當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>教案> 初中數(shù)學(xué)教案

初中數(shù)學(xué)教案

時(shí)間:2024-07-24 15:54:36 教案 我要投稿

初中數(shù)學(xué)教案【熱】

  作為一名辛苦耕耘的教育工作者,常常要寫一份優(yōu)秀的教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法?靵(lái)參考教案是怎么寫的吧!下面是小編收集整理的初中數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。

初中數(shù)學(xué)教案【熱】

初中數(shù)學(xué)教案1

  教學(xué)目標(biāo):

  1.會(huì)用待定系數(shù)法求反比例函數(shù)的解析式.

  2.通過(guò)實(shí)例進(jìn)一步加深對(duì)反比例函數(shù)的認(rèn)識(shí),能結(jié)合具體情境,體會(huì)反比例函數(shù)的意義,理解比例系數(shù)的具體的意義.

  3.會(huì)通過(guò)已知自變量的值求相應(yīng)的反比例函數(shù)的值.運(yùn)用已知反比例函數(shù)的值求相應(yīng)自變量的值解決一些簡(jiǎn)單的問(wèn)題.

  重點(diǎn):用待定系數(shù)法求反比例函數(shù)的解析式.

  難點(diǎn):例3要用科學(xué)知識(shí),又要用不等式的知識(shí),學(xué)生不易理解.

  教學(xué)過(guò)程:

  一.復(fù)習(xí)

  1、反比例函數(shù)的定義:

  判斷下列說(shuō)法是否正確(對(duì)‖√‖,錯(cuò)‖3‖)

  (1)一矩形的面積為20cm2,相鄰的兩條邊長(zhǎng)分別為x(cm)和y(cm),變量y是變量x的反比例函數(shù).(2)圓的面積公式s??r2中,s與r成正比例.(3)矩形的長(zhǎng)為a,寬為b,周長(zhǎng)為C,當(dāng)C為常量時(shí),a是b的反比例函數(shù).方形的邊長(zhǎng)為x,高為y,當(dāng)其體積V為常量時(shí),y是x的反比例函數(shù).(4)一個(gè)正四棱柱的底面正

  定時(shí),商和除數(shù)成反比例.(5)當(dāng)被除數(shù)(不為零)一

  (6)計(jì)劃修建鐵路1200km,則鋪軌天數(shù)y(d)是每日鋪軌量x(km/d)的反比例函數(shù).

  2、思考:如何確定反比例函數(shù)的解析式?

  (1)已知y是x的反比例函數(shù),比例系數(shù)是3,則函數(shù)解析式是_______

  (2)當(dāng)m為何值時(shí),函數(shù)4是反比例函數(shù),并求出其函數(shù)解析式.y?2m?2關(guān)鍵是確定比例系數(shù)!x

  二.新課

  1.例2:已知變量y與x成反比例,且當(dāng)x=2時(shí)y=9,寫出y與x之間的函數(shù)解析式和自變量的取值范圍。小結(jié):要確定一個(gè)反比例函數(shù)y?k的解析式,只需求出比例系數(shù)k。如果已知一對(duì)自變量與函數(shù)的對(duì)應(yīng)值,x

  3時(shí),y=2,求這個(gè)函數(shù)的解析式和自變量的`取值范圍。4就可以先求出比例系數(shù),然后寫出所要求的反比例函數(shù)。2.練習(xí):已知y是關(guān)于x的反比例函數(shù),當(dāng)x=?

  3.說(shuō)一說(shuō)它們的求法:

  (1)已知變量y與x-5成反比例,且當(dāng)x=2時(shí)y=9,寫出y與x之間的函數(shù)解析式.

  (2)已知變量y-1與x成反比例,且當(dāng)x=2時(shí)y=9,寫出y與x之間的函數(shù)解析式.

  4.例3、設(shè)汽車前燈電路上的電壓保持不變,選用燈泡的電阻為R(Ω),通過(guò)電流的強(qiáng)度為I(A)。

  (1)已知一個(gè)汽車前燈的電阻為30Ω,通過(guò)的電流為0.40A,求I關(guān)于R的函數(shù)解析式,并說(shuō)明比例系數(shù)的實(shí)際意義。

 。2)如果接上新燈泡的電阻大于30Ω,那么與原來(lái)的相比,汽車前燈的亮度將發(fā)生什么變化?

  在例3的教學(xué)中可作如下啟發(fā):

 。1)電流、電阻、電壓之間有何關(guān)系?

 。2)在電壓U保持不變的前提下,電流強(qiáng)度I與電阻R成哪種函數(shù)關(guān)系?

  (3)前燈的亮度取決于哪個(gè)變量的大小?如何決定?

  先讓學(xué)生嘗試練習(xí),后師生一起點(diǎn)評(píng)。

  三.鞏固練習(xí):

  1.當(dāng)質(zhì)量一定時(shí),二氧化碳的體積V與密度p成反比例。且V=5m3時(shí),p=1.98kg/m3

 。1)求p與V的函數(shù)關(guān)系式,并指出自變量的取值范圍。

  (2)求V=9m3時(shí),二氧化碳的密度。

  四.拓展:

  1.已知y與z成正比例,z與x成反比例,當(dāng)x=-4時(shí),z=3,y=-4.求:

  (1)Y關(guān)于x的函數(shù)解析式;

  (2)當(dāng)z=-1時(shí),x,y的值.

  2.已知y?y1?y2,y1與x成正例,y2與x成反比例,并且x?2與x?3時(shí),y的

  值都等于10,求y與x之間的函數(shù)關(guān)系。

  五.交流反思

  求反比例函數(shù)的解析式一般有兩種情形:一種是在已知條件中明確告知變量之間成反比例函數(shù)關(guān)系,如例2;另一種是變量之間的關(guān)系由已學(xué)的數(shù)量關(guān)系直接給出,如例3中的I?

  六、布置作業(yè):P4B組

  教學(xué)后記:

  U由歐姆定律得到。R

初中數(shù)學(xué)教案2

  教學(xué)目標(biāo)

  1, 掌握有理數(shù)的概念,會(huì)對(duì)有理數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;

  2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;

  3, 體驗(yàn)分類是數(shù)學(xué)上的常用處理問(wèn)題的方法。

  教學(xué)難點(diǎn) 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類

  知識(shí)重點(diǎn) 正確理解有理數(shù)的概念

  教學(xué)過(guò)程(師生活動(dòng)) 設(shè)計(jì)理念

  探索新知 在前兩個(gè)學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過(guò)上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請(qǐng)同學(xué)們?cè)诓莞寮埳先我鈱懗?個(gè)數(shù)(同時(shí)請(qǐng)3個(gè)同學(xué)在黑板上寫出).

  問(wèn)題1:觀察黑板上的9個(gè)數(shù),并給它們進(jìn)行分類.

  學(xué)生思考討論和交流分類的情況.

  學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時(shí),教師應(yīng)給予引導(dǎo)和鼓勵(lì).

  例如,

  對(duì)于數(shù)5,可這樣問(wèn):5和5. 1有相同的類型嗎?5可以表示5個(gè)人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個(gè)的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個(gè)的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))

  通過(guò)教師的引導(dǎo)、鼓勵(lì)和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過(guò)的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.

  按照書本的說(shuō)法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.

  看書了解有理數(shù)名稱的由來(lái).

  “統(tǒng)稱”是指“合起來(lái)總的名稱”的意思.

  試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說(shuō)出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來(lái)劃分的) 分類是數(shù)學(xué)中解決問(wèn)題的常用手段,這個(gè)引入具有開放的特點(diǎn),學(xué)生樂于參與

  學(xué)生自己嘗試分類時(shí),可能會(huì)很粗略,教師給予引導(dǎo)和鼓勵(lì),劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。

  有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會(huì)

  練一練 1,任意寫出三個(gè)有理數(shù),并說(shuō)出是什么類型的數(shù),與同伴進(jìn)行交流.

  2,教科書第10頁(yè)練習(xí).

  此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說(shuō)明.

  把一些數(shù)放在一起,就組成了一個(gè)數(shù)的集合,簡(jiǎn)稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;

  數(shù)集一般用圓圈或大括號(hào)表示,因?yàn)榧现械臄?shù)是無(wú)限的,而本題中只填了所給的幾個(gè)數(shù),所以應(yīng)該加上省略號(hào).

  思考:上面練習(xí)中的四個(gè)集合合并在一起就是全體有理數(shù)的'集合嗎?

  也可以教師說(shuō)出一些數(shù),讓學(xué)生進(jìn)行判斷。

  集合的概念不必深入展開。

  創(chuàng)新探究 問(wèn)題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對(duì)嗎?為什么?

  教學(xué)時(shí),要讓學(xué)生總結(jié)已經(jīng)學(xué)過(guò)的數(shù),鼓勵(lì)學(xué)生概括,通過(guò)交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。

  有理數(shù) 這個(gè)分類可視學(xué)生的程度確定是否有必要教學(xué)。

  應(yīng)使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時(shí),分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個(gè)參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說(shuō)明,可以按年齡,也可以按性別、地域來(lái)分等

  小結(jié)與作業(yè)

  課堂小結(jié) 到現(xiàn)在為止我們學(xué)過(guò)的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。

  本課作業(yè)

  1, 必做題:教科書第18頁(yè)習(xí)題1.2第1題

  2, 教師自行準(zhǔn)備

  本課教育評(píng)注(課堂設(shè)計(jì)理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)

  1,本課在引人了負(fù)數(shù)后對(duì)所學(xué)過(guò)的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問(wèn)題的常用手段,通過(guò)本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)行簡(jiǎn)單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長(zhǎng)的過(guò)程,本課不要過(guò)多展開。

  2,本課具有開放性的特點(diǎn),給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動(dòng)地參加學(xué)習(xí),親自體驗(yàn)知識(shí)的形成過(guò)程,可避免直接進(jìn)行分類所帶來(lái)的枯燥性;同時(shí)還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點(diǎn),對(duì)學(xué)生分類能力的養(yǎng)成有很好的作用。

  3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。

初中數(shù)學(xué)教案3

  教學(xué)建議

  知識(shí)結(jié)構(gòu)

  重難點(diǎn)分析

  本節(jié)的重點(diǎn)是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。

  本節(jié)的難點(diǎn)是性質(zhì)的靈活應(yīng)用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時(shí)還具有自己獨(dú)特的性質(zhì)。如果得到一個(gè)平行四邊形是,就可以得到許多關(guān)于邊、角、對(duì)角線的條件,在實(shí)際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無(wú)措,教師在教學(xué)過(guò)程中應(yīng)給予足夠重視。

  教法建議

  根據(jù)本節(jié)內(nèi)容的特點(diǎn)和與平行四邊形的關(guān)系,建議教師在教學(xué)過(guò)程中注意以下問(wèn)題:

  1.的知識(shí),學(xué)生在小學(xué)時(shí)接觸過(guò)一些,可由小學(xué)學(xué)過(guò)的知識(shí)作為引入。

  2.在現(xiàn)實(shí)中的實(shí)例較多,在講解的性質(zhì)和判定時(shí),教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實(shí)例來(lái)進(jìn)行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識(shí).

  3.如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材148頁(yè)圖4-33所示,制作一個(gè)平行四邊形作為教學(xué)過(guò)程中的道具,既增強(qiáng)了學(xué)生的動(dòng)手能力和參與感,有在教學(xué)中有切實(shí)的體例,使學(xué)生對(duì)知識(shí)的掌握更輕松些.

  4.在對(duì)性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個(gè)學(xué)生分別對(duì)事先準(zhǔn)備后的圖形進(jìn)行邊、角、對(duì)角線的測(cè)量,然后在組內(nèi)進(jìn)行整理、歸納.

  5.由于和的性質(zhì)定理證明比較簡(jiǎn)單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來(lái)進(jìn)行具體的證明.

  6.在性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。

  一、教學(xué)目標(biāo)

  1.掌握概念,知道與平行四邊形的關(guān)系.

  2.掌握的性質(zhì).

  3.通過(guò)運(yùn)用知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力.

  4.通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)興趣.

  5.根據(jù)平行四邊形與矩形、的從屬關(guān)系,通過(guò)畫圖向?qū)W生滲透集合思想.

  6.通過(guò)性質(zhì)的學(xué)習(xí),體會(huì)的圖形美.

  二、教法設(shè)計(jì)

  觀察分析討論相結(jié)合的方法

  三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn):的性質(zhì)定理.

  2.教學(xué)難點(diǎn):把的性質(zhì)和直角三角形的知識(shí)綜合應(yīng)用.

  3.疑點(diǎn):與矩形的性質(zhì)的區(qū)別.

  四、課時(shí)安排

  1課時(shí)

  五、教具學(xué)具準(zhǔn)備

  教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥

  七、教學(xué)步驟

  【復(fù)習(xí)提問(wèn)】

  1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?

  2.矩形中對(duì)角線與大邊的夾角為,求小邊所對(duì)的兩條對(duì)角線的夾角.

  3.矩形的一個(gè)角的平分線把較長(zhǎng)的邊分成、,求矩形的周長(zhǎng).

  【引入新課】

  我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實(shí)還有另外的特殊平行四邊形,這時(shí)可將事先按課本中圖4-38做成的一個(gè)短邊也可以活動(dòng)的教具進(jìn)行演示,如圖,改變平行四邊形的邊,使之一組鄰進(jìn)相等,引出概念.

  【講解新課】

  1.定義:有一組鄰邊相等的平行四邊形叫做.

  講解這個(gè)定義時(shí),要抓住概念的本質(zhì),應(yīng)突出兩條:

  (1)強(qiáng)調(diào)是平行四邊形.

 。2)一組鄰邊相等.

  2.的性質(zhì):

  教師強(qiáng)調(diào),既然是特殊的`平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì).

  下面研究的性質(zhì):

  師:同學(xué)們根據(jù)的定義結(jié)合圖形猜一下有什么性質(zhì)(讓學(xué)生們討論,并引導(dǎo)學(xué)生分別從邊、角、對(duì)角線三個(gè)方面分析).

  生:因?yàn)槭怯幸唤M鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對(duì)邊相等的性質(zhì)可以得到.

  性質(zhì)定理1:的四條邊都相等.

  由的四條邊都相等,根據(jù)平行四邊形對(duì)角線互相平分,可以得到

  性質(zhì)定理2:的對(duì)角線互相垂直并且每一條對(duì)角線平分一組對(duì)角.

  引導(dǎo)學(xué)生完成定理的規(guī)范證明.

  師:觀察右圖,被對(duì)角線分成的四個(gè)直角三角形有什么關(guān)系?

  生:全等.

  師:它們的底和高和兩條對(duì)角線有什么關(guān)系?

  生:分別是兩條對(duì)角線的一半.

  師:如果設(shè)的兩條對(duì)角線分別為、,則的面積是什么?

  生:

  教師指出當(dāng)不易求出對(duì)角線長(zhǎng)時(shí),就用平行四邊形面積的一般計(jì)算方法計(jì)算面積.

  例2已知:如右圖,是△的角平分線,交于,交于.

  求證:四邊形是.

 。ㄒ龑(dǎo)學(xué)生用定義來(lái)判定.)

  例3已知的邊長(zhǎng)為,,對(duì)角線,相交于點(diǎn),如右圖,求這個(gè)的對(duì)角線長(zhǎng)和面積.

 。1)按教材的方法求面積.

 。2)還可以引導(dǎo)學(xué)生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計(jì)算的面積.

  【總結(jié)、擴(kuò)展】

  1.小結(jié):(打出投影)(圖4)

  (1)、平行四邊形、四邊形的從屬關(guān)系:

  (2)性質(zhì):圖5

 、倬哂衅叫兴倪呅蔚乃行再|(zhì).

  ②特有性質(zhì):四條邊相等;對(duì)角線互相垂直,且平分每一組對(duì)角.

  八、布置作業(yè)

  教材P158中6、7、8,P196中10

  九、板書設(shè)計(jì)

  標(biāo)題

  定義……

  性質(zhì)例2…… 小結(jié):

  性質(zhì)定理1:……例3…… ……

  性質(zhì)定理2:……

  十、隨堂練習(xí)

  教材P151中1、2、3

  補(bǔ)充

  1.的兩條對(duì)角線長(zhǎng)分別是3和4,則周長(zhǎng)和面積分別是___________、___________.

  2.周長(zhǎng)為80,一對(duì)角線為20,則相鄰兩角的度數(shù)為___________、____________.

初中數(shù)學(xué)教案4

  一、目的要求

  1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。

  2、使學(xué)生能夠根據(jù)實(shí)際問(wèn)題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。

  二、內(nèi)容分析

  1、初中主要是通過(guò)幾種簡(jiǎn)單的函數(shù)的初步介紹來(lái)學(xué)習(xí)函數(shù)的,前面三小節(jié),先學(xué)習(xí)函數(shù)的概念與表示法,這是為學(xué)習(xí)后面的幾種具體的函數(shù)作準(zhǔn)備的,從本節(jié)開始,將依次學(xué)習(xí)一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識(shí),大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個(gè)順序講述的,通過(guò)這些具體函數(shù)的學(xué)習(xí),學(xué)生可以加深對(duì)函數(shù)意義、函數(shù)表示法的認(rèn)識(shí),并且,結(jié)合這些內(nèi)容,學(xué)生還會(huì)逐步熟悉函數(shù)的知識(shí)及有關(guān)的數(shù)學(xué)思想方法在解決實(shí)際問(wèn)題中的應(yīng)用。

  2、舊教材在講幾個(gè)具體的函數(shù)時(shí),是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當(dāng)照顧了學(xué)生在小學(xué)數(shù)學(xué)中學(xué)了正反比例關(guān)系的知識(shí),注意了中小學(xué)的銜接,新教材則是安排先學(xué)習(xí)一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學(xué)習(xí)反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認(rèn)識(shí)規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡(jiǎn)單的,相對(duì)來(lái)說(shuō),反比例函數(shù)就要復(fù)雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學(xué)習(xí)反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學(xué)習(xí)效益,又便于學(xué)生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。

  3、“函數(shù)及其圖象”這一章的重點(diǎn)是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時(shí),一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對(duì)一次函數(shù)的討論也比較全面。通過(guò)一次函數(shù)的學(xué)習(xí),學(xué)生可以對(duì)函數(shù)的研究方法有一個(gè)初步的認(rèn)識(shí)與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。

  三、教學(xué)過(guò)程

  復(fù)習(xí)提問(wèn):

  1、什么是函數(shù)?

  2、函數(shù)有哪幾種表示方法?

  3、舉出幾個(gè)函數(shù)的例子。

  新課講解:

  可以選用提問(wèn)時(shí)學(xué)生舉出的例子,也可以直接采用教科書中的四個(gè)函數(shù)的例子。然后讓學(xué)生觀察這些例子(實(shí)際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時(shí),可以按下列問(wèn)題引導(dǎo)學(xué)生思考:

  (1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)

  (2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號(hào)左邊的y與s是函數(shù),等號(hào)右邊是一個(gè)代數(shù)式,其中的字母x與t是自變量。)

  (3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號(hào)右邊的`式子,都是關(guān)于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識(shí),可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設(shè)問(wèn),最后給出一次函數(shù)的定義。

  一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。

  對(duì)這個(gè)定義,要注意:

  (1)x是變量,k,b是常數(shù);

  (2)k≠0 (當(dāng)k=0時(shí),式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點(diǎn),不一定向?qū)W生講述。)

  由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時(shí),一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。

  在講述正比例函數(shù)時(shí),首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過(guò)的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對(duì)應(yīng)的兩個(gè)數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  寫成式子是(一定)

  需指出,小學(xué)因?yàn)闆]有學(xué)過(guò)負(fù)數(shù),實(shí)際的例子都是k>0的例子,對(duì)于正比例函數(shù),k也為負(fù)數(shù)。

  其次,要注意引導(dǎo)學(xué)生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。

  課堂練習(xí):

  教科書13、4節(jié)練習(xí)第1題.

初中數(shù)學(xué)教案5

  知識(shí)技能目標(biāo)

  1、理解反比例函數(shù)的圖象是雙曲線,利用描點(diǎn)法畫出反比例函數(shù)的圖象,說(shuō)出它的性質(zhì);

  2、利用反比例函數(shù)的圖象解決有關(guān)問(wèn)題。

  過(guò)程性目標(biāo)

  1、經(jīng)歷對(duì)反比例函數(shù)圖象的觀察、分析、討論、概括過(guò)程,會(huì)說(shuō)出它的性質(zhì);

  2、探索反比例函數(shù)的圖象的性質(zhì),體會(huì)用數(shù)形結(jié)合思想解數(shù)學(xué)問(wèn)題。

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情境

  上節(jié)的練習(xí)中,我們畫出了問(wèn)題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來(lái)討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。

  二、探究歸納

  1、畫出函數(shù)的圖象。

  分析畫出函數(shù)圖象一般分為列表、描點(diǎn)、連線三個(gè)步驟,在反比例函數(shù)中自變量x≠0。

  解

  1、列表:這個(gè)函數(shù)中自變量x的取值范圍是不等于零的一切實(shí)數(shù),列出x與y的對(duì)應(yīng)值:

  2、描點(diǎn):用表里各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出在京各點(diǎn)點(diǎn)(—6,—1)、(—3,—2)、(—2,—3)等。

  3、連線:用平滑的曲線將第一象限各點(diǎn)依次連起來(lái),得到圖象的第一個(gè)分支;用平滑的曲線將第三象限各點(diǎn)依次連起來(lái),得到圖象的另一個(gè)分支。這兩個(gè)分支合起來(lái),就是反比例函數(shù)的圖象。

  上述圖象,通常稱為雙曲線(hyperbola)。

  提問(wèn)這兩條曲線會(huì)與x軸、y軸相交嗎?為什么?

  學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動(dòng)手畫反比函數(shù)圖象,進(jìn)一步掌握畫函數(shù)圖象的步驟)。

  學(xué)生討論、交流以下問(wèn)題,并將討論、交流的結(jié)果回答問(wèn)題。

  1、這個(gè)函數(shù)的圖象在哪兩個(gè)象限?和函數(shù)的圖象有什么不同?

  2、反比例函數(shù)(k≠0)的圖象在哪兩個(gè)象限內(nèi)?由什么確定?

  3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?

  反比例函數(shù)有下列性質(zhì):

  (1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

 。2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

  注

  1、雙曲線的兩個(gè)分支與x軸和y軸沒有交點(diǎn);

  2、雙曲線的兩個(gè)分支關(guān)于原點(diǎn)成中心對(duì)稱。

  以上兩點(diǎn)性質(zhì)在上堂課的問(wèn)題1和問(wèn)題2中反映了怎樣的實(shí)際意義?

  在問(wèn)題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時(shí)間少。

  在問(wèn)題2中反映了在面積一定的情況下,飼養(yǎng)場(chǎng)的一邊越長(zhǎng),另一邊越小。

  三、實(shí)踐應(yīng)用

  例1若反比例函數(shù)的圖象在第二、四象限,求m的值。

  分析由反比例函數(shù)的`定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個(gè)條件可解出m的值。

  解由題意,得解得。

  例2已知反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過(guò)的象限。

  分析由于反比例函數(shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過(guò)二、四象限,又—k>0,所以直線與y軸的交點(diǎn)在x軸的上方。

  解因?yàn)榉幢壤瘮?shù)(k≠0),當(dāng)x>0時(shí),y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過(guò)一、二、四象限。

  例3已知反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2)。

  (1)求這個(gè)函數(shù)的解析式,并畫出圖象;

  (2)若點(diǎn)A(—5,m)在圖象上,則點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否還在圖象上?

  分析(1)反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過(guò)列表、描點(diǎn)、連線可畫出反比例函數(shù)的圖象;

  (2)由點(diǎn)A在反比例函數(shù)的圖象上,易求出m的值,再驗(yàn)證點(diǎn)A關(guān)于兩坐標(biāo)軸和原點(diǎn)的對(duì)稱點(diǎn)是否在圖象上。

  解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。

  而反比例函數(shù)的圖象過(guò)點(diǎn)(1,—2),即當(dāng)x=1時(shí),y=—2。

  所以,k=—2。

  即反比例函數(shù)的解析式為:。

  (2)點(diǎn)A(—5,m)在反比例函數(shù)圖象上,所以,

  點(diǎn)A的坐標(biāo)為。

  點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;

  點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)不在這個(gè)圖象上;

  點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱點(diǎn)在這個(gè)圖象上;

  例4已知函數(shù)為反比例函數(shù)。

 。1)求m的值;

 。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?

  (3)當(dāng)—3≤x≤時(shí),求此函數(shù)的最大值和最小值。

  解(1)由反比例函數(shù)的定義可知:解得,m=—2。

  (2)因?yàn)椤?<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。

 。3)因?yàn)樵诘趥(gè)象限內(nèi),y隨x的增大而增大,

  所以當(dāng)x=時(shí),y最大值=;

  當(dāng)x=—3時(shí),y最小值=。

  所以當(dāng)—3≤x≤時(shí),此函數(shù)的最大值為8,最小值為。

  例5一個(gè)長(zhǎng)方體的體積是100立方厘米,它的長(zhǎng)是y厘米,寬是5厘米,高是x厘米。

 。1)寫出用高表示長(zhǎng)的函數(shù)關(guān)系式;

  (2)寫出自變量x的取值范圍;

  (3)畫出函數(shù)的圖象。

  解(1)因?yàn)?00=5xy,所以。

 。2)x>0。

  (3)圖象如下:

  說(shuō)明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個(gè)分支。

  四、交流反思

  本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。

  1、反比例函數(shù)的圖象是雙曲線(hyperbola)。

  2、反比例函數(shù)有如下性質(zhì):

  (1)當(dāng)k>0時(shí),函數(shù)的圖象在第一、三象限,在每個(gè)象限內(nèi),曲線從左向右下降,也就是在每個(gè)象限內(nèi)y隨x的增加而減少;

  (2)當(dāng)k<0時(shí),函數(shù)的圖象在第二、四象限,在每個(gè)象限內(nèi),曲線從左向右上升,也就是在每個(gè)象限內(nèi)y隨x的增加而增加。

  五、檢測(cè)反饋

  1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:

  (1);(2)。

  2、已知y是x的反比例函數(shù),且當(dāng)x=3時(shí),y=8,求:

  (1)y和x的函數(shù)關(guān)系式;

  (2)當(dāng)時(shí),y的值;

 。3)當(dāng)x取何值時(shí),?

  3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。

  4、已知反比例函數(shù)經(jīng)過(guò)點(diǎn)A(2,—m)和B(n,2n),求:

 。1)m和n的值;

  (2)若圖象上有兩點(diǎn)P1(x1,y1)和P2(x2,y2),且x1<0

初中數(shù)學(xué)教案6

  一、教學(xué)目標(biāo):

  1、知道一次函數(shù)與正比例函數(shù)的定義。

  2、理解掌握一次函數(shù)的圖象的特征和相關(guān)的性質(zhì)。

  3、弄清一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系。

  4、掌握直線的平移法則簡(jiǎn)單應(yīng)用。

  5、能應(yīng)用本章的基礎(chǔ)知識(shí)熟練地解決數(shù)學(xué)問(wèn)題。

  二、教學(xué)重、難點(diǎn):

  重點(diǎn):初步構(gòu)建比較系統(tǒng)的函數(shù)知識(shí)體系。

  難點(diǎn):對(duì)直線的平移法則的理解,體會(huì)數(shù)形結(jié)合思想。

  三、教學(xué)過(guò)程:

  1、一次函數(shù)與正比例函數(shù)的定義:

  一次函數(shù):一般地,若y=kx+b(其中k,b為常數(shù)且k≠0),那么y是一次函數(shù)。

  正比例函數(shù):對(duì)于 y=kx+b,當(dāng)b=0, k≠0時(shí),有y=kx,此時(shí)稱y是x的正比例函數(shù),k為正比例系數(shù)。

  2、一次函數(shù)與正比例函數(shù)的區(qū)別與聯(lián)系:

 。1)從解析式看:y=kx+b(k≠0,b是常數(shù))是一次函數(shù);而y=kx(k≠0,b=0)是正比例函數(shù),顯然正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)是正比例函數(shù)的推廣。

 。2)從圖象看:正比例函數(shù)y=kx(k≠0)的圖象是過(guò)原點(diǎn)(0,0)的一條直線;而一次函數(shù)y=kx+b(k≠0)的圖象是過(guò)點(diǎn)(0,b)且與y=kx

  平行的`一條直線。

  基礎(chǔ)訓(xùn)練:

  1、寫出一個(gè)圖象經(jīng)過(guò)點(diǎn)(1,— 3)的函數(shù)解析式為:

  2、直線y=—2X—2不經(jīng)過(guò)第 象限,y隨x的增大而。

  3、如果P(2,k)在直線y=2x+2上,那么點(diǎn)P到x軸的距離是:

  4、已知正比例函數(shù) y =(3k—1)x,若y隨x的增大而增大,則k是:

  5、過(guò)點(diǎn)(0,2)且與直線y=3x平行的直線是:

  6、若正比例函數(shù)y =(1—2m)x 的圖像過(guò)點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)當(dāng)x1<x2時(shí),y1>y2,則m的取值范圍是:

  7、若y—2與x—2成正比例,當(dāng)x=—2時(shí),y=4,則x= 時(shí),y = —4。

  8、直線y=— 5x+b與直線y=x—3都交y軸上同一點(diǎn),則b的值為 。

  9、已知圓O的半徑為1,過(guò)點(diǎn)A(2,0)的直線切圓O于點(diǎn)B,交y軸于點(diǎn)C。

 。1)求線段AB的長(zhǎng)。

 。2)求直線AC的解析式。

初中數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  1、理解切線的判定定理,并學(xué)會(huì)運(yùn)用。

  2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

  教學(xué)重點(diǎn):切線的判定定理和切線判定的方法。

  教學(xué)難點(diǎn):切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過(guò)半徑外端;二是直線垂直于這條半徑;學(xué)生開始時(shí)掌握不好并極容易忽視一.

  教學(xué)過(guò)程:

  一、復(fù)習(xí)提問(wèn)

  【教師】問(wèn)題1.怎樣過(guò)直線l上一點(diǎn)P作已知直線的垂線?

  問(wèn)題2.直線和圓有幾種位置關(guān)系?

  問(wèn)題3.如何判定直線l是⊙O的切線?

  啟發(fā):(1)直線l和⊙O的公共點(diǎn)有幾個(gè)?

 。2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系 如何?

  學(xué)生答完后,教師強(qiáng)調(diào)(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)

  再啟發(fā):若把距離OA理解為 OA⊥l,OA=r;把點(diǎn)A理解為半徑在圓上的端點(diǎn) ,請(qǐng)同學(xué)們?cè)噷⑸厦娑ɡ碛眯碌睦斫飧膶懗尚碌拿},此命題就 是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)

  二、引入新課內(nèi)容

  【學(xué)生】命題:經(jīng)過(guò)半徑的在圓上的端點(diǎn)且垂直于半 徑的直線是圓的切線。

  證明定理:?jiǎn)l(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已 知、求證,分析證明思路,閱讀課本P60。

  定理:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線.

  定理的證明:已知:直線l經(jīng)過(guò)半徑OA的外端點(diǎn)A,直線l⊥OA,

  求證:直線l是⊙O的切線

  證明:略

  定理的符號(hào)語(yǔ)言:∵直線l⊥OA,直線l經(jīng)過(guò)半徑OA的外端A

  ∴直線l為⊙O的切線。

  是非題:

 。1)垂直于圓的半徑的直線一定是這個(gè)圓的切線。 ( )

 。2)過(guò)圓的半徑的外端的直線一定是這個(gè)圓的切線。 ( )

  三、例題講解

  例1、已知:直線AB經(jīng)過(guò)⊙O上的點(diǎn)C,并且OA=OB,CA=CB。

  求證:直線AB是⊙O的切線。

  引導(dǎo)學(xué)生分析:由于AB過(guò)⊙O上的點(diǎn)C,所以連結(jié)OC,只要證明AB⊥OC即可。

  證明:連結(jié)OC.

  ∵OA=OB,CA=CB,

  ∴AB⊥OC

  又∵直線AB經(jīng)過(guò)半徑OC的外端C

  ∴直線AB是⊙O的切線。

  練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過(guò)⊙O上的點(diǎn)A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

  練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD于點(diǎn)D,AC平分∠BAD。

  求證:CD是⊙O的切線。

  例2、如圖,已知AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,且BD=OB,過(guò)點(diǎn)D作射線DE,使∠ADE=30°。

  求證:DE是⊙O的切線。

  思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問(wèn)⊙D的切線有幾條?是哪幾條?為什么?

  四、小結(jié)

  1.切線的判定定理。

  2.判定一條直線是圓的切線的方法:

 、俣x:直線和圓有唯一公共點(diǎn)。

  ②數(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d = r)。[

 、矍芯的判定定理:經(jīng)過(guò)半徑外端且與這條半徑垂直的直線是圓的切線。

  3.證明一條直線是圓的切線的輔助線和證法規(guī)律。

  凡是已知公共點(diǎn)(如:直線經(jīng)過(guò)圓上的點(diǎn);直線和圓有一個(gè)公共點(diǎn);)往往是"連結(jié)"圓心和公共點(diǎn),證明"垂直"(直線和半徑);若不知公共點(diǎn),則過(guò)圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點(diǎn),“連半徑,證垂直”;不知公共點(diǎn),則“作垂直,證半徑”。

  五、布置作業(yè):略

  《切線的判定》教后體會(huì)

  本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級(jí)研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過(guò)學(xué)生自我活動(dòng)得到數(shù)學(xué)結(jié)論作為教學(xué)重點(diǎn),呈現(xiàn)學(xué)生真實(shí)的思維過(guò)程為教學(xué)宗旨,進(jìn)行教學(xué)設(shè)計(jì),目的在于讓學(xué)生對(duì)知識(shí)有一個(gè)本質(zhì)的、有效的理解。本節(jié)課切實(shí)反映了平時(shí)的教學(xué)情況,為前來(lái)調(diào)研和研討的老師提供了真實(shí)的樣本。反思本節(jié)課,有以下幾個(gè)成功與不足之處:

  成功之處:

  一、 教材的二度設(shè)計(jì)順應(yīng)了學(xué)生的認(rèn)知規(guī)律

  這批學(xué)生習(xí)慣于單一知識(shí)點(diǎn)的學(xué)習(xí),即得出一個(gè)知識(shí)點(diǎn),必須由淺入深反復(fù)進(jìn)行練習(xí),鞏固后方能加以提升與綜合,否則就會(huì)混淆概念或定理的條件和結(jié)論,導(dǎo)致錯(cuò)誤,久之便會(huì)失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時(shí)課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時(shí),兩個(gè)定理的運(yùn)用和切線的兩種常用的判定方法作為第二課時(shí),學(xué)生往往會(huì)因第一時(shí)間得不到及時(shí)的鞏固,對(duì)定理本質(zhì)的東西不能很好地理解,在運(yùn)用時(shí)抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識(shí)點(diǎn)多不知所措,在云里霧里。二度設(shè)計(jì)將切線的判定方法作為第一課時(shí),切線的性質(zhì)定理以及兩個(gè)定理的'綜合運(yùn)用作為第二課時(shí),這樣的設(shè)計(jì)即是對(duì)前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對(duì)后面學(xué)習(xí)綜合運(yùn)用兩個(gè)定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個(gè)循序漸進(jìn)、溫過(guò)知新的過(guò)程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。

  二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念

  數(shù)感類似與語(yǔ)感、樂感、美感,擁有了感覺,知識(shí)便會(huì)融會(huì)貫通,學(xué)習(xí)就會(huì)輕松。擁有數(shù)感,不僅會(huì)對(duì)數(shù)學(xué)知識(shí)反應(yīng)靈敏,更會(huì)在生活中不知不覺運(yùn)用數(shù)學(xué)思維方式解決實(shí)際問(wèn)題。本節(jié)課中,兩個(gè)例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個(gè)習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會(huì)做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對(duì)學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實(shí)證明,學(xué)生有這樣的理解、概括和表達(dá)能力。通過(guò)思考得出正確的結(jié)論,這個(gè)結(jié)論往往是刻骨銘心的,長(zhǎng)此以往,對(duì)數(shù)和形的感覺會(huì)越來(lái)越好。

  不足之處:

  一、這節(jié)課沒有“高潮”,沒有讓學(xué)生特別興奮激起求知欲的情境,整個(gè)教學(xué)過(guò)程是在一個(gè)平靜、和諧的氛圍中完成的。

  二、課的引入太直截了當(dāng),脫離不了應(yīng)試教學(xué)的味道。

  三、教學(xué)風(fēng)格的定勢(shì)使所授知識(shí)不能很合理地與生活實(shí)際相聯(lián)系,一定程度上阻礙了學(xué)生解決實(shí)際問(wèn)題能力的發(fā)展。

  通過(guò)本節(jié)課的教學(xué),我深刻感悟到在教學(xué)實(shí)踐中,教師要不斷地充實(shí)自己,拓寬知識(shí)面,努力突破已有的教學(xué)形狀,適應(yīng)現(xiàn)代教育,適應(yīng)現(xiàn)代學(xué)生。課堂教學(xué)中,敢于實(shí)驗(yàn),舍得放手,盡量培養(yǎng)學(xué)生主體意識(shí),問(wèn)題讓學(xué)生自己去揭示,方法讓學(xué)生自己去探索,規(guī)律讓學(xué)生自己去發(fā)現(xiàn),知識(shí)讓學(xué)生自己去獲得,教師只提供給學(xué)生現(xiàn)實(shí)情境、充足的思考時(shí)間和活動(dòng)空間,給學(xué)生表現(xiàn)自我的機(jī)會(huì)和成功的體驗(yàn),培養(yǎng)學(xué)生的自我意識(shí),發(fā)揮學(xué)生的主體作用,來(lái)真正實(shí)現(xiàn)《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”這一教學(xué)理念。

初中數(shù)學(xué)教案8

  一、教學(xué)目標(biāo)

  1、了解二次根式的意義;

  2、掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問(wèn)題;

  3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;

  4、通過(guò)二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

  5、通過(guò)二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):

 。1)二次根的意義;

 。2)二次根式中字母的取值范圍。

  難點(diǎn):確定二次根式中字母的取值范圍。

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合。

  四、教學(xué)過(guò)程

 。ㄒ唬⿵(fù)習(xí)提問(wèn)

  1、什么叫平方根、算術(shù)平方根?

  2、說(shuō)出下列各式的意義,并計(jì)算

 。ǘ┮胄抡n

  新課:二次根式

  定義:式子叫做二次根式。

  對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問(wèn)題,引導(dǎo)學(xué)生總結(jié):

 。1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。

 。2)是二次根式,而,提問(wèn)學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”。請(qǐng)學(xué)生舉出幾個(gè)二次根式的例子,并說(shuō)明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

  例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

  例2 x是怎樣的.實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?

  解:略。

  說(shuō)明:這個(gè)問(wèn)題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。

  例3當(dāng)字母取何值時(shí),下列各式為二次根式:

  分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問(wèn)題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。

  (2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。

 。3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。

 。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

 。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。

 。4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數(shù)學(xué)教案9

  教學(xué)目標(biāo):

  (一)知識(shí)與技能

  理解單項(xiàng)式及單項(xiàng)式系數(shù)、次數(shù)的概念;能準(zhǔn)確迅速地確定一個(gè)單項(xiàng)式的系數(shù)和次數(shù);會(huì)用含字母的式子表示實(shí)際問(wèn)題中的數(shù)量關(guān)系。

  (二)過(guò)程與方法

  1.在經(jīng)歷用字母表示數(shù)量關(guān)系的過(guò)程中,發(fā)展符號(hào)感;

  2. 通過(guò)小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概念的形成過(guò)程,培養(yǎng)學(xué)生自主探索知識(shí)和合作交流能力

  (三)情感態(tài)度價(jià)值觀

  1.通過(guò)豐富多彩的現(xiàn)實(shí)情景,讓學(xué)生經(jīng)歷從具體問(wèn)題中抽象出數(shù)量關(guān)系,在解決問(wèn)題中了解數(shù)學(xué)的價(jià)值,增長(zhǎng)“用數(shù)學(xué)”的信心.

  2.通過(guò)用含字母的式子描述現(xiàn)實(shí)世界中的數(shù)量關(guān)系,認(rèn)識(shí)到它是解決實(shí)際問(wèn)題的重要數(shù)學(xué)工具之一。

  教學(xué)重、難點(diǎn):

  重點(diǎn):?jiǎn)雾?xiàng)式及單項(xiàng)式系數(shù)、次數(shù)的概念。

  難點(diǎn):?jiǎn)雾?xiàng)式次數(shù)的概念;單項(xiàng)式的書寫格式及注意點(diǎn)。

  教學(xué)方法:

  引導(dǎo)——探究式

  在感性材料的基礎(chǔ)上,學(xué)生自主探究現(xiàn)實(shí)情景中用字母表示數(shù)的問(wèn)題,通過(guò)觀察、分析、比較,找出材料中個(gè)體的共同點(diǎn),教師引導(dǎo)學(xué)生共同抽象、概括單項(xiàng)式及相關(guān)的概念.

  教具準(zhǔn)備:

  多媒體課件、小黑板.

  教學(xué)過(guò)程:

  一、 創(chuàng)設(shè)情境,引入新課

  出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向?qū)W生介紹青藏鐵路所創(chuàng)造的歷史之最。

  情境問(wèn)題:

  青藏鐵路西線上,在格爾木到拉薩之間有一段很長(zhǎng)的凍土地段。列車在凍土地段的行駛速度是100千米/時(shí),在非凍土地段的行駛速度可以達(dá)到120千米/時(shí),請(qǐng)根據(jù)這些數(shù)據(jù)回答:列車在凍土地段行駛時(shí),2小時(shí)能行駛多少千米?3小時(shí)呢?t小時(shí)呢?

  設(shè)計(jì)意圖:從學(xué)生熟悉的情境出發(fā),創(chuàng)設(shè)情境,讓學(xué)生感受青藏鐵路的偉大成就,激發(fā)

  愛國(guó)主義情感,得到一次情感教育。

  解:根據(jù)路程、速度、時(shí)間之間的關(guān)系:路程=速度×?xí)r間

  2小時(shí)行駛的路程是:100×2=200(千米)

  3小時(shí)行駛的路程是:100×3=300(千米)

  t小時(shí)行駛的路程是:100×t=100t(千米)

  注意:在含有字母的式子中若出現(xiàn)乘號(hào),通常將乘號(hào)寫作“ · ”或省略不寫。

  如:100×a可以寫成100a或100a。

  代數(shù)式:用基本的運(yùn)算符號(hào)(運(yùn)算包括加、減、乘除、乘方等)把數(shù)和表示數(shù)的字母連接起來(lái)的式子。

  代數(shù)式可以簡(jiǎn)明地表示數(shù)量和數(shù)量的關(guān)系,本節(jié)我們就來(lái)學(xué)習(xí)最基本也是最重要的一類代數(shù)式整式。

  設(shè)計(jì)意圖:從學(xué)生已有的數(shù)學(xué)經(jīng)驗(yàn):路程=速度×?xí)r間出發(fā),建立新舊知識(shí)之間的聯(lián)系

  讓學(xué)生歷一個(gè)從一般到特殊再到一般的認(rèn)識(shí)過(guò)程,發(fā)展學(xué)生的認(rèn)知觀念。

  二、合作交流,探究新知

  探究

  思考:用含字母的式子填空(獨(dú)立完成),并觀察列出的式子有什么共同特點(diǎn)(小組可交流討論)。

  1、邊長(zhǎng)為a的正方體的表面積是__,體積是__.

  2、鉛筆的單價(jià)是x元,圓珠筆的單價(jià)是鉛筆的2.5倍,則圓珠筆的單價(jià)是___元。

  3、一輛汽車的.速度是v千米∕小時(shí),它t小時(shí)行駛的路程為__千米。

  4、數(shù)n的相反數(shù)是__。

  解:(1)6a2、 a3 (2)2.5x (3) vt (4)-n

  思考:它們有什么共同的特點(diǎn)?

  6a 2=6·a·a a3=a·a·a 2.5x=2.5·x vt=v·t -n=-1·n

  單項(xiàng)式:數(shù)與字母、字母與字母的乘積。

  注意:?jiǎn)为?dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。

  設(shè)計(jì)意圖:從熟悉的實(shí)際背景出發(fā),充分讓學(xué)生自己觀察、自己發(fā)現(xiàn)、自己描述,進(jìn)行自主學(xué)習(xí)和合作交流,獲得數(shù)學(xué)猜想和數(shù)學(xué)經(jīng)驗(yàn),滿足學(xué)生的表現(xiàn)欲和探究欲,使學(xué)生學(xué)得輕松愉快,充分體現(xiàn)課堂教學(xué)的開放性。

  火眼金睛

  下列各代數(shù)式中哪些是單項(xiàng)式哪些不是?

  (1)a (2) 0 (3) a2

  (4) 6a (5)

  (6)

  (7)3a+2b (8)xy2

  設(shè)計(jì)意圖:加強(qiáng)學(xué)生對(duì)不同形式的單項(xiàng)式的直觀認(rèn)識(shí)。

  解剖單項(xiàng)式

  系數(shù):?jiǎn)雾?xiàng)式中的數(shù)字因數(shù)。

  如:-3x的系數(shù)是 ,-ab的系數(shù)是 , 的系數(shù)是 。

  次數(shù):一個(gè)單項(xiàng)式中的所有字母的指數(shù)的和。

  如:-3x的次數(shù)是 ,ab的次數(shù)是 。

  小試身手

  單項(xiàng)式 2a 2 -1.2h xy2 -t2 -32x2y

  系數(shù)

  次數(shù)

  設(shè)計(jì)意圖:了解學(xué)生對(duì)單項(xiàng)式系數(shù)、次數(shù)的概念是否理解,找出存在的問(wèn)題,從而進(jìn)一步鞏固概念。

  單項(xiàng)式的注意點(diǎn):

  (1)數(shù)與字母相乘時(shí),數(shù)應(yīng)寫在字母的___,且乘號(hào)可_________;

  (2)帶分?jǐn)?shù)作為系數(shù)時(shí),應(yīng)改寫成_______的形式;

  (3)式子中若出現(xiàn)相除時(shí),應(yīng)把除號(hào)寫成____的形式;

  (4)把“1”或“-1”作為項(xiàng)的系數(shù)時(shí),“1”可以__不寫。

  行家看門道

 、1x ②-1x

 、踑×3 ④a÷2

 、 ⑥m的系數(shù)為1,次數(shù)為0

 、 的系數(shù)為2,次數(shù)為2

  設(shè)計(jì)意圖:?jiǎn)雾?xiàng)式的書寫和表示有其特有的格式和注意點(diǎn),通過(guò)以上兩個(gè)題目讓學(xué)生進(jìn)一步明確注意點(diǎn)。

  三、例題講解,鞏固新知

  例1:用單項(xiàng)式填空,并指出它們的系數(shù)和次數(shù):

  (1)每包書有12冊(cè),n包書有 冊(cè);

  (2)底邊長(zhǎng)為a,高為h的三角形的面積 ;

  (3)一個(gè)長(zhǎng)方體的長(zhǎng)和寬都是a,高是h,它的體積是 ;

  (4)一臺(tái)電視機(jī)原價(jià)a元,現(xiàn)按原價(jià)的9折出售,這臺(tái)電視機(jī)現(xiàn)在的售價(jià)

  為 元;

  (5)一個(gè)長(zhǎng)方形的長(zhǎng)0.9,寬是a,這個(gè)長(zhǎng)方形的面積是 .

  解:(1)12n,它的系數(shù)是12,次數(shù)是1

  (2) ,它的系數(shù)是 , 次數(shù)是2;

  (3)a2h,它的系數(shù)是1,次數(shù)是3;

  (4)0.9a,它的系數(shù)是0.9,次數(shù)是1;

  (5)0.9a,它的系數(shù)是0.9,次數(shù)是1。

  設(shè)計(jì)意圖:學(xué)生能用單項(xiàng)式表示簡(jiǎn)單的實(shí)際問(wèn)題中的數(shù)量關(guān)系,并進(jìn)一步鞏固單項(xiàng)式的系數(shù)、次數(shù)的概念。

  試一試

  你還能賦予0.9a一個(gè)含義嗎?

  設(shè)計(jì)意圖:同一個(gè)式子可以表示不同的含義,通過(guò)這個(gè)例子讓學(xué)生進(jìn)一步體會(huì)式子更具有一般性,而且發(fā)散學(xué)生思維。

  大膽嘗試

  寫出一個(gè)單項(xiàng)式,使它的系數(shù)是2,次數(shù)是3.

  設(shè)計(jì)意圖:充分發(fā)揮學(xué)生的想象力,讓每一個(gè)學(xué)生都有獲得成功的體驗(yàn),為不同程度的學(xué)生一個(gè)展示自我的機(jī)會(huì),激發(fā)他們的學(xué)習(xí)興趣。

  四、拓展提高

  嘗試應(yīng)用

  用單項(xiàng)式填空,并指出它們的系數(shù)和次數(shù):

  (1)全校學(xué)生總數(shù)是x,其中女生占總數(shù)48%,則女生人數(shù)是 ,男生人數(shù)是 ;

  (2)一輛長(zhǎng)途汽車從楊柳村出發(fā),3小時(shí)后到達(dá)相距s千米的溪河鎮(zhèn),這輛長(zhǎng)途汽車的平均速度是 ;

  (3)產(chǎn)量由m千克增長(zhǎng)10%,就達(dá)到 千克;

  設(shè)計(jì)意圖:讓學(xué)生感受單項(xiàng)式在實(shí)際生活中的應(yīng)用,進(jìn)一步掌握單項(xiàng)式及單項(xiàng)式系數(shù)、次數(shù)的概念。

  能力提升

  1、已知-xay是關(guān)于x、y的三次單項(xiàng)式,那么a= ,b= .

  2、若-ax2yb+1是關(guān)于x、y的五次單項(xiàng)式,且系數(shù)為-3,則a= ,b= .

  設(shè)計(jì)意圖:照顧學(xué)有余力的學(xué)生,拓展學(xué)生思維,讓學(xué)生體會(huì)跳一跳、摘桃子的樂趣。

  五、小結(jié):

  本節(jié)課你感受到了嗎?

  生活中處處有數(shù)學(xué)

  本節(jié)課我們學(xué)了什么?你能說(shuō)說(shuō)你的收獲嗎?

  1、單項(xiàng)式的概念: 數(shù)與字母、字母與字母的乘積。

  2、單項(xiàng)式的系數(shù)、次數(shù)的概念。

  系數(shù):?jiǎn)雾?xiàng)中的數(shù)字因數(shù);

  次數(shù):?jiǎn)雾?xiàng)中所有字母的指數(shù)和。

  3、會(huì)用單項(xiàng)式表示實(shí)際問(wèn)題中的數(shù)量關(guān)系,注意列式時(shí)式子要規(guī)范書寫。

  設(shè)計(jì)意圖:通過(guò)回顧和反思,讓學(xué)生看到自己的進(jìn)步,激勵(lì)學(xué)生,使學(xué)生相信自己在今后的學(xué)習(xí)中不斷進(jìn)步,不斷積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),促進(jìn)學(xué)生形成良好的心理品質(zhì)。

  結(jié)束寄語(yǔ)

  悟性的高低取決于有無(wú)悟“心”,其實(shí),人與人的差別就在于你是否去思考,去發(fā)現(xiàn)!

  設(shè)計(jì)意圖:這是對(duì)學(xué)生的激勵(lì)也是對(duì)學(xué)生的一種期盼,可以增進(jìn)師生間的情感交流。

  六、板書設(shè)計(jì)

  2.1 整式

  單項(xiàng)式概念 探究 例1 多

  單項(xiàng)式的系數(shù)概念 觀察交流 嘗試應(yīng)用 媒

  單項(xiàng)式的次數(shù)概念 能力提升 體

  七、作業(yè):

  1.作業(yè)本(必做)。

  2. 請(qǐng)下面圖片設(shè)計(jì)一個(gè)故事情境,要求其中包含的數(shù)量關(guān)系能夠用單項(xiàng)式表示,并且指出它們的系數(shù)和次數(shù)(選做)。

  設(shè)計(jì)意圖:布置分層作業(yè),既讓學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高。讓學(xué)生自行編題是一種創(chuàng)造性的思維活動(dòng),它可以改變一味由教師出題的形式,活躍學(xué)生思維,使學(xué)生能夠透徹理解知識(shí),同時(shí)培養(yǎng)同學(xué)之間的競(jìng)爭(zhēng)意識(shí)。

  八、設(shè)計(jì)理念:

  本節(jié)課是研究整式的起始課,它是進(jìn)一步學(xué)習(xí)多項(xiàng)式的基礎(chǔ),因此對(duì)單項(xiàng)式有關(guān)概念的理解和掌握情況,將直接影響到后續(xù)學(xué)習(xí)。為突出重點(diǎn),突破難點(diǎn),教學(xué)中要加強(qiáng)直觀性,即為學(xué)生提供足夠的感知材料,豐富學(xué)生的感性認(rèn)識(shí),幫助學(xué)生認(rèn)識(shí)概念,同時(shí)也要注重分析,亦即在剖析單項(xiàng)式結(jié)構(gòu)時(shí),借助反例練習(xí),抓住概念易混淆處和判斷易出錯(cuò)處,強(qiáng)化認(rèn)識(shí),幫助學(xué)生理解單項(xiàng)式系數(shù)、次數(shù),為進(jìn)一步學(xué)習(xí)新知做好鋪墊。

  針對(duì)七年級(jí)學(xué)生學(xué)習(xí)熱情高,但觀察、分析、認(rèn)識(shí)問(wèn)題能力較弱的特點(diǎn),教學(xué)時(shí)將提供大量感性材料,以啟發(fā)引導(dǎo)為主,同時(shí)輔之以討論、練習(xí)、合作交流等學(xué)習(xí)活動(dòng),達(dá)到掌握知識(shí)的目的,并逐步培養(yǎng)起學(xué)生觀察、分析、抽象、概括的能力,同時(shí)注重培養(yǎng)學(xué)生由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),為進(jìn)一步學(xué)習(xí)同類項(xiàng)打下堅(jiān)實(shí)的基礎(chǔ)。

初中數(shù)學(xué)教案10

  一學(xué)期的工作結(jié)束了,可以說(shuō)緊張忙碌卻收獲多多;仡欉@學(xué)期的工作,我教九(4)班的數(shù)學(xué),我總是在不斷地摸索和學(xué)習(xí)中進(jìn)行教學(xué),工作中有收獲和快樂,也有不盡如人意的地方,為了更好地總結(jié)經(jīng)驗(yàn),吸取教訓(xùn),使以后的工作能夠有效、有序地進(jìn)行,現(xiàn)將教學(xué)所得總結(jié)如下:

  一、在備課方面

  在上課前我總是查閱很多教參、教輔,力求深入理解教材,準(zhǔn)確把握難重點(diǎn),總是要經(jīng)過(guò)深思熟慮之后才寫教案,力爭(zhēng)做到熟知知識(shí)要點(diǎn),心中有數(shù)。

  二、在教學(xué)過(guò)程方面

  在課堂教學(xué)中我一直注重學(xué)生的參與。讓學(xué)生參與到課堂教學(xué)中來(lái),讓他們自主的去探究問(wèn)題,發(fā)現(xiàn)知識(shí)。波利亞說(shuō):“學(xué)習(xí)任何知識(shí)的最佳途徑都是由自己去發(fā)現(xiàn),因?yàn)檫@種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的內(nèi)在規(guī)律、性質(zhì)和聯(lián)系!敝挥谐浞职l(fā)揮學(xué)生的主體作用,讓學(xué)生人人參與,才能最大限度地促進(jìn)學(xué)生的發(fā)展。但還是難免受傳統(tǒng)教學(xué)觀念的'影響,加之經(jīng)驗(yàn)不足,不太敢放手,怕完成不了當(dāng)趟課的教學(xué)任務(wù)。后來(lái)在學(xué)!啊钡慕虒W(xué)模式下,才開始進(jìn)一步嘗試,并在不斷的嘗試中總結(jié)經(jīng)驗(yàn)。

  三、工作中存在的問(wèn)題

  1)、教材挖掘不深入。

  2)、教法不靈活,不能吸引學(xué)生學(xué)習(xí),對(duì)學(xué)生的引導(dǎo)、啟發(fā)不足。

  3)、新課標(biāo)下新的教學(xué)思想學(xué)習(xí)不深入。對(duì)學(xué)生的自主學(xué)習(xí),合作學(xué)習(xí),缺乏理論指導(dǎo)

  4)、差生末抓在手。由于對(duì)學(xué)生的了解不夠,對(duì)學(xué)生的學(xué)習(xí)態(tài)度、思維能力不太清楚。上課和復(fù)習(xí)時(shí)該講的都講了,學(xué)生掌握的情況怎樣,教師心中無(wú)數(shù)。導(dǎo)致了教學(xué)中的盲目性。

  四、今后努力的方向

  1)、加強(qiáng)學(xué)習(xí),學(xué)習(xí)新教學(xué)模式下新的教學(xué)思想。

  2)、熟讀初一到初三的數(shù)學(xué)教材,深入挖掘教材,進(jìn)一步把握知識(shí)點(diǎn)和考點(diǎn)。

  3)、多聽課,學(xué)習(xí)老教師對(duì)知識(shí)點(diǎn)的處理和對(duì)教材的把握,以及他們處理突發(fā)事件方法。

  4)、加強(qiáng)轉(zhuǎn)差培優(yōu)力度。

  5)、加強(qiáng)教學(xué)反思,加大教學(xué)投入。

  一學(xué)期的教學(xué)工作即將結(jié)束,這半年的教學(xué)工作很苦,很累,但在不斷的摸索中,自己學(xué)到了很多東西。今后我會(huì)更加努力提高自己的業(yè)務(wù)水平。

初中數(shù)學(xué)教案11

  問(wèn)題描述:

  初中數(shù)學(xué)教學(xué)案例

  初中的,隨便那個(gè)年級(jí).20xx字.案例和反思

  1個(gè)回答 分類:數(shù)學(xué) 20xx-11-30

  問(wèn)題解答:

  我來(lái)補(bǔ)答

  2.3 平行線的性質(zhì)

  一、教材分析:

  本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(五四學(xué)制)七年級(jí)上冊(cè)第2章 第3節(jié) 平行線的性質(zhì),它是平行線及直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是“空間與圖形”的重要組成部分.

  二、教學(xué)目標(biāo):

  知識(shí)與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問(wèn)題.

  數(shù)學(xué)思考:在平行線的性質(zhì)的探究過(guò)程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過(guò)程.

  解決問(wèn)題:通過(guò)探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識(shí)和創(chuàng)新精神.

  情感態(tài)度與價(jià)值觀:在探究活動(dòng)中,讓學(xué)生獲得親自參與研究的情感體驗(yàn),從而增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和勇于探索、鍥而不舍的精神.

  三、教學(xué)重、難點(diǎn):

  重點(diǎn):平行線的性質(zhì)

  難點(diǎn):“性質(zhì)1”的探究過(guò)程

  四、教學(xué)方法:

  “引導(dǎo)發(fā)現(xiàn)法”與“動(dòng)像探索法”

  五、教具、學(xué)具:

  教具:多媒體課件

  學(xué)具:三角板、量角器.

  六、教學(xué)媒體:大屏幕、實(shí)物投影

  七、教學(xué)過(guò)程:

 。ㄒ唬﹦(chuàng)設(shè)情境,設(shè)疑激思:

  1.播放一組幻燈片.內(nèi)容:①火車行駛在鐵軌上;②游泳池;③橫格紙.

  2.聲音:日常生活中我們經(jīng)常會(huì)遇到平行線,你能說(shuō)出直線平行的條件嗎?

  學(xué)生活動(dòng):

  思考回答.①同位角相等兩直線平行;②內(nèi)錯(cuò)角相等兩直線平行;③同旁內(nèi)角互補(bǔ)兩直線平行;

  教師:首先肯定學(xué)生的回答,然后提出問(wèn)題.

  問(wèn)題:若兩直線平行,那么同位角、內(nèi)錯(cuò)角、同旁內(nèi)角各有什么關(guān)系呢?

  引出課題——平行線的性質(zhì).

 。ǘ⿺(shù)形結(jié)合,探究性質(zhì)

  1.畫圖探究,歸納猜想

  任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標(biāo)出8個(gè)角(如圖).

  問(wèn)題一:指出圖中的同位角,并度量這些角,把結(jié)果填入下表:

  第一組

  第二組

  第三組

  第四組

  同位角

  ∠1

  ∠5

  角的度數(shù)

  數(shù)量關(guān)系

  學(xué)生活動(dòng):畫圖——度量——填表——猜想

  結(jié)論:兩直線平行,同位角相等.

  問(wèn)題二:再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?

  學(xué)生:探究、討論,最后得出結(jié)論:仍然成立.

  2.教師用《幾何畫板》課件驗(yàn)證猜想

  3.性質(zhì)1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)

 。ㄈ┮晁伎,培養(yǎng)創(chuàng)新

  問(wèn)題三:請(qǐng)判斷內(nèi)錯(cuò)角、同旁內(nèi)角各有什么關(guān)系?

  學(xué)生活動(dòng):獨(dú)立探究——小組討論——成果展示.

  教師活動(dòng):引導(dǎo)學(xué)生說(shuō)理.

  因?yàn)閍‖b 因?yàn)閍‖b

  所以∠1=∠2 所以∠1=∠2

  又 ∠1=∠3 又 ∠1+∠4=180°

  所以∠2=∠3 所以∠2+∠4=180°

  語(yǔ)言敘述:

  性質(zhì)2 兩條直線被第三條直線所截,內(nèi)錯(cuò)角相等.

 。▋芍本平行,內(nèi)錯(cuò)角相等)

  性質(zhì)3 兩條直線被第三條直線所截,同旁內(nèi)角互補(bǔ).

 。▋芍本平行,同旁內(nèi)角互補(bǔ))

 。ㄋ模⿲(shí)際應(yīng)用,優(yōu)勢(shì)互補(bǔ)

  1.(搶答)

 。1)如圖,平行線AB、CD被直線AE所截

 、偃簟1 = 110°,則∠2 = °.理由:.

 、谌簟1 = 110°,則∠3 = °.理由:.

 、廴簟1 = 110°,則∠4 = °.理由:.

 。2)如圖,由AB‖CD,可得( )

  (A)∠1=∠2 (B)∠2=∠3

 。–)∠1=∠4 (D)∠3=∠4

 。3)如圖,AB‖CD‖EF,

  那么∠BAC+∠ACE+∠CEF=( )

 。ˋ) 180°(B)270° (C)360° (D)540°

 。4)誰(shuí)問(wèn)誰(shuí)答:如圖,直線a‖b,

  如:∠1=54°時(shí),∠2= .

  學(xué)生提問(wèn),并找出回答問(wèn)題的同學(xué).

  2.(討論解答)

  如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,

  ∠B=115°,求梯形另外兩角分別是多少度?

 。ㄎ澹└爬ù鎯(chǔ)(小結(jié))

  1.平行線的性質(zhì)1、2、3;

  2.用“運(yùn)動(dòng)”的觀點(diǎn)觀察數(shù)學(xué)問(wèn)題;

  3.用數(shù)形結(jié)合的方法來(lái)解決問(wèn)題.

 。┳鳂I(yè) 第69頁(yè) 2、4、7.

  八、教學(xué)反思:

 、俳痰霓D(zhuǎn)變:本節(jié)課教師的角色從知識(shí)的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者.在引導(dǎo)學(xué)生畫圖、測(cè)量、發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地、動(dòng)態(tài)地展示同位角的關(guān)系,激發(fā)學(xué)生自覺地探究數(shù)學(xué)問(wèn)題,體驗(yàn)發(fā)現(xiàn)的樂趣.

 、趯W(xué)的`轉(zhuǎn)變:學(xué)生的角色從學(xué)會(huì)轉(zhuǎn)變?yōu)闀?huì)學(xué).本節(jié)課學(xué)生不是停留在學(xué)會(huì)課本知識(shí)的層面上,而是站在研究者的角度深入其境.

 、壅n堂氛圍的轉(zhuǎn)變:整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對(duì)學(xué)生的思維活動(dòng)減少干預(yù),教學(xué)過(guò)程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以“對(duì)話”、“討論”為出發(fā)點(diǎn),以互助、合作為手段,以解決問(wèn)題為目的,讓學(xué)生在一個(gè)較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價(jià)值.

初中數(shù)學(xué)教案12

  教學(xué)目標(biāo):

  1、經(jīng)歷收集數(shù)據(jù)、分析數(shù)據(jù)的活動(dòng),體會(huì)統(tǒng)計(jì)在實(shí)際生活中的應(yīng)用。

  2、收集統(tǒng)計(jì)在生活中應(yīng)用的例子,整理收集數(shù)據(jù)的方法。

  3、在解決問(wèn)題的過(guò)程中,整理所學(xué)習(xí)的統(tǒng)計(jì)圖,和統(tǒng)計(jì)量,能用自己的語(yǔ)言描述過(guò)各種統(tǒng)計(jì)圖的特點(diǎn),掌握整理收集數(shù)據(jù)的方法。

  教學(xué)過(guò)程:

  一、課前預(yù)習(xí),出示預(yù)習(xí)提綱:

  1、我們學(xué)習(xí)了哪幾種統(tǒng)計(jì)圖?

  2、這幾種統(tǒng)計(jì)圖各有什么特點(diǎn)?

  3、概率的知識(shí)有哪些?

  二、展示與交流

  (一)提出問(wèn)題

  1、(出示問(wèn)題情境)我們班要和希望小學(xué)的六(1)班建立手拉手班級(jí),怎么樣向他們介紹我們班的一些情況呢?(指名回答)

  2、師:先獨(dú)立列出幾個(gè)你想調(diào)查的問(wèn)題。(寫在練習(xí)本上)

  3、四人小組交流,整理出你們小組都比較感興趣的,又能實(shí)施的3個(gè)問(wèn)題。(小組匯報(bào)、交流、整理)

  4、接著全班匯報(bào)交流(師羅列在黑板上)

  師:大家想調(diào)查這么多的問(wèn)題,現(xiàn)在我們班選擇其中有價(jià)值又能實(shí)施的`問(wèn)題進(jìn)行調(diào)查。(師根據(jù)生的回答進(jìn)行歸納、整理)

  (二)收集數(shù)據(jù)和整理數(shù)據(jù)

  1、師:調(diào)查這幾個(gè)問(wèn)題,你需要收集哪些數(shù)據(jù)?怎么樣收集這些數(shù)據(jù)?與同伴交流收集數(shù)據(jù)的方法。

  2、師:開展實(shí)際調(diào)查的話,如何進(jìn)行調(diào)查比較有效?在調(diào)查的時(shí)候,大家需要注意什么?

  (三)開展調(diào)查

  1、針對(duì)學(xué)生提出的某個(gè)問(wèn)題,先組織小組有效的開展收集和整理數(shù)據(jù)的活動(dòng),然后把數(shù)據(jù)記錄下來(lái),并進(jìn)行整理。

  2、師:誰(shuí)來(lái)說(shuō)一說(shuō)你們小組是怎么樣分工,怎么樣調(diào)查和記錄數(shù)據(jù)的?(指名匯報(bào))

  3、全班匯總、整理、歸納各小組數(shù)據(jù)。(板書)

  4、師:分析上面的數(shù)據(jù),你能得到哪些信息?

  5、師:根據(jù)整理的數(shù)據(jù),想一想繪制什么統(tǒng)計(jì)圖比較好呢?

  6、師:根據(jù)這些信息,你還能提出什么數(shù)學(xué)問(wèn)題?

  (四)回顧統(tǒng)計(jì)活動(dòng)

  1、師:在剛才的統(tǒng)計(jì)活動(dòng),我們都做了些什么?你能按順序說(shuō)一說(shuō)嗎?

  師板書:提出問(wèn)題——收集數(shù)據(jù)——整理數(shù)據(jù)——分析數(shù)據(jù)——作出決策。

  2、收集在生活中應(yīng)用統(tǒng)計(jì)的例子,并說(shuō)說(shuō)這些例子中的數(shù)據(jù)告訴人們哪些信息。(全班交流)

  指名同學(xué)匯報(bào),其他同學(xué)注意聽,并指出這個(gè)同學(xué)舉的例子中你可以獲得什么信息?

  3、結(jié)合生活中的例子說(shuō)說(shuō)收集數(shù)據(jù)有哪些方法?

  (1)先讓學(xué)生在小組內(nèi)交流,引導(dǎo)學(xué)生結(jié)合例子(充分利用第2題中收集來(lái)

  的實(shí)例)來(lái)說(shuō)說(shuō)自己的方法。

  (2)師歸納:常用的收集數(shù)據(jù)的方法有:查閱資料、詢問(wèn)他人、調(diào)查實(shí)驗(yàn)等。

  4、師:同學(xué)們,我們已經(jīng)對(duì)統(tǒng)計(jì)表和統(tǒng)計(jì)圖進(jìn)行了系統(tǒng)的學(xué)習(xí),回憶一下我們已經(jīng)學(xué)過(guò)了哪些統(tǒng)計(jì)圖,對(duì)這些統(tǒng)計(jì)圖,你已經(jīng)知道了哪些知識(shí)?

初中數(shù)學(xué)教案13

  教學(xué)目標(biāo):

  1、通過(guò)解題,使學(xué)生了解到數(shù)學(xué)是具有趣味性的。

  2、培養(yǎng)學(xué)生勤于動(dòng)腦的習(xí)慣。

  教學(xué)過(guò)程:

  一、出示趣味題

  師:老師這里有一些有趣的問(wèn)題,希望大家開動(dòng)腦筋,積極思考。

  1、小衛(wèi)到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問(wèn)小衛(wèi)原有( )錢?

  2、蘋蘋做加法,把一個(gè)加數(shù)22錯(cuò)寫成12,算出結(jié)果是48,問(wèn)正確結(jié)果是( )。

  3、小明做減法,把減數(shù)30寫成20,這樣他算出的.得數(shù)比正確得數(shù)多

  ( ),如果小明算出的結(jié)果是10,正確結(jié)果是( )。

  4、同學(xué)們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種

  辦法來(lái)用△表示。

  5、把一段布5米,一次剪下1米,全部剪下要( )次。

  6、李小松有10本本子,送給小剛2本后,兩人本子數(shù)同樣多,小剛原來(lái)

  有( )本本子。

  二、小組討論

  三、指名講解

  四、評(píng)價(jià)

  1、同學(xué)互評(píng)

  2、老師點(diǎn)評(píng)

  五、小結(jié)

  師:通過(guò)今天的學(xué)習(xí),你有哪些收獲呢?

初中數(shù)學(xué)教案14

  一、內(nèi)容特點(diǎn)

  在知識(shí)與方法上類似于數(shù)系的第一次擴(kuò)張。也是后繼內(nèi)容學(xué)習(xí)的基礎(chǔ)。

  內(nèi)容定位:了解無(wú)理數(shù)、實(shí)數(shù)概念,了解(算術(shù))平方根的概念;會(huì)用根號(hào)表示數(shù)的(算術(shù))平方根,會(huì)求平方根、立方根,用有理數(shù)估計(jì)一個(gè)無(wú)理數(shù)的大致范圍,實(shí)數(shù)簡(jiǎn)單的四則運(yùn)算(不要求分母有理化)。

  二、設(shè)計(jì)思路

  整體設(shè)計(jì)思路:

  無(wú)理數(shù)的引入----無(wú)理數(shù)的表示----實(shí)數(shù)及其相關(guān)概念(包括實(shí)數(shù)運(yùn)算),實(shí)數(shù)的應(yīng)用貫穿于內(nèi)容的始終。

  學(xué)習(xí)對(duì)象----實(shí)數(shù)概念及其運(yùn)算;學(xué)習(xí)過(guò)程----通過(guò)拼圖活動(dòng)引進(jìn)無(wú)理數(shù),通過(guò)具體問(wèn)題的解決說(shuō)明如何表示無(wú)理數(shù),進(jìn)而建立實(shí)數(shù)概念;以類比,歸納探索的方式,尋求實(shí)數(shù)的運(yùn)算法則;學(xué)習(xí)方式----操作、猜測(cè)、抽象、驗(yàn)證、類比、推理等。

  具體過(guò)程:

  首先通過(guò)拼圖活動(dòng)和計(jì)算器探索活動(dòng),給出無(wú)理數(shù)的概念,然后通過(guò)具體問(wèn)題的解決,引入平方根和立方根的概念和開方運(yùn)算。最后教科書總結(jié)實(shí)數(shù)的概念及其分類,并用類比的方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等。

  第一節(jié):數(shù)怎么又不夠用了:通過(guò)拼圖活動(dòng),讓學(xué)生感受無(wú)理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性;借助計(jì)算器探索無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),并從中體會(huì)無(wú)限逼近的思想;會(huì)判斷一個(gè)數(shù)是有理數(shù)還是無(wú)理數(shù)。

  第二、三節(jié):平方根、立方根:如何表示正方形的邊長(zhǎng)?它的值到底是多少?并引入算術(shù)平方根、平方根、立方根等概念和開方運(yùn)算。

  第四節(jié):公園有多寬:在實(shí)際生活和生產(chǎn)實(shí)際中,對(duì)于無(wú)理數(shù)我們常常通過(guò)估算來(lái)求它的近似值,為此這一節(jié)內(nèi)容介紹估算的'方法,包括通過(guò)估算比較大小,檢驗(yàn)計(jì)算結(jié)果的合理性等,其目的是發(fā)展學(xué)生的數(shù)感。

  第五節(jié):用計(jì)算器開方:會(huì)用計(jì)算器求平方根和立方根。經(jīng)歷運(yùn)用計(jì)算器探求數(shù)學(xué)規(guī)律的活動(dòng),發(fā)展合情推理的能力。

  第六節(jié):實(shí)數(shù)?偨Y(jié)實(shí)數(shù)的概念及其分類,并用類比的方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等。

  三、一些建議

  1.注重概念的形成過(guò)程,讓學(xué)生在概念的形成的過(guò)程中,逐步理解所學(xué)的概念;關(guān)注學(xué)生對(duì)無(wú)理數(shù)和實(shí)數(shù)概念的意義理解。

  2.鼓勵(lì)學(xué)生進(jìn)行探索和交流,重視學(xué)生的分析、概括、交流等能力的考察。

  3.注意運(yùn)用類比的方法,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系。

  4.淡化二次根式的概念。

初中數(shù)學(xué)教案15

  1.知識(shí)結(jié)構(gòu)

  2.重點(diǎn)和難點(diǎn)分析

  重點(diǎn):本節(jié)的重點(diǎn)是平行四邊形的概念和性質(zhì).雖然平行四邊形的概念在小學(xué)學(xué)過(guò),但對(duì)于概念本質(zhì)屬性的理解并不深刻,為了加深學(xué)生對(duì)概念的理解,為以后學(xué)習(xí)特殊的平行四邊形打下基礎(chǔ),所以教師不要忽視平行四邊形的概念教學(xué).平行四邊形的性質(zhì)是以后證明四邊形問(wèn)題的基礎(chǔ),也是學(xué)好全章的關(guān)鍵.尤其是平行四邊形性質(zhì)定理的推論,推論的應(yīng)用有兩個(gè)條件:

  一個(gè)是夾在兩條平行線間;

  一個(gè)是平行線段,具備這兩個(gè)條件才能得出一個(gè)結(jié)論平行線段相等,缺少任何一個(gè)條件結(jié)論都不成立,這也是學(xué)生容易犯錯(cuò)的地方,教師要反復(fù)強(qiáng)調(diào).

  難點(diǎn):本節(jié)的難點(diǎn)是平行四邊形性質(zhì)定理的靈活應(yīng)用.為了能熟練的應(yīng)用性質(zhì)定理及其推論,要把性質(zhì)定理和推論的條件和結(jié)論給學(xué)生講清楚,哪幾個(gè)條件,決定哪個(gè)結(jié)論,如何用數(shù)學(xué)符號(hào)表示即書寫格式,都要在講練中反復(fù)強(qiáng)化.

  3.教法建議

 。1)教科書一開始就給出了平行四邊形的定義,我感覺這樣引入新課,不利于調(diào)動(dòng)學(xué)生的積極性.自己設(shè)計(jì)了一個(gè)動(dòng)畫,建議老師們用它作為本節(jié)的引入,既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又可以激活學(xué)生的思維.

  (2)在生產(chǎn)或生活中,平行四邊形是常見圖形之一,教師可以多給學(xué)生提供一些平行四邊形的圖片,增加學(xué)生的感性認(rèn)識(shí),然后,讓他們自己總結(jié)出平行四邊形的定義,教師最后做總結(jié).平行四邊形是特殊的四邊形,要判定一個(gè)四邊形是不是平行四邊形,要判斷兩點(diǎn):首先是四邊形,然后四邊形的兩組對(duì)邊分別平行.平行四邊形的定義既是平行四邊形的一個(gè)判定方法,又是平行四邊形的一個(gè)性質(zhì).

 。3)對(duì)于教師來(lái)說(shuō)講課固然重要,但講完課后有目的的強(qiáng)化訓(xùn)練也是不可缺少的,通過(guò)做題,幫助學(xué)生更好的理解所講內(nèi)容,也就是我們平時(shí)說(shuō)的要反思回顧,總結(jié)深化.

  平行四邊形及其性質(zhì)第一課時(shí)

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1.使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念.

  2.掌握平行四邊形的性質(zhì)定理1、2.

  3.并能運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明或計(jì)算.

 。ǘ┠芰τ(xùn)練點(diǎn)

  1.知道解決平行四邊形問(wèn)題的基本思想是化為三角形問(wèn)題來(lái)處理,滲透轉(zhuǎn)化思想.

  2.通過(guò)推導(dǎo)平行四邊形的`性質(zhì)定理的過(guò)程,培養(yǎng)學(xué)生的推導(dǎo)、論證能力和邏輯思維能力.

  (三)德育滲透點(diǎn)

  通過(guò)要求學(xué)生書寫規(guī)范,培養(yǎng)學(xué)生科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng).

 。ㄋ模┟烙凉B透點(diǎn)

  通過(guò)學(xué)習(xí),滲透幾何方法美和幾何語(yǔ)言美及圖形內(nèi)在美和結(jié)構(gòu)美

  二、學(xué)法引導(dǎo)

  閱讀、思考、講解、分析、轉(zhuǎn)化

  三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn):平行四邊形性質(zhì)定理的應(yīng)用

  2.教學(xué)難點(diǎn):正確理解兩條平行線間的距離的概念和運(yùn)用性質(zhì)定理2的推論;在計(jì)算或證明中綜合應(yīng)用本節(jié)前一章的知識(shí).

  3.疑點(diǎn)及解決辦法:關(guān)于性質(zhì)定理2的推論;兩點(diǎn)的距離,點(diǎn)到直線的距離,兩平行直線中間的距離的區(qū)別與聯(lián)系,注重對(duì)概念的教學(xué),使學(xué)生深刻理解上述概念,搞清它們之間的關(guān)系;平行四邊形的高有關(guān)問(wèn)題.

  四、課時(shí)安排

  2課時(shí)

  五、教具學(xué)具準(zhǔn)備

  教具(做兩個(gè)全等的三角形),投影儀,投影膠片,小黑板,常用畫圖工具

  六、師生互動(dòng)活動(dòng)設(shè)計(jì)

  教師復(fù)習(xí)提問(wèn),學(xué)習(xí)思考口答;教師設(shè)疑引思,學(xué)生討論分析;師生共同總結(jié)結(jié)論,教師示范講解,學(xué)生達(dá)標(biāo)練習(xí)

  第一課時(shí)

  七、教學(xué)步驟

  【復(fù)習(xí)提問(wèn)】

  1.什么叫做四邊形?什么叫四邊形的一組對(duì)邊?

  2.四邊形的兩組對(duì)邊在位置上有幾種可能?

 。教師隨著學(xué)生回答畫出圖1)

  圖1

  【引入新課】

  在四邊形中,我們常見的實(shí)用價(jià)值最大的就是平行四邊形,如汽車的防護(hù)鏈,無(wú)軌電車的擊電桿都是平行四邊形的形象,平行四邊形有什么性質(zhì)呢?這是這節(jié)課研究的主要內(nèi)容(寫出課題).

  【講解新課】

  1.平行四邊形的定義:兩組對(duì)邊分別平行的四邊形叫做平行四邊形.

  注意:一個(gè)四邊形必須具備有兩組對(duì)邊分別平行才是平行四邊形,反過(guò)來(lái),平行四邊形就一定是有“兩組對(duì)邊分別平行”的一個(gè)四邊形.因此定義既是平行四邊形的一個(gè)判定方法(定義判定法)又是平行四邊形的一個(gè)性質(zhì).

  2.平行四邊形的表示:平行四邊形用符號(hào)“

  ”表示,如圖1就是平行四邊形

  ,記作“

  ”.

  align=middle>

  圖1

  3.平行四邊形的性質(zhì)

  講解平行四邊形性質(zhì)前必須使學(xué)生明確平行四邊形從屬于四邊形,因此它具有四邊形的一切性質(zhì)(共性),同時(shí)它又是特殊的四邊形,當(dāng)然還有其特性(個(gè)性),下面介紹的性質(zhì)就是其特性,這是一般四邊形所不具有的.

  平行四邊形性質(zhì)定理1:平行四邊形的對(duì)角相等.

  平行四邊形性質(zhì)定理2:平行四邊形對(duì)邊相等.

 。ń叹哂脙蓚(gè)全等的三角形拼湊的平行四邊形演示,由此得到證明以上兩個(gè)定理的方法.如圖2)

  圖2如圖3

  所以四邊形是平行四邊形,所以.由此得到

  推論:夾在兩條平行線間的平行線段相等.

  圖3

  要注意:必須有兩個(gè)平行,即夾兩條平行線段的兩條直線平行,被夾的兩條線段平行,缺一不可,如圖4中的幾種情況都不可以推出圖4

  4.平行線間的距離

  從推論可以知道,如果兩條直線平行,那么從一條直線上所有各點(diǎn)到另一條直線的距離相等,如圖5.

  我們把兩條平行線中一條直線上任意一點(diǎn)到另一條直線的距離,叫做平行線的距離.

  圖5

  注意:(1)兩相交直線無(wú)距離可言.

 。2)連結(jié)兩點(diǎn)間的線段的長(zhǎng)度叫兩點(diǎn)間的距離,從直線外一點(diǎn)到一條直線的垂線段的長(zhǎng),叫點(diǎn)到直線的距離.兩條平行線中一條直線上任意一點(diǎn)到另一條直線的距離,叫做這兩條平行線的距離,一定要注意這些概念之間的區(qū)別與聯(lián)系.

  例1 已知:如圖1,

【初中數(shù)學(xué)教案】相關(guān)文章:

初中數(shù)學(xué)教案【經(jīng)典】07-23

初中數(shù)學(xué)教案05-28

初中數(shù)學(xué)教案【熱門】05-26

【薦】初中數(shù)學(xué)教案02-27

初中數(shù)學(xué)教案【精】04-02

初中數(shù)學(xué)教案【薦】03-31

人教版初中數(shù)學(xué)教案12-29

【精】初中數(shù)學(xué)教案02-24

初中數(shù)學(xué)教案模板02-06

初中趣味數(shù)學(xué)教案11-22