但是,學習圓是從學習直線圖形到學習曲線圖形,無論是內(nèi)容本身,還是研究問題的方法都有所變化。學生初步認識研究曲線圖形的基本方法——“化曲為直”、“化圓為方”,同時也滲透了曲線圖形與直線圖形的內(nèi)在聯(lián)系,感受極限思想。在本單元中,本節(jié)內(nèi)容安排在“認識圓,圓的周長”之后,這樣可以讓學生借鑒在學習圓周長時的經(jīng)驗來研究圓的面積;有利于讓學生感悟?qū)W習平面圖形的規(guī)律和方法。學習本節(jié)內(nèi)容后,為后面學習扇形統(tǒng)計圖、以及圓柱、圓錐打下基礎(chǔ);同時,圓在現(xiàn)實生活中的應(yīng)用也非常廣泛,能夠運用所學知識解決實際問題。
學情分析
學生對圓的特征,多邊形面積的計算已基本掌握,但對于像圓這樣的曲線圖形的面積,學生是第一次接觸,如何把圓轉(zhuǎn)化成直線圖形具有一定的'難度。學生對探究學習并不陌生,但在探究學習過程中,往往是盲目探究,因此,組織學習素材,讓學生形成合理猜想,進行有方向的探究也是教學中關(guān)注的問題。基于以上的思考,特制定以下教學目標:
教學目標
1、正確理解圓的面積的含義;理解和掌握圓的面積公式,會運用公式正確計算圓的面積。
2、經(jīng)歷圓的面積公式的推導過程,體驗實驗操作,邏輯推理的學習方法。
3、滲透轉(zhuǎn)化的數(shù)學思想和極限思想。體驗發(fā)現(xiàn)新知識的快樂,增強學生的合作交流意識和能力,培養(yǎng)學生學習數(shù)學的興趣。
教學重點和難點
教學重點:運用公式正確計算圓的面積。
教學難點:圓面積計算公式的推導過程。
圓的面積教案12
第六課時:
組合圖形的面積計算
教學目標:
1.讓學生結(jié)合具體的情境認識環(huán)形的特征,掌握計算環(huán)形的面積的方法,并能準確計算一些簡單組合圖形的面積。
2.通過自主探究與小組合作,進一步應(yīng)用圓的周長公式和面積公式解決一些和生活相關(guān)的實際問題。
3.使學生進一步體驗圖形和生活的聯(lián)系,感受平面圖形的學習價值,提高數(shù)學學習的興趣和學好數(shù)學的信心。
教學重點:
掌握計算環(huán)形面積的方法,并能準確計算一些簡單組合圖形的面積。
教學難點:
應(yīng)用圓的周長公式和面積公式解決一些和生活相關(guān)的實際問題。
教學準備:
圓規(guī),環(huán)形圖片,教學情境圖。
一、創(chuàng)設(shè)情境,引入新知
1.出示自然界中的一些環(huán)形圖片。
(l)觀察圖片,說說這些圖形都是由什么組成的。
(2)你能舉出一些環(huán)形的實例嗎?
2.引入:今天這節(jié)課我們就一起來研究環(huán)形面積的計算方法。
二、合作交流,探究新知
1.教學例11。
。1)出示例11題目,讀題。
(2)提問:這是由兩個同心圓組合成的圓環(huán),要計算它的面積,你有什么好的方法?獨立思考。
。3)小組討論,理清解題思路。
。4)集體交流
、偾蟪鐾鈭A的面積。
、谇蟪鰞(nèi)圓的面積。
、塾嬎銏A環(huán)的面積。
。5)學生按步驟獨立計算。
。6)組織交流解題方法,教師板書
①求出外圓的面積:3.14×102 =314(平方厘米)
、谇蟪鰞(nèi)圓的面積:3.14×62 =113.04(平方厘米)
、塾嬎銏A環(huán)的面積:314-113.04=200.96(平方厘米)
。7)提問:有更簡便的計算方法嗎?
。8)學生回答后,小結(jié):求圓環(huán)的面積一般是把外圓的面積減去內(nèi)圓的面積
還可以利用乘法分配率進行簡便計并。
簡便計算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:這個鐵片的面積是200.96平方厘米。
2.概括歸納:如果用R表示大圓的半徑,用r表示小圓的半徑,你能根據(jù)上面的計算過程推導出環(huán)形面積的計算公式嗎?
<<<12>>>
學生回答后,教師板書
或
3.完成“試一試”。
。1)出示題目和圖形,學生讀題。
。2)提問:這個組合圖形是由哪些基本圖形組合而成的?
。3)半圓和正方形有什么相關(guān)聯(lián)的地方?
學生交流后,明確:正方形的邊長就是半圓的.直徑。
。4)思考一下,半圓的面積該怎樣計算?
(5)學生獨立計算。
(6)交流解題方法,注意提醒學生半圓的面積必須把整圓的面積除以2 0
4.小結(jié):圓、半圓和其他基本的平面圖形組合在一起,產(chǎn)生了許多美麗的組合圖形。在計算組合圖形面積的時候,大家要看清,整個圖形是由哪些基本的圖形組合而成的,再進行計算。
三、鞏固練習,加深理解
1.完成“練一練”。
。╨)看圖,弄清題意。
。2)提問:求涂色部分的面積,需要計算哪些基本圖形的面積?
(3)第一個圖形中,兩個基本圖形有什么聯(lián)系?第二個圖形呢?
明確:左圖中長方形的寬與圓的半徑相等,右圖中半圓的直徑是三角形的高。
。4)學生獨立計算。
。5)集體交流。
2.完成練習十五第9題。
。1)學生先量出相關(guān)數(shù)據(jù)。
。2)根據(jù)數(shù)據(jù)獨立完成計算。
(3)集體交流。
3.完成練習十五第13題。
(1)估計每種花卉所占圓形面積的幾分之幾。
。2)計算每種花卉的種植面積。
(3)集體交流。
4.完成練習十五第14題。
(1)學生根據(jù)圖形做出直觀的判斷,并說說直觀判斷的方法。
。2)通過計算檢驗所做出的判斷。
5.完成練習十五第15題。
。1)學生讀題,觀察示意圖。
(2)提問:要求小路的面積實際就是求什么?求圓環(huán)的面積,必須知道什么
條件?題目中告訴了我們哪些條件?還有什么條件是要我們求的?
。3)學生獨立計算。
。4)集體交流。
6.思考題。
(1)學生充分思考后再列式計算。
。2)組織交流。
四、課堂小結(jié)
師:這節(jié)課學習了什么內(nèi)容?你有什么啟發(fā)?
先由學生自主發(fā)言,然后教師補充完善。
板書設(shè)計:
、偾蟪鐾鈭A的面積:3.14×102 =314(平方厘米)
、谇蟪鰞(nèi)圓的面積:3.14×62 =113.04(平方厘米)
、塾嬎銏A環(huán)的面積:314-113.04=200.96(平方厘米)
簡便計算
3.14×102-3.14×62
=3.14×(102-62)
=3.14×64
= 200.96(平方厘米)
答:這個鐵片的面積是200.96平方厘米。
圓的面積教案13
教學內(nèi)容:課本第94、95頁例3 、例4。
教學目的:
1、理解圓面積計算公式的推導過程,掌握圓面積的計算公式;
2、能正確地應(yīng)用圓面積的計算公式進行圓面積的計算并能解答有關(guān)圓面積的實際問題。
3、培養(yǎng)學生動手操作能力和邏輯推理能力。
教學重點:圓面積計算公式。
教學難點:圓面積計算公式的推導。
教具、學具:圓的面積演示教具,課件,每人兩個大小相等的圓,分別平均分為16等份、32等份。
教學過程:
一、復習。
1.圓的有關(guān)概念
2.什么叫長方形的面積?
3.說出平行四邊形的面積公式是怎樣推導出來的?
我們已經(jīng)學會的圓周長的有關(guān)計算,這節(jié)課我們要學習圓的面積的有關(guān)知識。(板書課題:圓的面積)
二、新授。
1.圓的面積的含義。
問:面積所指的是什么?(物體的表面或圍成的平面圖形的大小,叫做它們的面積。)
以前學過長方形面積的含義是指長方形所圍成平面的大小。那么,圓的面積的是指什么?(圓所圍成平面的大小,叫做圓的面積。)
2.圓的面積公式的推導。
怎樣求圓的面積呢?如果用面積單位直接去度量顯然是行不通的。但我們可以仿照求平行四邊形面積的方法——也就是割補法,把圓的圖形轉(zhuǎn)化為已學過的圖形——長方形。怎樣分割呢?教師拿出圓的面積教具進行演示:
先把一個圓平均分成二份,再把每一個等份分成八等份,一共16份,每份是一個近似等腰三角形,并寫上號數(shù),然后把這16份拼成一個近似的平行四邊形。(學生試操作,把學具圓拼成一個平行四邊形。)
再把第1份平均分成2份,拿出其中的1份(即原來的半份)移到平行四邊形的右邊,這樣就拼成一個近似長方形。
向?qū)W生說明:如果分的等份越多所拼的`圖形就越接近長方形。
教師邊提問邊完成圓面積公式的推導:
、倨闯傻膱D形近似于什么圖形?
②原來圓的面積與這個長方形的面積是否相等?
③長方形的長相當于圓的哪部分的長?
、荛L方形的寬是圓的哪部分?
長方形的面積=長*寬
圓的面積=c÷2*r
=2∏r÷*r
=∏r*r
=∏r2
用S表示圓的面積,那么圓的面積可以寫成:S=∏r2
3.圓面積公式的應(yīng)用。
出示例1:一個圓的半徑是10厘米。它的面積是多少平方厘米?
學生讀題,問:要求圓的面積的條件是否具備?怎樣列式?學生回答,教師板書:
=3.14*102
=3.14*100
=314(平方厘米)
答:它的面積是314平方厘米。
例題2:一個圓的直徑是40米,它的面積是多少平方米?
40÷2=20(米)
3.14*202
=3.14 *400
= 1256(平方米)
答:這個圓的面積是1256平方米。
三、鞏固練習。
1.半徑2分米,求圓的面積。
2、圓的周長是6.28分米,圓的面積是多少平方分米?(先提問:題目只告訴圓的周長,你能求出圓的面積嗎?怎樣算?)
3、繩長10米,問小狗的活動面積有多大?
四.發(fā)散思維:如下圖:S正方形=3平方厘米,S圓=?
總結(jié):通過這節(jié)課學習理解圓面積計算公式的推導,掌握了圓面積計算公式,并知道要求圓的面積必須知道半徑,如果題目只告訴直徑也就先求出半徑再按公式S=∏r2計算。
五、作業(yè)。
六、課后反思:
圓的面積教案14
教材分析
1、《圓的面積》是人教版小學數(shù)學六年級上冊第五單元中的一節(jié)課,本節(jié)內(nèi)容包括教材67-71頁例1、例2及69頁“做一做”。
2、本節(jié)課是在學習了圓的周長以后進行教學的,為后面學習求陰影部分面積做了鋪墊。
學情分析
小學六年級學生在學習空間圖形方面,已經(jīng)具有一定的想象能力,并有了一定程度的計算能力,在學習方法上也有了一定的積淀,同時他們也具備一定的邏輯思維、抽象推理能力,他們能夠自主、合作、探究地進行學習,對學習數(shù)學的興趣濃厚。但是作為十來歲的學生,他們對事物的認識是十分有限的.,加上他們的個人表現(xiàn)欲望十分強烈,自我控制能力差等因素的影響。因此 在教學時我憑借課件 結(jié)合學生的實際情況, 聯(lián)系學生已有的知識點 設(shè)計教學環(huán)節(jié)確定教學方法, 確立教學重點、難點和目標 減少盲目性 注意培養(yǎng)學生的動手動腦能力,讓學生通過動手把圓等分成16等份和32等份,學會用轉(zhuǎn)化的思想找到圓的面積計算公式,讓學生在動腦動手中掌握知識。
教學目標
一、知識與技能
1、學生通過觀察、操作、分析和討論,推導出圓的面積公式。
2、能夠利用公式進行簡單的面積計算。
3、培養(yǎng)學生空間概念和邏輯思維能力。
二、過程與方法
經(jīng)歷從未知轉(zhuǎn)化已知過程,體驗自主探究,合作交流的方法。
三、情感態(tài)度與價值觀
滲透轉(zhuǎn)化思想,初步了解極限思想,培養(yǎng)學生的觀察能力和動手操作能力。
教學重點和難點
重點:正確計算圓的面積。
難點:圓的面積公式推導過程。
圓的面積教案15
教學目標:
1、通過操作,引導學生推導出圓面積的計算公式,并能運用公式解答一些簡單的實際問題。
2、激發(fā)學生參與整個課堂教學活動的學習興趣,培養(yǎng)學生的分析、觀察和概括能力,發(fā)展學生的空間觀念。
3、滲透轉(zhuǎn)化的數(shù)學思想和極限思想。
教學重點:
正確計算圓的面積。
教學難點:
圓面積公式的推導。
教具準備:
多媒體課件二套,圓片。
一、情景導入
1、師:(出示圖)草地上長滿了青草,一只羊被栓在草地的木樁上,請問:它能吃光全部青草嗎?它最多能吃到哪個范圍內(nèi)的青草?請大家畫出這只羊活動范圍的示意圖,兩位同學到黑板上畫。(一位畫的是周長,另一位畫的是面積。)(動畫演示)
師:這個范圍的大小指圓的周長還是面積?為什么?誰畫的正確,(圓的面積)。
。ò鍟簣A的面積)
2、師:什么是圓的面積?先說,再看書,學生讀,(教師用課件演示)
師:看到這個課題后,你們會想到什么?這堂課要解決什么問題呀?
生:這堂課我們要學習圓的面積是怎樣求出來的。
生:學生圓的面積公式。
師:你們知道圓的面積公式后,你們還想到什么問題?
生:圓的面積公式根據(jù)什么推導出來的。
師:對!剛才這幾位同學跟老師想的一樣。這堂課我們要解決兩個問題。
。ㄍㄟ^創(chuàng)設(shè)情景,激發(fā)學生的學習興趣,形成良好的'學習動機。通過學生提出問題,明確學習目標。)
二、動手操作,探索新知
1、猜測(每項用課件出示)
師:我們先用一個簡單辦法,猜想一下圓面積的公式。把一個圓4等分,用半徑作邊長畫一個正方形。這個正方形的面積可用r2表示。在這個圓上可以畫同樣的4個正方形,它們的面積可以用4 r2表示,你們觀察一下這個圓的面積等不等于4 r2?
生:不等。
師:為什么?
生:因為,這個圓面積還要加上外面的4小塊,才是4 r2 。
師:這個圓的面積比4 r2小,我們再在圓內(nèi)畫一個最大的正方形,這個正方形的面積怎么求出來?
生:這個正方形是由四個同樣大小的三角形組成,每個面積1/2r2,總面積2r2。
師:圓的面積和正方形比較誰的面積大?
生:圓的面積大
師:可以觀察出圓的面積范圍在2r2-4r2
。ㄟ@里讓學生了解解決問題時要善于觀察、敢于猜想。滲透無限等數(shù)學思想,)
2、回憶舊知,
師:圓能不能直接用面積單位支量呢?為什么?
生:因為圓是由曲線圍成的,用面積單位直接量是有困難的。
師:該怎么辦呢?(教室沉默)
師:請同學們看屏幕,(師播放課件)邊看邊回憶:以前我們研究過平行四邊形、三角形和梯形面積的求法,那時我們是怎樣處理的?(用投影機放出幾種圖形的轉(zhuǎn)化圖解,邊出示,邊討論)
師:這些圖形面積公式的推導方法對我們研究圓的面積有什么啟示呢?
生:我們可以用圖形轉(zhuǎn)化的方法,求圓的面積。(把未知的轉(zhuǎn)化為已知的)
師:這個辦法很好。那么把圓形轉(zhuǎn)化成什么圖形呢?
[評:啟發(fā)學生運用轉(zhuǎn)化的數(shù)學思想解決問題。這種設(shè)計既復習了舊知識,又為學生新知識作好鋪墊,能夠促進學生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結(jié)構(gòu)。]
3、動手操作
。1)師:請同學們動手剪拼一下,看到底能拼成什么圖形。(學生動手操作。)
師:誰能向大家匯報一下,你把圓拼成了什么圖形?(生答:拼成了。請把你拼好的圖形放在實物投影上展示給大家看。一個同學用8等份的圓片擺成近似平行四邊形,一個用不著16等份的圓片擺成近似長方形)
。2)師::請看大屏幕,16等份的和8等份誰拼成更接近長方形?
生:16等份拼成的圖形就會越接近于長方形。如果分的份數(shù)越多,每一份就會越細,)
師:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長邊就越接近直線,這個圖形就越接近于長方形。課件演示
。3)看拼成的長方形與圓有什么聯(lián)系?你能根據(jù)長方形的面積計算公式推導出圓的面積計算公式嗎?小組討論一下。(教師要求學生觀察自己在課桌上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)
學生匯報討論結(jié)果。生答師繼續(xù)演示課件。
生答:能,因為拼成的長方形的面積與圓的面積相等,長方形的長相當于圓周長的一半,寬相當于半徑。
因為長方形的面積=長寬
所以圓的面積=周長的一半半徑
S=r
S=r2
師:結(jié)合公式S=r2,說說圓的面積是怎樣推導出來的?
。4)師:這個面積公式是不是正確,我們可以通過其它圖形來驗證一下。有的同學把圓拼成了三角形我們用三角形來驗證一下,你能根據(jù)三角形計算公式推導圓的面積計算公式嗎?(課件演示)
生答:三角形的底相當于圓周長的,高相當于圓半徑的4倍。
因為三角形的面積=底高2
所以圓的面積=周長的半徑的4倍
S=4r2
S=r2
師:我們用三角形也推出了圓的面積公式S=r2 。同學們還有其它圖形來驗證嗎?
。5)生:我們把圓轉(zhuǎn)化成梯形來驗證。(課件演示)
生:梯形的上底與下底的和相當于圓周長的一半,高相當于半徑的2倍。
因為梯形的面積=(上底+下底)高2
所以圓的面積=周長的一半半徑的2倍
S=2r2
S=r2用梯形的面積
3、小結(jié):剛才你們把圓轉(zhuǎn)化成為哪些圖形,分別推導出圓的面積計算公式?(S=r2)
我們根據(jù)拼成的近似平行四邊形、長方形、三角形、梯形都推導出了同樣的公式:S圓=r2。
唉!我們剛才猜的圓面積是多少?你們真了不起!與r2很接近!
圓的面積必需要具備哪些條件?
[評:打破了過去教師演示教具學生看的框框,而是要求每個學生動手操作,并滲透轉(zhuǎn)化、無限等數(shù)學思想,讓學生自己從嘗試中推導圓面積的公式。]
(三)課后鞏固
1、現(xiàn)在你可以求出小羊大約最多能吃到多少面積的青草嗎?為什么?請你給它補個條件。
(照應(yīng)了開頭,又學練習了面積的計算。)
2、根據(jù)下面條件求出圓的面積
r =5分米d =3米
3同學們怎么計算樹的橫截面的面積,是不是一定把樹木鋸斷?(同學們討論答出測出周長后師再出題)樹的周長是非曲直18.84平方米,求樹的橫截面的面積?
(用學到的知識來解決生活中的問題,培養(yǎng)學生的應(yīng)用能力)
(四)師:這堂課大家學到了什么?有什么收獲?
。▽W生熱烈發(fā)言,最后教師總結(jié),解答了課一開始提出的兩個問題。)
[評:課堂小結(jié)時間雖短,但能使學生認識升華一步,同時做到前后呼應(yīng),使整堂課結(jié)構(gòu)嚴謹,層次清楚。這堂課最大的特點,是能充分調(diào)動學生的主動性和積極性,學生既學得生動活潑,又能充分發(fā)展思維。]
【圓的面積教案】相關(guān)文章:
《圓的面積》教案10-06
圓的面積教案11-17
《圓的面積》教案09-01
圓的面積教案優(yōu)秀07-27
人教版圓的面積教案02-19
【熱】圓的面積教案05-22
圓的面積教案【精品】12-13
圓的面積教案15篇02-19
圓的面積教案(精選13篇)08-01
圓的面積教案精選15篇08-15