當前位置:育文網(wǎng)>教學文檔>教案> 長方體和正方體的體積教案

長方體和正方體的體積教案

時間:2024-05-10 22:49:33 教案 我要投稿

長方體和正方體的體積教案15篇

  作為一名教學工作者,通常需要準備好一份教案,教案是教學藍圖,可以有效提高教學效率。如何把教案做到重點突出呢?以下是小編整理的長方體和正方體的體積教案,歡迎大家分享。

長方體和正方體的體積教案15篇

長方體和正方體的體積教案1

  教學目標

  1.1知識與技能:

  使學生學會計算長方體和正方體的體積,并能利用公式正確進行計算。

  1.2過程與方法:

  在公式的推導過程中培養(yǎng)學生的觀察能力、空間想象能力、提出問題的意識及解決實際問題的能力。

  1.3情感態(tài)度與價值觀:

  使學生體會數(shù)學來源于生活,且服務(wù)于生活,產(chǎn)生熱愛數(shù)學的思想感情。

  教學重難點

  2.1教學重點:

  2掌握長、正方體體積的計算方法,解決實際問題。

  2.2教學難點:

  長、正方體體積公式的推導過程

  教學工具

  教學課件、一個長方體拼制模型(長4厘米、寬3厘米、高2厘米)每組24個邊長1立方厘米的小木塊

  教學過程

  一、復習引入

  1、下列長方體的長、寬、高各是多少:

  長:8厘米長:6分米長:8厘米長:12米

  寬:4厘米寬:2.5分米寬:4厘米寬:10米

  高:5厘米高:10分米高:4厘米高:1.5米

  2、下列圖形是用1立方厘米的正方體搭成的。它們的體積各是多少立方厘米?

  3、怎樣知道這個長方體的體積是多少呢?

  今天我們就一起來學習長方體和正方體的體積。(板書:長方體和正方體的體積)

  二、新知探究

  1、長方體的體積。

  (1)活動一:

  師:鄭老師在每個4人小組都放了12個1平方厘米的小正方體和一張學習單,下面我們將以四人小組的形式進行探究。首先請看活動要求(課件出示):

  A、四人小組合作用12個小正方體擺形狀不同的`長方體;

  B、每擺出一種請在學習單上做好記錄,然后再擺下一種;

  C、擺完后想想你發(fā)現(xiàn)了什么,在四人小組內(nèi)交流;

  D、每組選出一位代表進行匯報。

  生小組合作動手操作反饋,學生匯報,生每匯報出一種情況,師在黑板上的表格中板書:

  師:觀察表格,你發(fā)現(xiàn)了什么?

  引導學生得出:只要用每行的個數(shù)乘以行數(shù),得到一層所含的體積單位數(shù),再乘以層數(shù),就能得到這個長方體所含的體積單位數(shù)。

  板書:體積=每行個數(shù)×行數(shù)×層數(shù)

  師:剛才同學們用12個小正方體擺出的長方體體積都是12平方厘米的,鄭老師剛才也擺了兩個,不過體積比你們大多了,但是要看懂鄭老師的長方體必須發(fā)揮一下你們的空間想象能力。(課件出示)

  你知道這兩個長方體的體積嗎?你是怎么知道的?(生說,師填表)

  (2)活動二:

  師:四人小組合作,你們能擺出一個體積更大的長方體嗎?

  預設(shè):長5厘米,寬5厘米,高4厘米。

  師:你發(fā)現(xiàn)了什么?每排個數(shù)、排數(shù)、層數(shù)相當于長方體的什么?

  生:長寬高,因為每一個小正方體的棱長是1厘米,所以,每行擺幾個小正方體,長正好是幾厘米;擺幾行,寬正好是幾厘米;擺幾層,高也正好是幾厘米。

  2、下面的長方體,看它包含有多少個體積單位?并指出它的長、寬、高各是多少。

  (2)觀察上面?zhèn)部分之間的關(guān)系,可以得出:

  第一個:5=5×1×1

  第二個:15=5×3×1

  第三個:12=3×2×2

  通過上面的關(guān)系式,可以得出:長方體的體積=長×寬×高

  如果用字母V表示長方體的體積,用a、b、c分別表示長方體的長、寬、高,那么長方體的體積計算公式可以寫成:V=a×b×c。

  根據(jù)長方體和正方體的關(guān)系,你能想出正方體的體積怎樣計算嗎?

  3、正方體的體積。

  因為正方體的性質(zhì),所有的棱長都相等,所以,正方體的體積=棱長×棱長×棱長

  如果用字母V表示正方體的體積,用a表示正方體的棱長,那么正方體的體積計算公式可以寫成:V=a·a·a。

  a·a·a也可以寫作a ?,讀作“a的立方”,表示3個a相乘。

  正方體的體積計算公式一般寫成V=a3。

  三、鞏固提升

  1、計算下面圖形的體積。

  V=abh=7×3×3=63(cm?)

  V=a3=4×4×4=64(cm)

  2、求下列長方體的體積。

  8×4×5=160(cm3) 6×2.5×10=15(dm3) 8×4×4=128 (cm3) 1.5×10×12=180(m3)

  3、雄偉的人民英雄紀念碑矗立在天安門廣場上,石碑的高是14.7米,寬是2.9米,厚1米。這塊巨大的花崗巖石碑的體積是多少立方米?

  解:V=abh

  =2.9×1×14.7

  =42.63(m?)

  答:這塊石碑的體積是42.63立方米。

  4、判斷正誤并說明理由。

  (1)0.23=0.2×0.2×0.2。( √ )

  (2)5X3=10X。( × )

  (3)一個正方體棱長4分米,它的體積是:43=12(立方分米)。( × )

  ( 4 )一個長方體,長5分米,寬4分米,高3厘米,它的體積是60分米。( × )

  5、一個長方體的體積是48立方分米,長8分米、寬4分米,它的高是多少分米?

  48÷8÷4=1.5(分米)

  答:它的高是1.5分米。

  6、一個長方體的棱長總和是96厘米。它的長10厘米,寬8厘米,它的體積是多少立方厘米?

  96÷4=24(厘米) 24-10-8=6(厘米)

  10×8×6=480(立方厘米)

  答:它的體積是480立方厘米。

  7、一個無蓋的長方體魚缸,長8分米,寬6分米,高7分米,制作這個魚缸共需玻璃多少平方分米?這個魚缸的體積是多少?

  (8×6)+(8×7+6×7)×2=244(平方分米)

  8×6×7=336(立方分米)

  答:制作這個魚缸共需玻璃244平方分米。這個魚缸的體積是336立方分米。

  課后小結(jié)

  這節(jié)課我們學習了什么?

  我們學習了長方體和正方體體積的計算公式。

  長方體的體積=長×寬×高,V=a×b×h

  正方體的體積=棱長×棱長×棱長,V=a×a×a=a3

  板書

  長方體和正方體的體積

  長方體的體積=長×寬×高

  V=a×b×h

  正方體的體積=棱長×棱長×棱長

  V=a×a×a=a3

長方體和正方體的體積教案2

  一、能激發(fā)學生探索的欲望

  首先,我讓學生求由體積是1立方厘米拼成的長方體的體積,通過練習,使學生感知:體積是由若干體積單位組成的。接著,提出問題:是不是我們都可以用擺小方塊的方法來求一個物體的體積呢?從實際情況考慮,讓學生體會到,要求一個物體的體積,必須有一個新的方法才能解決,從而引導出探討長方體和正方體的體積計算,激發(fā)他們探索長方體體積的欲望。

  二、重視引導學生經(jīng)歷知識的探究過程。

  教學時,讓學生用若干個1立方厘米的小正方體(學生自制的),擺放出不同的長方體,并把長、寬、高的.數(shù)據(jù)填入表格中,啟發(fā)學生思考,根據(jù)記錄的長、寬、高,擺這個長方體時,一行要擺幾個小正方體(即表示長方體的長),擺幾排(即表示長方體的寬)擺幾層(即表示長方體的高)。再引導學生進一步思考,這個長方體所含小正方體的個數(shù),與它的長、寬、高有什么關(guān)系。通過學生自己比較、發(fā)現(xiàn)長方體體積的計算公式,并用字母表示。在探索長方體體積公式的活動中,發(fā)展學生的空間觀念,加強實際操作。通過實際觀察、拼擺等活動,學生清楚地理解長方體體積計算公式的來源,并能夠根據(jù)所給的已知條件正確地計算有關(guān)圖形的體積。學生的動手能力也得到了提高。

  三、不足之處

  1、時間安排不夠合理,探究長方體的體積公式時,花了較多的時間。

  2、在本節(jié)課的學生匯報環(huán)節(jié)當中,學生在匯報時語言表述有些不清楚。

長方體和正方體的體積教案3

  教學目標

  1.理解并掌握長方體和正方體體積的計算方法.

  2.能運用長、正方體的體積計算解決一些簡單的實際問題.

  3.培養(yǎng)學生歸納推理,抽象概括的能力.

  教學重點

  長方體和正方體體積的計算方法.

  教學難點

  長方體和正方體體積公式的推導.

  教學用具

  教具:1立方厘米的立方體24塊,1立方分米的立方體1塊.

  學具:1立方厘米的立方體20塊.

  教學過程

  一、復習準備.

  1.提問:什么是體積?

  2.請每位同學拿出4個1立方厘米的立方體,把它們拼在一起,擺成一排.

  教師提問:拼成了一個什么形體?(長方體)

  這個長方體的體積是多少?(4立方厘米)

  你是怎樣知道的?(因為這個長方體由4個1厘米3的正方體拼成)

  如果再拼上一個1立方厘米的正方體呢?(5立方厘米)

  談話引入:要計量一個物體的體積,就要看這個物體含有多少個體積單位.今天我們

  來學習怎樣計算長方體和正方體的體積.

  板書課題:長方體和正方體的體積

  二、學習新課.

 。ㄒ唬╅L方體的體積

  1.拼擺長方體:請同學們四人為一組,用12個小正方體來拼擺長方體,并分別記下擺

  出的長方體的長、寬、高.

  2.學生匯報,教師板書:

  教師提問:這些長方體有什么共同點?(體積相等)

  不同點?(數(shù)據(jù)不同)

  為什么形狀不同而體積相等呢?(因為它們都含有同樣多的體積單位——

  12個1立方厘米)

  教師引導:請觀察自己擺出的長方體長、寬、高的數(shù),除了表示出長方體的長、寬、高的長度外,還表示什么?

  師生共同歸納:表示長的數(shù),如4,除了表示4厘米長外,還表示出一排擺了4個1

  立方厘米的正方體.同樣的道理,表示寬的數(shù)還表示擺了幾排,表示高的數(shù)還表示有幾層.

  3.

  第一組:請同學們擺出一個長4厘米,寬3厘米,高2厘米的長方體,說出它的體積.

  一排擺出4個1立方厘米的正方體→一共擺了三排→擺兩層

  第二組:同上要求擺出長3厘米,寬3厘米,高2厘米的長方體.

  一排擺出3個1立方厘米的正方體→一共擺了3排→擺2層

  第三組:想象一個長5厘米,寬4厘米,高3厘米的長方體,說出體積.

  一排擺出5個1立方厘米的正方體→一共擺了4排→擺2層

  思考:請觀察這些從實際操作中得出的數(shù)據(jù),結(jié)合拼擺成的圖形,看一看這些數(shù)據(jù)與長

  方體的體積有沒有關(guān)系?是什么關(guān)系?

 。ㄩL方體的體積正好等于它的'長、寬、高的乘積)

  教師板書:長方體的體積=長×寬×高

  教師:用V表示體積,a表示長,b表示寬,h表示高,公式可以寫成:

  板書: V=abh.

  出示投影圖:

  4.自學例1.

  一個長方體,長7厘米,寬4厘米,高3厘米,它的體積是多少?

  7×4×3=84(立方厘米)

  答:它的體積是84立方厘米.

 。ǘ┱襟w體積.

  1.

  教師提問:此時的長,寬,高各是多少?

  變成了什么圖形?

  這個正方體的體積可以求出來嗎?

  2.練習 棱長為2分米,它的體積是多少平方分米?2×2×2=8(立方分米)

  棱長為4厘米,它的體積是多少平方厘米?4×4×4=64(立方厘米)

  3.歸納正方體體積公式.

  教師板書:正方體體積=棱長×棱長×棱長.

  用V表體積,a表示棱長

  V=a·a·a或者V=

  4.獨立解答例2.

  光明紙盒廠生產(chǎn)一種正方體紙板箱,棱長是5分米,體積是多少立方分米?

 。ǚ置3)

  答:體積是125立方分米.

  (三)討論長方體和正方體的體積計算方法是否相同.

  學生歸納:因為正方體是特殊的長方體.在正方體中長,寬,高都相等,所以公式中

  b,h都變?yōu)閍.變換后,雖然長方體和正方體體積公式寫出來不相同,但計算方法的實質(zhì)是一樣的,都是長×寬×高.

  三、鞏固反饋.

  1.口答填表.

  ① ( ) 2.判斷正誤并說明理由.

 、 ( )

 、垡粋正方體棱長4分米,它的體積是: (立方分米)( )

 、芤粋長方體,長5分米,寬4分米,高3厘米,它的體積是60分米.( )

  四、課堂總結(jié).

  今天這節(jié)課我們學習了新知識?誰來說一說?

  五、課后作業(yè).

  1.一塊磚的長是24厘米,寬是12厘米,厚是6厘米.它的體積是多少平方厘米?

  2.一塊正方體的石料,棱長是7分米,這塊石料的體積是多少立方分米?如果1立方分米石料重2。7千克,這塊石料重多少千克?

  六、板書設(shè)計教學目標

  1.理解并掌握長方體和正方體體積的計算方法.

  2.能運用長、正方體的體積計算解決一些簡單的實際問題.

  3.培養(yǎng)學生歸納推理,抽象概括的能力.

  教學重點

  長方體和正方體體積的計算方法.

  教學難點

  長方體和正方體體積公式的推導.

  教學用具

  教具:1立方厘米的立方體24塊,1立方分米的立方體1塊.

  學具:1立方厘米的立方體20塊.

  教學過程

  一、復習準備.

  1.提問:什么是體積?

  2.請每位同學拿出4個1立方厘米的立方體,把它們拼在一起,擺成一排.

  教師提問:拼成了一個什么形體?(長方體)

  這個長方體的體積是多少?(4立方厘米)

  你是怎樣知道的?(因為這個長方體由4個1厘米3的正方體拼成)

  如果再拼上一個1立方厘米的正方體呢?(5立方厘米)

  談話引入:要計量一個物體的體積,就要看這個物體含有多少個體積單位.今天我們

  來學習怎樣計算長方體和正方體的體積.

  板書課題:長方體和正方體的體積

  二、學習新課.

 。ㄒ唬╅L方體的體積

  1.拼擺長方體:請同學們四人為一組,用12個小正方體來拼擺長方體,并分別記下擺

  出的長方體的長、寬、高.

  2.學生匯報,教師板書:

  教師提問:這些長方體有什么共同點?(體積相等)

  不同點?(數(shù)據(jù)不同)

  為什么形狀不同而體積相等呢?(因為它們都含有同樣多的體積單位——

  12個1立方厘米)

  教師引導:請觀察自己擺出的長方體長、寬、高的數(shù),除了表示出長方體的長、寬、高的長度外,還表示什么?

  師生共同歸納:表示長的數(shù),如4,除了表示4厘米長外,還表示出一排擺了4個1

  立方厘米的正方體.同樣的道理,表示寬的數(shù)還表示擺了幾排,表示高的數(shù)還表示有幾層.

  3.

  第一組:請同學們擺出一個長4厘米,寬3厘米,高2厘米的長方體,說出它的體積.

  一排擺出4個1立方厘米的正方體→一共擺了三排→擺兩層

  第二組:同上要求擺出長3厘米,寬3厘米,高2厘米的長方體.

  一排擺出3個1立方厘米的正方體→一共擺了3排→擺2層

  第三組:想象一個長5厘米,寬4厘米,高3厘米的長方體,說出體積.

  一排擺出5個1立方厘米的正方體→一共擺了4排→擺2層

  思考:請觀察這些從實際操作中得出的數(shù)據(jù),結(jié)合拼擺成的圖形,看一看這些數(shù)據(jù)與長

  方體的體積有沒有關(guān)系?是什么關(guān)系?

 。ㄩL方體的體積正好等于它的長、寬、高的乘積)

  教師板書:長方體的體積=長×寬×高

  教師:用V表示體積,a表示長,b表示寬,h表示高,公式可以寫成:

  板書: V=abh.

  出示投影圖:

  4.自學例1.

  一個長方體,長7厘米,寬4厘米,高3厘米,它的體積是多少?

  7×4×3=84(立方厘米)

  答:它的體積是84立方厘米.

 。ǘ┱襟w體積.

  1.

  教師提問:此時的長,寬,高各是多少?

  變成了什么圖形?

  這個正方體的體積可以求出來嗎?

  2.練習 棱長為2分米,它的體積是多少平方分米?2×2×2=8(立方分米)

  棱長為4厘米,它的體積是多少平方厘米?4×4×4=64(立方厘米)

  3.歸納正方體體積公式.

  教師板書:正方體體積=棱長×棱長×棱長.

  用V表體積,a表示棱長

  V=a·a·a或者V=

  4.獨立解答例2.

  光明紙盒廠生產(chǎn)一種正方體紙板箱,棱長是5分米,體積是多少立方分米?

 。ǚ置3)

  答:體積是125立方分米.

  (三)討論長方體和正方體的體積計算方法是否相同.

  學生歸納:因為正方體是特殊的長方體.在正方體中長,寬,高都相等,所以公式中

  b,h都變?yōu)閍.變換后,雖然長方體和正方體體積公式寫出來不相同,但計算方法的實質(zhì)是一樣的,都是長×寬×高.

  三、鞏固反饋.

  1.口答填表.

 、 2.判斷正誤并說明理由.

  ③一個正方體棱長4分米,它的體積是: (立方分米)

  ④一個長方體,長5分米,寬4分米,高3厘米,它的體積是60分米.

  四、課堂總結(jié).

  今天這節(jié)課我們學習了新知識?誰來說一說?

  五、課后作業(yè).

  1.一塊磚的長是24厘米,寬是12厘米,厚是6厘米.它的體積是多少平方厘米?

  2.一塊正方體的石料,棱長是7分米,這塊石料的體積是多少立方分米?如果1立方分米石料重2。7千克,這塊石料重多少千克?

  六、板書設(shè)計

長方體和正方體的體積教案4

  第三單元

  長方體和正方體體積

  第一課時:

  教學目標:

  1、使同學理解體積的意義,認識常用的體積單位:立方米、立方分米、立方厘米,培養(yǎng)初步的空間觀念。

  2、使同學知道計量一個物體的體積有多大,要看它包括多少個體積單位。

  教學重點:

  1、建立體積概念。

  2、認識體積單位。

  教學難點:

  建立體積概念。

  教學用具:學具袋。

  教學過程:

  一、導入:你們都聽說過烏鴉喝水的故事吧,聰明的烏鴉是怎么喝到水的?這其中有什么道理?

  二、新授:

  1、體積的意義。

  (1)、準備:我們也來做一個實驗,取兩個同樣大小的玻璃杯。先往一個杯子里倒?jié)M水;取一塊鵝卵石放入另一個杯子,再把第一個杯子里的水倒到第二個杯子里,會出現(xiàn)什么情況?為什么?這說明了什么?(鵝卵石占了一定的空間。)

 。2)、每一個物體都占有一定的空間。下面的電視機、影碟機和手機,哪個所占的空間大?

  〔3〕、啟發(fā)同學概括:物體所占空間的大小叫做物體的體積。(板書)

  上面三個物體,哪個體積最大?哪個體積最?

 。4)、比較:用同學手中的文具比。誰的體積大?誰的體積。

  師:教室是一個較大的空間,課桌、講臺、同學、老師等占教室空間的一局部。整個學校是一個大空間,教師、辦公室、操場、花池、領(lǐng)操臺、旗座等都占有一定的空間,既有自身的體積。而整個宇宙是一個大空間,地球只是宇宙空間的一局部,而地球上的山、川、河流、一切建筑物、人等占地球的一局部。

  2、體積單位:

 。1)、講:丈量長度要用長度單位,丈量面積要用面積單位,丈量體積要用體積單位。(板書)

  認識體積單位:

  常用的體積單位有:立方米、立方分米、立方厘米?梢苑謩e寫成

  ( 2)、認識立方厘米:

  出示:棱長是1厘米的正方體,量一量它的棱長是多少?

  說明:它的體積是1立方厘米。

  誰的體積近似的接近1立方厘米?(色子或一個手指尖的體積大約是1立方厘米)

 。3)、認識立方分米: (方法同立方厘米)

  粉筆盒的體積接近于1立方分米。

 。4)、認識立方米:

  ①出示1立方米的棱長的教具。觀察后總結(jié):邊長是1米的正方體的體積是1立方米。

  ②認識1立方米的空間大小。

 。绷⒎矫姿s可以裝滿500個暖瓶。1立方米的木材約可以做課桌50張。

  小結(jié):

  常用的體積單位有哪些?哪個體積單位大?哪個體積單位?

  體積單位的用途是什么?

 。5)、練一練:選擇恰當?shù)?單位:

  橡皮的體積用(

 。疖嚨捏w積用(

 。瑫捏w積用(

 。。

 。6)、比一比:

  到現(xiàn)在為止,我們都了學哪些丈量單位?(板書)

  長度、面積、體積三種單位的區(qū)別:

 。7)、練習:

 、僬f一說:丈量籃球場的大小用(

 。﹩挝弧

  丈量學校旗桿的高度用(

 。﹩挝

  丈量一只木箱的體積要用(

 。﹩挝。

  ②、 一個正方體的棱長是1(

  ),外表積是(

 。w積是(

 。。(你想怎樣填?)

 、、判斷:一只長方體紙箱,外表積是52平方分米,體積是24立方分米,它的外表積大。(

 。

  3、體積初步認識:

 、贈Q定體積大小,是看它含有體積單位的個數(shù)。

  A 、演示:用棱長1厘米的4個正方體,拼一個長方體,說出它的體積是多少?

  B、說出下面物體的體積(3個體積單位,4個體積單位,)

  C 、擺一擺:請你也擺出一個體積是3立方厘米的物體。擺出體積是4立方厘米的物體。

  D、小結(jié):怎樣知道一個長方體的體積是多少?

  同一個體積數(shù),可以擺出不同的形狀。

 、趧邮謹[一擺:

  請大家用手中的小正方體拼一個體積是8 立方厘米的長方體(或正方體)。(想一想你拼的物體體積是多少?)可以怎么擺?

  三、總結(jié):

  這節(jié)課我們學習了體積的意義和體積單位。你有什么收獲?

  四、作業(yè):

  課后小結(jié):

長方體和正方體的體積教案5

  教學目標

  1、進一步掌握體積、容積單位之間的進率,并能比較熟練地進行化聚。

  2、能根據(jù)有關(guān)體積、容積的計算方法,解答實際問題。

  教學重點、難點

  重難點:

  能比較熟練地進行化聚,并能根據(jù)有關(guān)體積、容積的計算方法,解答實際問題。

  教學過程

  一、體積、容積單位之間的化聚、轉(zhuǎn)換練習。

  458立方厘米=()立方分米

  20.6立方分米=()立方米

  7060毫升=()升=()立方分米

  130毫升=()立方厘米=()立方分米

  800升=()立方分米=()立方米

  0.02立方米=()立方分米=()升

  二、解決實際問題的應(yīng)用練習。

  1、一個長方體的汽油桶,底面積是18平方分米,高是5分米。如果1升汽油重0.74千克,這個油桶可以裝汽油多少千克?

  2、一節(jié)貨車車廂,從里面量長13米,寬2.7米,裝的煤高1.2米。如果每立方米煤重1.3噸,這節(jié)車廂里裝了多少噸煤?(得數(shù)保留整數(shù))

  3、在一只底面是邊長60厘米的正方形,高是80厘米的'長方體紙箱內(nèi),裝棱長是2分米的立方體紙盒。這只紙箱最多可裝這樣的紙盒多少個?

  4、一個長方體蓄水池,長9.6米,寬4.2米,深2.5米。這個蓄水池占地多少平方米?它最多可蓄水多少立方米?

  5、一個長方體水箱,從里面量長80厘米,寬40厘米,高60厘米,箱內(nèi)水面離箱口10厘米。箱內(nèi)共有水多少升?如果把這些水倒入另一個底面邊長40厘米的長方體水箱內(nèi),這時水高多少厘米?

 。1)學生獨立完成

  (2)說說解題思路

  第一題:18×5=90(立方分米)90(立方分米)=90升

  90×0.74=66.6(千克)

  第二題:13×2.7×1.2=42.12(立方米)

  42.12×1.3≈55(噸)

  第三題:60×60×80=288000(立方厘米)

  2分米=20厘米

  20×20×20=8000(立方厘米)288000÷8000=36(個)

  第四題:9.6×4.2=40.32(平方米)

  9.6×4.2×2.5=100.8(立方米)

  第五題:80×40×(60-10)=160000(立方厘米)

  160000(立方厘米)=160升

  160000÷(40×40)=100(厘米)

 。3)重點分析第5題

  水面離箱口10厘米,說明水的高度是50厘米。從而求出水的容量。再根據(jù)底面邊長40厘米的長方體水箱,求得水的高度。

  三、思考題

  用一張長50厘米,寬40厘米的長方形鐵皮,做一個深10厘米的無蓋長方體鐵皮盒。要使這個長芳褪鐵皮盒的容積最大,可以怎樣做?

  1、學生獨立研究

  2、小組討論

  3、教師評議

長方體和正方體的體積教案6

  一、說教材

  1. 教材簡析:“長方體和正方體體積計算”是六年制五年級小學教學第十冊第二單元的內(nèi)容。這節(jié)課是學生全面系統(tǒng)地學習體積計算問題的開始,是學生的空間觀念從二維向三維的一次飛躍,是學生形成體積的概念和掌握體積的計量單位的基礎(chǔ),也為今后學習圓柱體體積計算作了鋪墊。

  2. 教學目標:根據(jù)教材以及小學數(shù)學教學大綱的要求:我擬定本節(jié)課的教學目標是:(1)知識與技能目標:理解和掌握長方體和正方體體積的計算方法,并能用所學知識解決一些簡單實際問題。(2)過程與方法目標:學會通過實踐、觀察、比析、綜合、概括去獲得知識的方法。(3)情感態(tài)度與價值觀:培養(yǎng)學生積極探究的科學態(tài)度和與人合作的能力,養(yǎng)成良好的學習習慣。

  3 . 教學重難點:體積對學生來說,是一個新概念,由認識平面圖形到認識立體圖形,是學生空間觀念的一次發(fā)展。學生對怎樣計量物體的體積不易理解,為此,我認為本節(jié)課的`教學重點是:理解和掌握長方體和正方體體積的計算方法。那么,怎么找到計算長方體喝正方體體積的計算方法,學生有一定的難度。因此,我把“體積公式的推導過程”定為本節(jié)課的難點。

  二、說教法、學法

  這節(jié)課我首先運用設(shè)疑導入法引入新課;其次,運用實驗探究法、嘗試教學法,讓學生在操作中感知----探究中學知----在練習中用知,從直觀教學入手,培養(yǎng)學生由形象思維到抽象思維的過渡,讓學生自始至終在知識形成的過程之中,真正發(fā)揮學生的主體作用。

  三、說教學過程

 。ㄒ唬┰O(shè)疑導入,揭示課題,明確任務(wù)

  理想的新課導入,能喚起學生的記憶思維,激發(fā)他們求知欲望,能誘導他們?nèi)硇牡赝度雽W習。上課一開始,我就拿出一個長方體和一個正方體的木塊,問大家:“你們能算出這兩個物體的體積嗎?想不想找到一個計算體積的方法?這節(jié)課請大家自己動手、動腦推導出長方體和正方體體積計算公式!辈⒂纱私沂菊n題,讓學生明確學習任務(wù),興趣盎然地進入最佳學習狀態(tài)。

  (二)操作感知,探究規(guī)律,鞏固深化

  小學生的思維特點是以形象思維為點逐步向抽象思維過渡。根據(jù)這一特點,先利用直觀教具和學具,師生一起進行操作活動,引導學生觀察、思考、比較,把學生的具體操作思維與語言表達緊密結(jié)合起來,發(fā)展學生的空間觀念。新知識分三步進行:

  第一步,做-----操作感知

  先讓學生用學具(體積是1立方厘米的方木塊)擺一擺,坐下面3個實驗并作實驗記錄:

  實驗1:每排擺4個方木塊,擺3排,方木塊的總數(shù)是( )個。

  實驗2:擺這樣的2層,公用方木塊( )個。

  實驗3:要擺成一個長5厘米,寬4厘米,高3厘米的長方格,應(yīng)怎樣擺?共要方塊( )個。

  小組匯報實驗結(jié)果,并填入表中:

長方體和正方體的體積教案7

  本節(jié)課教學的是長方體和正方體的體積計算公式。

  課始,我出示了一個用蘿卜做成的長方體(長3厘米、寬2厘米、高2厘米),引導學生討論:怎樣知道這個長方體的體積?學生受上節(jié)課的影響,很快想到了切分成一個個1立方厘米的小正方體,再數(shù)數(shù)。就得出了這個長方體的體積。

  (一)首先創(chuàng)設(shè)無法在視覺上比較體積大小的問題情境,讓學生想辦法解決,學生求知欲很高,想到了很多方法。采用一生的方法計算,在通過動手操作,擺擺、算算,讓學生自己探索,驗證方法的正確性與可行性,把求長方體的體積很自然地引入了求小正方體的個數(shù),把復雜問題簡單化,最后借助小組合作交流,經(jīng)過歸納、推理,揭示出長方體體積計算公式。公式的推導過程,是學生個人獨立思考的過程,是小組合作學習的過程。學生對公式的來源、理解特別深刻,真正賦予知識的個人意義。

  (二)我又請學生介紹數(shù)的方法,先數(shù)第一層的個數(shù),再乘層數(shù)(相當于高),第一層也就是看看有幾行(相當于寬),每行有幾個(相當于長),這是全班學生的認可的'最佳方法.緊接著讓學生擺,記錄.再討論交流發(fā)現(xiàn)出了體積公式。雖然這里花費了很多的時間,以至于后面學生鞏固公式解決問題的時間很少,但我個人認為還是值得的。學生在操作、交流的過程中不僅收獲了“公式”,更多的是思維得到了訓練,學習能力得到了培養(yǎng)。

  (三)掌握了公式,就要實踐運用,讓學生感到數(shù)學源于生活,又用于生活,更讓他們感到成功的喜悅。掌握了長方體體積公式后,出示魔方,讓學生嘗試解決它的體積,通過動手量、算,自然地遷移和轉(zhuǎn)化到正方體體積計算公式。

  (四)從課堂教學實踐看,本節(jié)課教學效果較好,充分體現(xiàn)了教師為主導、學生為主體的教學觀念。教師為學生的自主探索提供了廣闊的時間和空間。學生學得自主,學得快樂,并學有所獲。不但能做到較好的掌握課本知識,還能做到靈活的運用遷移和轉(zhuǎn)化的數(shù)學思想學習新知,既訓練了思維又培養(yǎng)了能力。

長方體和正方體的體積教案8

  教學內(nèi)容:

  教學目標:

  1、使學生經(jīng)歷操作、觀察、猜想、驗證、交流和歸納等數(shù)學活動的過程,探索并掌握長方體和正方體的體積公式,能應(yīng)用公式正確計算長方體和正方體的體積,并能解決相關(guān)的簡單實際問題。

  2、使學生在活動中進一步積累探索數(shù)學問題的經(jīng)驗,增強空間觀念,發(fā)展數(shù)學思考。

  教學重點:

  正方體和長方體體積的計算方法。

  教學難點:

  理解長方體的體積計算公式。

  教具:

  長、正方體模型、課件、長、正方體形狀的紙盒等

  教學過程:

  創(chuàng)設(shè)情境,導入新課

  出示長方體模型,您能告訴大家這個長方體體積是多少?并說一說是怎樣想的嗎?

  教師演示,學生感知這個長方體模型的體積(每層有4個,共3層,一共是12個),這個長方體的體積就是12立方厘米。

  揭示課題:對一些不可以分割的長方體,我們有沒有辦法計算的他體積呢?(板書:長方體和正方體的體積)

  操作探究,發(fā)現(xiàn)規(guī)律

  學生按照要求用正方體搭出四個不同的長方體并編號。

  讓學生觀察,并作小組交流。

  這些長方體的長寬高各是多少?

  用了幾個小正方體?不數(shù),你怎樣計算小正方體的個數(shù)?

  長方體的體積是多少?和計算小正方體的個數(shù)的方法比一比。

  根據(jù)所搭的長方體填表:(表格略)

  根據(jù)表格,引導分析,發(fā)現(xiàn)規(guī)律。

  比較每一個長方體的體積,和計算小正方體個數(shù)的方法,你能得出什么結(jié)論?

  引導學生猜想:長方體的體積和他的長寬高有什么關(guān)系?

  再次探索,驗證猜想

  出示例題10,讓學生擺一擺,再數(shù)一數(shù),看看一共用多少個小正方體。

  課件演示,組織交流,擺出的長方體長寬高分別是多少?體積是多少立方厘米?這個結(jié)果與你剛才的猜想是否一致?

  如果讓你擺一個長5厘米,寬4厘米,高3厘米的長方體,你能說出要用幾個1立方厘米的小正方體嗎?學生思考后回答。

  引導概括,得出公式

  提問:通過剛才的操作,你發(fā)現(xiàn)了長方體的體積與它的長寬高有什么關(guān)系嗎?如何求長方體的'體積?

  交流的出結(jié)論:

  長方體的體積=長×寬×高

  如果用V表示長方體的體積,用abh分別表示長寬高,你能用字母表示長方體的體積公式嗎?

  V=abh

  啟發(fā)引導。

  正方體是特殊的長方體,你能根據(jù)長方體的體積公式寫出正方體的體積公式嗎?

  讓學生嘗試,再交流得出結(jié)論:

  正方體的體積=棱長×棱長×棱長

  學生閱讀教材第26頁,說說正方體體積的字母公式。

  應(yīng)用拓展,鞏固練習

  做“試一試”

  先指名說出長方體的長寬高分別是多少?正方體的棱長是多少,再獨立計算。交流時先說說公式,再說說怎樣列式。

  做“練一練”第1題。

  觀察題中的圖形,說出每個圖形的長寬高或棱長,在獨立完成。

  做“練一練”第2題。

  先讓學生選擇幾個式子說說其表示的意思,再口算。

  課堂作業(yè):做練習四第2題。

  課后作業(yè):

  完成練習四第1、3題。

長方體和正方體的體積教案9

  在教學這節(jié)課之后,我有以下幾點感受:

  1、教師應(yīng)該成為課程的創(chuàng)造者和開發(fā)者

  教師從教教材,到用教材教,是一種觀念和方法的轉(zhuǎn)變;從用教材中的材料教,到選擇、設(shè)計合適的材料教,更是一種創(chuàng)造和發(fā)展。本節(jié)課教學內(nèi)容是在學生學完長方體和正方體的體積的基礎(chǔ)上,充分運用知識的遷移規(guī)律,引導學生掌握新知識。讓學生通過觀察、思考自己發(fā)現(xiàn)總結(jié)出統(tǒng)一計算公式,并熟練掌握長方體和正方體的體積計算。我認為選擇這樣的材料不僅有助于學生的發(fā)展,也有助于數(shù)學學習材料的發(fā)展,能促使學生積極思維,有利于組織學生積極主動地投入學習。教師不應(yīng)該僅僅是課程的實施者,而且應(yīng)該成為課程的創(chuàng)造者和開發(fā)者。

  2、學生擁有不可估量的潛力

  把學生當作接受知識的容器的時代似乎已經(jīng)過去。但學生能不能進行探究式的、自主發(fā)現(xiàn)式的學習,并不那么為大家的行動所接受。我們的教育基本上還是以接受學習作為主要的學習方式。學生能不能解決那些連成人都會感到困惑的問題?當我們把問題“V=sh這個公式,在實際計算中哪些地方能應(yīng)用到?”展現(xiàn)在學生面前時,發(fā)現(xiàn)并不如我們所預料的:學生無法解決。但是我相信學生確實擁有不可估量的潛力,只要我們?yōu)閷W生創(chuàng)設(shè)出一個能展現(xiàn)他們才能的時間和空間,隱藏在學生頭腦中的潛力就會如埋藏在地下的能量噴涌而出。關(guān)鍵是要給學生留有較大的時間和空間。一個問題的解決需要時間和空間,只有給學生留有較大的時間和空間,學生才能有所發(fā)現(xiàn)、有所創(chuàng)造。

  當然,每一節(jié)課的教學時間是有限的,在有限的時間內(nèi),能不能把盡可能多的時間和空間留給學生學習?再說,今天給學生留有了充足的'時間和空間,學生得到了很好的發(fā)展,那么,在今后學生就會有更大的收獲和發(fā)展。欲速則不達,我們現(xiàn)在的教育不就是常常為了急于求成,造成留給學生要記憶的東西不少,學會思維的東西卻不多這一大遺憾嗎?

  3、要讓學生自主學習自主發(fā)展

  “授人以魚不如授人以漁”,這是一種不錯的教學。近日聽到有人說:“授人以漁不如授之以漁場!蔽液苜澩@樣的說法。這節(jié)課,我基本上沒有講,整堂課都體現(xiàn)了學生的參與。要開發(fā)學生的潛力,教師可以為學生準備必要的條件,但完全不必為學生準備充分的條件。我們只要為學生提供一個“漁場”,讓學生在實踐中成長。學生才能真正自主學習、自主發(fā)展。

長方體和正方體的體積教案10

  一、聯(lián)系實際生活,解決實際問題

  長方體和正方體體積的計算,是在理解了體積的概念和體積的單位以后教學的。教師通過切開一個長3厘米、寬3厘米、高1厘米的長方體和棱長為2厘米的正方體,看看它們各含有多少個1立方厘米的體積單位,引入計量體積的方法。但是在很多情況下,是不能用切開的方法來計量物體的體積的教師采用了讓學生用棱長1厘米的正方體拼擺長方體的實驗,引導學生找出計算長方體體積的方法。教師考慮到學習數(shù)學是為了解決實際生活中的數(shù)學問題,要讓學生認識數(shù)學知識與實際生活的關(guān)系,考慮到解決問題的實際情況,(如,不是所有物體都能切開,)怎樣才能更好更快的解決問題,(如,找到計算長方體體積的公式,)從而從實踐上升到理論,找到解決問題的一般規(guī)律。

  二、加強實際操作,發(fā)展空間觀念。

  體積對學生來說是一個新概念,由認識平面圖形到認識立體圖形,是學生空間觀念的一次重大的發(fā)展。然而此時,學生對立體的空間觀念還很模糊,教師特別注意到加強實物或教具的演示和學生的動手操作,以發(fā)展學生的空間觀念,加深對長方體計算公式的理解。在教學時,教師給了學生若干個1立方厘米的小正方體,讓學生擺放出不同的長方體,并把長、寬、高的數(shù)據(jù)填入表格中,啟發(fā)學生思考,根據(jù)記錄的長、寬、高,擺這個長方體一排要擺幾個小正方體,要擺幾排,擺幾層,一共是多少個小正方體。再引導學生進一步思考,這個長方體所含小正方體的個數(shù),與它的長、寬、高有什么關(guān)系。最后,通過學生自己比較、發(fā)現(xiàn)長方體體積的計算公式,并用字母表示。在教學完長方體的'計算公式后,教師繼續(xù)啟發(fā)學生根據(jù)正方體與長方體的關(guān)系,聯(lián)系長方體體積的計算公式,引導學生自己推導出正方體體積的計算公式。

  正是正確把握了本冊教材的重點,發(fā)展學生的空間觀念,加強實際操作。通過實際觀察、制作、拆拼等活動,學生清楚地理解長方體體積計算公式的來源,并能夠根據(jù)所給的已知條件正確地計算有關(guān)圖形的體積。學生的動手能力也得到了提高。

  三、小組合作交流、培養(yǎng)自主學習能力。

  在新的教育觀念的指導下,教師在課中大膽地實踐,采用小組合作交流,給學生最大限度參與學習的機會,通過教師的引導,學生自主參與數(shù)學實踐活動,經(jīng)歷了數(shù)學知識的發(fā)生、形成過程,掌握了數(shù)學建模方法。學生在活動中表現(xiàn)出主動參與、積極活動的熱情讓每個聽課老師都能感受到,本節(jié)課的教學目標也就達到了,因為它不僅僅讓學生學會了一種知識,還讓學生培養(yǎng)了主動參與的意識,增進了師生、同伴之間的情感交流,提高了實際操作能力,并從活動中形成了數(shù)學意識,學會了創(chuàng)造。

長方體和正方體的體積教案11

  教學要求

  在理解底面積的基礎(chǔ)上,使學生掌握長方體和正方體體積的統(tǒng)一計算公式,提高學生綜合運用知識的能力,發(fā)展學生的空間概念。。

  教學重點

  理解底面積。

  教學用具

  投影儀

  教學過程

  一、創(chuàng)設(shè)情境

  1、指出下圖中長方體的長、寬、高和正方體的棱長。(投影顯示)

  2、填空。

 。1)長、正方體的體積大小是由確定的.。

 。2)長方體的體積=。

 。3)正方體的體積=。

  二、探索研究

  1.觀察。

 。1)長方體體積公式中的“長×寬”和正方體體積公式中的“棱長×棱長”各表示什么?(將復習題中的圖用投影顯示出“底面積”)

  結(jié)論:長方體的體積=底面積×高

  正方體的體積=底面積×棱長

  2.思考。

  (1)這條棱長實際上是特殊的什么?

 。2)正方體的體積公式又可以寫成什么?

  結(jié)論:長方體(或正方體)的體積=底面積×高,用字母表示:

  V=sh

  三、課堂實踐

  1.做第35頁的“做一做”的第1題。學生獨立做后,學生講評。

  2.做第35頁的“做一做”的第2題。

  首先幫助學生理解:什么是橫截面;把這根木料豎起來實際上就是什么?再讓學生做后學生講評。

  3.做練習七的第9題,學生獨立解答,老師個別輔導,集體訂正。

  四、課堂

  學生今天學習的內(nèi)容

  五、課后實踐

  做練習七的第10、11、12題。

長方體和正方體的體積教案12

  [教材簡析]

  這部分教材是學生已經(jīng)掌握長方體和正方體的特征,了解體積的意義,初步掌握長方體和正方體體積公式的基礎(chǔ)上,引導學生進一步探索長方體和正方體的體積公式,在探索中通過分析、比較、歸納,掌握長方體(正方體)的體積=底面積高這一直棱柱體積的通用公式。

  練一練和練習六第48題,先直觀看圖計算,再比較長方體(正方體)的體積=底面積高與前面所學長方體、正方體體積計算方法的不同和聯(lián)系,在比較中鞏固上述公式的推理過程,然后在練習中解決一些實際問題。這樣由淺入深,既鞏固了長方體(正方體)的體積=底面積高的體積公式,又使學生學會解決實際問題,體會到數(shù)學在日常生活中的應(yīng)用,感受數(shù)學的價值,還發(fā)展學生的空間觀念。

  探索并掌握長方體(正方體)的體積=底面積高的計算是本節(jié)課的重點。

  [教學目標]

  1、使學生在具體的情境中,經(jīng)歷比較、討論、驗證、歸納等數(shù)學活動過程,探索并掌握長方體(正方體)的體積=底面積高的計算方法,能解決與體積計算有關(guān)的一些簡單實際問題。

  2、使學生在活動中進一步積累空間與圖形的學習經(jīng)驗,增強空間觀念,發(fā)展數(shù)學思考。

  3、使學生進一步體會圖形學習與實際生活的聯(lián)系,感受圖形學習的價值,提高數(shù)學學習的興趣和學好書學得的自信心。

  [教學過程]

  一、觀察直觀圖形,認識并計算長方體、正方體的底面積

 。ǔ鍪鹃L方體、正方體)談話:同學們,我們學過了長方體、正方體的特征和表面積。請同學們在小組中找出這兩個圖形的底面分別是哪兩個面?

  根據(jù)學生的回答,教師在圖中涂色呈現(xiàn)出底面。

  提問:這兩個圖形的底面積是哪兩個面的面積?

  根據(jù)學生的回答,教師板書底面積定義。

  再提問:怎樣計算長方體和正方體的底面積?

  根據(jù)學生的回答,明確長方體、正方體底面積的計算方法,教師板書計算公式。

  [評:《數(shù)學課程標準》要求:數(shù)學教學活動必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)上,在學生理解和掌握長方體、正方體特征和表面積基礎(chǔ)上,讓學生自己歸納、探索底面積的定義和計算公式,體現(xiàn)數(shù)學學習是一個再創(chuàng)造過程。]

  二、探索長方體(正方體)的體積=底面積高的計算方法

  1、提問:我們前面學習的長方體、正方體體積是如何計算的?

  根據(jù)學生的.回答,教師板書體積公式

  2、談話:長方體和正方體的體積也可以這樣來計算:長方體(正方體)的體積=底面積高

  3、提問:在小組中討論為什么可以這樣來計算長方體、正方體的體積?

  學生在小組中討論得出結(jié)論,教師幫助學生進行相應(yīng)整理

  4、請同學們嘗試用字母表示這個公式

  根據(jù)學生的回答,教師板書字母公式

  [評:觀察、思考、討論、交流等都是《數(shù)學課程標準》所提倡的數(shù)學活動。在這里,先把公式直接告訴學生,讓學生在借助已有知識的基礎(chǔ)上,憑借他們自己的經(jīng)驗,在小組中充分交流、合作,在探索、比較中充分理解長方體(正方體)的體積=底面積高的推理過程。]

  三、分析、比較加深長方體(正方體)的體積=底面積高的理解

  1、出示練一練第1題

  ⑴、學生獨立思考完成

 、啤⒂懻摚哼@樣計算長方體和正方體的體積與原來的計算方法有什么不同?有什么聯(lián)系?

  2、出示練一練第2題

  獨立做題,在班內(nèi)共同訂正

  [評:在學生獨立解決問題中,關(guān)注這種計算公式與原來計算公式的不同與聯(lián)系,進一步鞏固長方體(正方體)的體積=底面積高的計算方法,感受數(shù)學的魅力。]

  四、鞏固練習、拓展應(yīng)用

  1、做練習六第4題

 、、借助實物幫助學生理解占地面積的實際含義

 、、使學生明確所占空間就是儲物柜的體積

  ⑶、獨立做題,在班內(nèi)共同訂正

  [評:讓學生在實際應(yīng)用中,鞏固用底面積高計算長方體體積的方法,感受這種方法在解決實際問題過程中的作用。]

  2、做練習六第5題

 、、結(jié)合圖讓學生指一指這根橫截面的位置

 、、引導學生想象:如果將這根木料豎起來,木料的橫截面就是這個長方體的哪個面?木料的長與豎起來的長方體的高有什么關(guān)系?可以怎樣計算它的體積?

  [評:引導學生聯(lián)系長方體體積=底面積高這一方法,理解用橫截面面積長計算長方體體積的方法,有利于學生從不同角度加深對體積計算方法的理解。]

  3、做練習六第6題

  ⑴、使學生明確黃沙鋪成的形狀是長方體,鋪的厚度是長方體的高

 、、明確要求用方程解

  [評:這是一個在長方體沙坑鋪黃沙的實際問題,讓學生根據(jù)長方體的體積以及長和寬(或底面積),求它的高,既體現(xiàn)了知識的綜合應(yīng)用,又有利于提高學生應(yīng)用公式解決實際問題的能力。]

  4、做練習六第7題

 、、弄清題中兩個問題的聯(lián)系與區(qū)別

 、、引導學生尋找計算花壇所占空間大小以及花壇內(nèi)泥土體積所需要的條件

  ⑶、提示:從里面量,花壇的高沒有變,但底面正方形的邊長只有1.3-0.32=0.7(米)

  [評:通過讓學生計算花壇所占的空間和花壇里有多少泥土這兩個問題,讓學生在比較中進一步明確體積和容積的不同意義。]

  5、做練習六第8題

 、拧⒑侠磉x擇相應(yīng)的信息解決實際問題

 、、獨立思考,在班內(nèi)共同訂正

  [評:通過跑道上鋪三合土和塑膠的實際問題,培養(yǎng)學生合理選擇信息解決有關(guān)體積計算的實際問題的能力。]

  五、激勵評價,問題延伸

  談話:請同學們說說這節(jié)課你有什么收獲?你是怎樣知道的?回家后選擇你身邊的長方體或正方體,測量并用今天學習的知識計算它的體積。

  [評:課堂總結(jié)不但關(guān)注學生知識與技能的掌握,而且關(guān)注了學生的學習過程,還把課堂中學到的知識延伸到生活中,體現(xiàn)了生活中處處有數(shù)學的理念。]

長方體和正方體的體積教案13

  教學目標:

  1.使學生經(jīng)歷長方體,正方體體積公式的推導過程,理解長方體、正方體體積的計算公式;初步學會計算長方體和正方體的體積;

  2.培養(yǎng)學生實際操作能力,同時發(fā)展他們的空間觀念;

  3.在活動中使學生感受數(shù)學與實際生活的密切聯(lián)系,體驗學數(shù)學、用數(shù)學的樂趣,從而激發(fā)學生的學習興趣。

  教學重點:

  探索長方體體積的計算方法。

  教學難點:

  理解長方體和正方體體積公式的推導過程.

  教具準備:

  課件,若干個1立方厘米小正方塊

  學具準備:

  1立方厘米的正方體16塊

  教學過程:

  一、激情導入

  1、復習引入

  師:上節(jié)課,我們認識了體積和體積單位,誰來說說什么是物體的體積?請同學們用合適的體積單位填空。

  2、昨天的知識大家掌握的很好,今天我們一起利用這些知識探究長方體和正方體的體積(板書課題)。請同學們齊讀本節(jié)課的學習目標。

  3、相信同學們能運用手中的學具,勤于動手,善于思考,快樂合作,獲得新知識。

  二、民主導學

  師:可見要計量一個物體的體積,就要看這個物體含有多少個體積單位。大家請看大屏幕,這個長方體的體積是多少?

  (學情欲設(shè))

  生1、可以分割成以立方厘米的小塊,看看一共有多少塊,就有多少立方厘米。

  生2、可以量一量。

  生3、這些方法都有局限性,我們可以像以前推導平行四邊形的面積一樣想辦法找出長方體體積的計算公式。

  老師認為這個提議不錯,你們認為呢?

  師:誰來猜一猜長方體的體積怎樣計算?這個猜想對嗎?我們來一起驗證。好,請同學們看今天的第一個學習任務(wù)。

  任務(wù)呈現(xiàn):

  用一些體積是1立方厘米的小正方體擺成不同長方體,并完成下表:

  出示表格。學生四人一小組,每組一張表格。

  長

  (厘米)

  寬

  (厘米)

  高

  (厘米)

  小正方體的數(shù)量

  長方體的體積

  師:請同學們以小組為單位,用1立方厘米的正方體擺出4個不同的長方體,觀察擺出的長方體的長、寬、高,把上面的表格填寫完整。并在小組中討論你發(fā)現(xiàn)了什么。

  自主學習

  學生活動,師巡視。

  展示交流

  師:同學們擺出了許多不同的長方體,并且填好了表格。哪一組來匯報?

  學生黑板前展示表格,并做詳細匯報。

  引導學生觀察表格,

  師:觀察表格中的數(shù)據(jù),從中你能發(fā)現(xiàn)什么呢?

  師:通過觀察比較,同學們有了很大的發(fā)現(xiàn):長方體的體積等于它的長、寬、高的乘積。(板書:)長方體的'體積=長×寬×高。

  任務(wù)2、繼續(xù)驗證

  課件出示:用1立方厘米的正方體擺出下面的長方體,各需要多少個?先想一想,再擺一擺。請一個同學上臺操作。

  1、長4厘米,寬1厘米,高1厘米。

  2、長4厘米、寬3厘米、高1厘米。

  3、長4厘米、寬3厘米、高2厘米

  師:這是三個不同的長方體,根據(jù)剛才的發(fā)現(xiàn)你能說出它們的體積嗎?生回答:4×1×1=4立方厘米4×3×1=12立方厘米4×3×2=24立方厘米

  師:那究竟對不對呢?讓我們再來擺一擺。

  學生小組討論,動手操作,指名一生上臺操作。師巡視。

  師:和我們之前的猜想一樣嗎?

  師:根據(jù)剛才的驗證,得出之前這個結(jié)論是正確的。長方體的體積=長×寬×高,如果用V表示長方體的體積,用a、b、h分別表示長方體的長、寬、高,你能字母表示長方體的體積嗎?

  V=abh

  師:那如果再給你一個長7厘米、寬4厘米、高3厘米的長方體,一共要用多少個1立方厘米的小正方體?它的體積是多少呢?出示例1

  課件出示:

  師:7×4×3=84立方厘米,所以它的體積就是84立方厘米。

  師:長、寬、高都相等的長方體就是什么圖形?你能直接寫出正方體的體積公式嗎?把你的想法在小組里說一說。

  學生匯報:

  因為正方體是特殊的長方體。在正方體中長,寬,高都相等,所以公式中長、寬、高都叫棱長,正方體的體積=棱長×棱長×棱長。變換后,雖然長方體和正方體體積公式寫出來不相同,但計算方法的實質(zhì)是一樣的,都是長×寬×高。

  課件出示正方體,出示公式。

  師:正方體的體積公式也可以用字母來表示。但用字母表示正方體的體積公式時,還有一些特殊的地方,書上對此作了詳細的說明。請大家打開課本看一看。學生閱讀課本。課件出示

  正方體的體積:V=a

  師:寫的時候,3要寫在a的右上角,并且要寫的小一些。

  小訓練:完成例2,在練習本上完成,集體訂正。

  三、鞏固應(yīng)用

  1、口答題

  2、判斷題

  3、解答題

  四、拓展延伸

  師:長方體和正方體的體積在生活中運用的很多,讓我們一起來看一看

  師:這個算式表示什么意思呢?

  出示:

  品名:正方體收納凳

  尺寸:30×30×30

  材質(zhì):滌綸+PP不織布+纖維板

  顏色:黑白

  師:你能看懂這個說明書嗎?

  師:如果要往這里放一個長40cm寬20cm高10cm的玩具箱,能放入到收納凳里嗎?

  師:看來不能光比較體積的大小,還要聯(lián)系實際情況,看看長寬高是否都符合要求。

  五、課堂小結(jié)

  師:這節(jié)課我們一起學習了長方體和正方體的體積計算,你都有哪些收獲?

長方體和正方體的體積教案14

  一、設(shè)計理念

  “在數(shù)學活動中積累空間與圖形的學習經(jīng)驗,增強空間觀念,

  發(fā)展數(shù)學考慮!笔强臻g與圖形板塊教學的基本和重要的目標。因此,在本課的公開課教案中,體積的計算方法是顯性目標,空間觀念和思維的發(fā)展是隱性目標。怎樣系統(tǒng)而有步驟的滲透思想方法,怎樣有層次有目的地推進空間觀念和能力的發(fā)展是本課的著眼點。

  二、教學目標

  1、知識目標:

  理解和掌握長方體和正方體體積的計算方法,并能正確地計算長方體和正方體體積

  2、能力目標

  在推導長方體和正方體體積的計算方法的過程中,培養(yǎng)同學動手操作能力、籠統(tǒng)概括能力和實踐能力。

  3、情感目標

  激發(fā)同學學習數(shù)學的興趣,進一步發(fā)展空間觀念,滲透“實踐出真知”的辯證唯物主義思想。

  三、過程設(shè)計

  1.談話引入,設(shè)疑導學

 。1)提問:我們已學過的.求長方體體積的方法是什么?

  (2)設(shè)疑:要知道一本字典的體積還能用這種方法嗎?教室的空間呢?有更好的方法嗎?

 。3)揭示課題:長方體和正方體的體積

  [設(shè)計意圖]以舊引新,引導同學對切割后數(shù)單位體積個數(shù)的方法進行反思。在求字典體積和教室體積的實際問題中方法受阻,又引起同學的思“變”,正是因為這里的“變”,才激起同學探究的熱情,實現(xiàn)最后的“通”,即明白方法間的通連,實現(xiàn)思維的通達。

  2.合作探究,學得方法

  (1)任意擺出長方體,數(shù)出體積

  活動:用1立方厘米的小正方體,任意擺出幾個不同的長方體,數(shù)出體積,填寫表格

  長方體

  每排個數(shù)

  每層個數(shù)

  層數(shù)

  總個數(shù)

  交流:各小組匯報展示。

  提問:“每排個數(shù)、排數(shù)、層數(shù)、總個數(shù)”與長方體的“長、寬、高、體積”有什么聯(lián)系?

  [設(shè)計意圖]溫故而知新,同學對已有經(jīng)驗知識重新解讀,從初始的數(shù)體積中去探尋更新、更省算體積的方法。從而明白數(shù)是算的依據(jù),算是對數(shù)的發(fā)展。同學先擺再數(shù)的活動中,充沛認識了長方體的長、寬、高和與體積之間的關(guān)系。直觀的模型,具體的操作豐富了同學的體驗,讓同學在有效的活動體驗中學得方法,實現(xiàn)能力的內(nèi)化。

長方體和正方體的體積教案15

  目標

  在理解底面積的基礎(chǔ)上,使學生掌握長方體和正方體體積的統(tǒng)一計算公式,提高學生綜合運用知識的能力,發(fā)展學生的空間概念。

  教學及訓練

  重點

  理解底面積。

  儀器

  教具

  投影儀

  教學內(nèi)容和過程

  教學札記

  一、創(chuàng)設(shè)情境

  1、指出下圖中長方體的長、寬、高和正方體的棱長。(投影顯示)

  2、填空。

 。1)長、正方體的體積大小是由確定的。

 。2)長方體的體積=。

 。3)正方體的體積=。

  二、探索研究

  1.觀察。

 。1)長方體體積公式中的“長×寬”和正方體體積公式中的“棱長×棱長”各表示什么?(將復習題中的圖用投影顯示出“底面積”)

  結(jié)論:長方體的體積=底面積×高

  正方體的'體積=底面積×棱長

  2.思考。

  (1)這條棱長實際上是特殊的什么?

  (2)正方體的體積公式又可以寫成什么?

  結(jié)論:長方體(或正方體)的體積=底面積×高,用字母表示:V=sh

  三、鞏固練習

  1.做第20頁的“練一練”。學生獨立做后,學生講評。

  2.補充:一段長方體方銅,長1.2米,橫截面是一個邊長1厘米的正方形。這段方銅的體積是多少立方厘米?

  首先幫助學生理解:什么是橫截面?再讓學生做后學生講評。

  3.做練習三的第9、10題,學生獨立解答,老師個別輔導,集體訂正。

  四、課堂

  學生今天學習的內(nèi)容

  五、課后練習

  做練習三的第11、12、13題。

  長方體和正方體統(tǒng)一的體積公式

  長方體的體積=底面積×高

  正方體的體積=底面積×棱長

  長(正)方體的體積=底面積×高,

  用字母表示:V=sh

【長方體和正方體的體積教案】相關(guān)文章:

長方體和正方體的體積教案02-27

長方體和正方體體積教案07-13

《長方體和正方體的體積》說課稿06-22

《長方體和正方體的體積》教案15篇03-03

長方體正方體的體積教案03-07

《長方體和正方體的體積》說課稿范文02-07

《長方體和正方體的體積》教學反思03-11

《長方體和正方體體積》教學反思10-19

《長方體和正方體體積》說課稿11篇12-02