當前位置:育文網>教學文檔>教案> 分數的基本性質教案

分數的基本性質教案

時間:2024-08-31 10:36:43 教案 我要投稿

分數的基本性質教案匯編八篇

  作為一名教學工作者,時常需要編寫教案,教案有助于順利而有效地開展教學活動。怎樣寫教案才更能起到其作用呢?以下是小編幫大家整理的分數的基本性質教案8篇,希望對大家有所幫助。

分數的基本性質教案匯編八篇

分數的基本性質教案 篇1

  教學目標

  (一)理解和掌握分數的基本性質。

  (二)能運用分數的基本性質把一個分數化成指定分母(或分子)而大小不變的分數。

  (三)培養(yǎng)學生觀察、分析和抽象概括的能力,滲透事物是相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。

  教學重點和難點

  (一)理解和掌握分數的基本性質。

  (二)歸納分數的基本性質,運用性質轉化分數。

  教學用具

  教具:投影片,三張相同的長方形紙,一面為白色,另一面分別給

  學具:每位同學準備三張相同的長方形紙片。

  教學過程設計

  (一)復習準備

  1.口答:(投影片)

  根據 120÷30=4,不用計算直接說出結果:

  (120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。

  2.說一說依據什么可以不用計算直接得出商的?

  3.說出商不變的性質。

  教師:除法有商不變性質,分數與除法又有關系,分數有沒有類似的性質呢?下面就來研究這個問題。

  (二)學習新課

  1.分數基本性質。

  (1)教師取出一張長方形白紙,說明這為單位“1”,再取出同樣的兩張白紙,重疊放在一起請學生觀察,問:三張紙重疊后完全重合,說明什么?(三個單位“ 1”同樣大)教師把三張紙分貼在黑板上。

  教師請同學取出自己準備的三張長方形紙,并比一比是不是同樣大。

  教師:請分別把它們平均分成2份;4份,6份(折出來),并分別給其中的1份,2份和3份涂上顏色或畫上陰影。然后把涂了顏色的部分用分數表示出來。

  學生口答后,老師把黑板上的紙片翻面,露出涂了色的一面,板書:

  教師:請比較這三個分數的大?

  你根據什么說這三個分數相等?

  學生口答后老師用等號連結上面三個分數。

  (2)教師:這幾個分數的分子和分母都不相同,但三個分數的大小是相等的,下面我們來研究在保持分數大小不變的情況下,分子分母的變化有沒有什么規(guī)律?

  請同學觀察,思考和討論。投影出思考題:

  如何?

  結果如何?

  變,那么分子,分母同時乘以4,乘以5,乘以6呢?規(guī)律是什么?

  學生口答后,教師小結并板書:分數的分子和分母同時乘以相同的數,分數大小不變。(留出“或者除以”的空位。)

  的變化規(guī)律是什么?(學生小組討論后匯報)教師板書:

  教師:試說一說這時分子、分母的變化規(guī)律?

  學生口答后老師小結:分數的分子和分母同時除以相同的數,分數大小不變。板書補出“除以”。

  教師:想一想,分數的分子、分母都乘以或除以0可以嗎?為什么?(不行。)

  (3)請根據上面的研究,說一說你發(fā)現(xiàn)了什么規(guī)律?請概括地說一說。

  學生口述分數基本性質的內容,老師把板書補充完整。

  教師:這就是分數的基本性質,是這節(jié)課研究的問題。板書出課題:分數基本性質。

  請學生打開書讀兩遍。

  教師:想一想,如何用整數除法中商不變的性質說明分數基本性質?(舉例說明)

  用學生自己的例題說明后,用投影片再說明:

  口答填空:(投影片)

  2.把一個分數化成大小相等,而分子或分母是指定數的分數。

  分子應怎樣變化?誰隨著誰變?

  化?誰隨著誰變?

  教師:上面兩個分數的.變化依據是什么?

  (2)口答練習:(學生口答,老師板書。)

  教師:利用分數基本性質,可以把分數化成大小相等而分子或分母是指定數的分數。

  (三)鞏固反饋

  1.口答:(投影片)

  2.在括號里填上“=”或“≠”。(投影)

  3.在( )里填上適當的數。(投影)

  4.判斷正誤,并說明理由。

  (四)課堂總結與課后作業(yè)

  1.分數基本性質。

  2.把分數化成大小相同而分子或分母是指定數的分數的方法。

  3.作業(yè):課本108頁練習二十三,1,2,4,5。

  課堂教學設計說明

  分數基本性質是在分數大小不變的前提下研究分子、分母的變化規(guī)律。所以在教學過程中,抓住“變化”作為主線,設計思考題引導學生觀察、對比、分析,使學生在變化中找出規(guī)律、概括出分數的基本性質。安排例2,是讓學生運用規(guī)律使分數產生變化。這樣,從兩方面方面加深學生對分數基本性質的理解。

  在學生掌握了分數基本性質后,安排他們舉例討論,以溝通分數基本性質和商不變性質之間的內在聯(lián)系,便于學生能把新舊知識融為一體。

  在整個學習過程中都是學生活動為主,這樣有利于培養(yǎng)學生觀察、分析和抽象概括的能力。

  新課教學分為兩部分。

  第一部分學習分數基本性質。分三層,通過學生活動,學生從直觀上認識到分子、分母不相同的分數有可能相等;研究分子、分母的變化規(guī)律;概括分數基本性質,并用商不變性質來說明。

  第二部分是應用分數基本性質,使分數按要求進行變化。分兩層,根據分母需要,確定分子、分母需要擴大或縮小的倍數;根據分子需要,確定分子、分母需要擴大或縮小的倍數。

  板書設計

分數的基本性質教案 篇2

  一、 教材

  根據課程標準的要求,基于對教學內容的把握,本課時我確定的教學目標為:

  1.理解和掌握分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。

  2.通過猜想、驗證、歸納、總結等活動,經歷分數的基本性質的探究過程,體會舉具體事例、數形結合的思考方法,感受抽象、推理的基本數學思想。

  3.在自主探究與合作交流的過程中,感受數學知識之間的聯(lián)系,激發(fā)學生探究學習的興趣。我確定本目標的依據有三點:

  一是基于對課程標準的理解。

  《義務教育數學課程標準(20xx年版)》在學段目標的第二學段指出學生要“在觀察、實驗、猜想、驗證等活動中,發(fā)展合情推理能力,能進行有條理的思考,能比較清楚地表達自己的思考過程”。

  二是基于對教材的認識。

  《分數的基本性質》是在學生學習了分數的意義、分數與除法的關系、商不變性質等知識的基礎上進行教學的,它是以后學習約分、通分的依據,而約分和通分則是分數四則混合運算的重要基礎,因此,理解分數的基本性質顯得尤為重要。

  三是基于對學情的認識。

  作為舊課新上,如何讓學生在重新學習的過程中對學習活動任然保持濃厚興趣,從探究活動中得到新的發(fā)展,上出數學味,上出新意,我在思考。本節(jié)課常規(guī)的是創(chuàng)設情境,在情景中提煉出等式,最終形成性質。因此在教學時,我沒有從具體的情境入手,而是從思考一連串的問題開始,通過實驗、猜想、驗證、結論,從等式的驗證上升到規(guī)律的發(fā)現(xiàn)和歸納,經歷定律由特殊到一般的歸納推理過程,在這個過程中積累數學經驗、滲透數學思想、掌握數學方法。

  據此,

  我將教學重點確定為:通過猜想、驗證、歸納、總結等活動,讓學生經歷分數的基本性質的探究過程。教學難點確定:理解和掌握分數的基本性質。

  二、教法

  課程標準指出教師要關注已有的知識經驗及認知水平,發(fā)揮組織者、引導者、合作者的.作用。本節(jié)課我綜合采用了引導發(fā)現(xiàn)法、啟發(fā)式教學法,直觀演示法,組織學生經歷實驗、猜測、驗證、得出結論的過程。

  三、說學法

  學生是學習的主體,學生的學習活動應該是生動的、活潑的、富有個性的,因此,在本節(jié)課教學中,我主要采用觀察發(fā)現(xiàn)法、動手操作法、舉例驗證法,引導學生靜心傾聽、認真操作、積極思考、大膽表達,通過動手實踐、自主探究、合作交流等多種方式獲得廣泛的數學活動經驗。

  四、說教學過程

  本著讓學生

  “主動參與、樂于探究、學有所得”的理念,結合五年級學生的認知水平和年齡特點,結合教材的編排意圖和學情特點,我設計了如下教學環(huán)節(jié):1. 聯(lián)系舊知,質疑引思。 2.自主操作,驗證猜想 3.知識應用,鞏固提高4.回顧總結,完善認知。

  環(huán)節(jié)一:聯(lián)系舊知,質疑引思。

  “疑是思之始,學之端!彼伎歼@樣一連串的問題,目的是喚醒學生已有的知識經驗;迅速地點燃孩子們求知欲望;引發(fā)學生的數學思考,為主動探究新知識積聚動力。

  環(huán)節(jié)二:操作體驗,概括規(guī)律

  1.觀察發(fā)現(xiàn),提出猜想。

  通過找與1/2相等的分數,思考證明方法,觀察等式,發(fā)現(xiàn)規(guī)律,于是提出猜想

  2.舉例操作,驗證猜想。

  課標指出“學生應當有足夠的時間和空間經歷觀察、實驗、猜測、推理、驗證等活動的過程”。本節(jié)課驗證環(huán)節(jié),將“分子分母怎樣變才使得分數的大小不變”設定為研究的關鍵點,然后圍繞這一關鍵點讓學生展開了操作、感悟、分析、推理等一系列的數學活動,引導學生通過比較全面的大量的例子來驗證結論,在觀察、實驗、猜測、驗證的活動中發(fā)展合情推理能力。讓學生試著用數學的思維去思考,體驗如何運用新舊知識間的聯(lián)系和遷移去分析和解決問題,培養(yǎng)學生好學善思的良好品質。

  3.概括性質,深化理解

  通過觀察算式,經歷由特殊到一般的歸納推理,發(fā)現(xiàn)分數的基本性質。

  4.運用規(guī)律,完成例2

  嘗試運用發(fā)現(xiàn)的規(guī)律,解決問題。

  環(huán)節(jié)三:知識應用,鞏固提高

  在有層次的練習過程中,形成技能,發(fā)展學生的智力,達成本節(jié)課的教學目標,突出重點,突破難點。本節(jié)課,我設計了兩個層次的練習。一是點對點的基礎練習,二是靈活運用所學知識解決生活中實際問題。

  環(huán)節(jié)四:回顧總結,完善認知

  通過回顧,梳理所學的知識,提煉數學方法,聯(lián)系新舊知識,使學生的認知結構得到補充和完善。

  有人說的好,教育是一門永無止境的藝術,我知道這節(jié)課還有很多不足,懇切的希望各位能給予我更多的寶貴建議,有了你們的幫助我一定收獲更多,成長更快。

分數的基本性質教案 篇3

  教學內容:省編義務教材第十冊第91—93頁例1、例2。

  教學目標:

  1、體驗分數基本性質的探究過程,建構分數基本性質的意義內涵。

  2、溝通分數的基本性質和商不變性質的內在聯(lián)系,實現(xiàn)新知化歸舊知,并與后面約分和通分的學習作好前期孕伏。

  3、通過猜想、驗證、得出結論這充分自主的數學活動,促進學生學習經驗的不斷積累。

  課前準備:

  課件,學具袋一個(線段圖紙、長方形、繩子)、探究紙一張

  教學過程:

  1.創(chuàng)設情境,作好鋪墊

  出示四分之二后說:老師的信封里有一道算式,這道算式和這個分數的值相等,你們猜這是一道怎樣的算式?(除法算式。)你能具體猜出是怎樣一道除法算式。(2÷4)

  為什么你會猜是一道除法算式?(分數與除法有密切的關系)

  除法與分數有什么樣的關系?

  (黑板上出示:被除數÷除數=)

  根據2÷4這道除法算式,每人都試著說一道與它相等的除法算式。(根據學生板書:1÷23÷64÷85÷10100÷……)

  為什么你認為100÷與2÷4的商是一樣的?(2和4同時乘以50商不變,這是根據商不變性質)

  什么是商不變性質?(出示:被除數和除數同時乘以或除以相同的數(0除外),商不變。)

  2、遷移猜想,引疑激思

  分數與除法有這樣的關系,除法中有商不變性質,那你們猜分數中有可能存在著類似的性質嗎?(有)你能具體說一說?

  交流得出:分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。

  3、自主探究,驗證猜想

  也許你們的猜想是正確的`,科學家的發(fā)現(xiàn)往往也是從猜想開始的,但是只有通過驗證得到的結論才是科學的,這節(jié)課我們也學著來做一名小數學家。

  (1)初步驗證

  ①出示:探究報告單,讓學生讀要求:

  a.同桌合作:兩人各寫一個分數,將它的分子、分母同時乘以或除以一個相同的數,算出新的分數。

  b.選擇合理的方法驗證所前后兩個分數是否相等。

  c.填寫好探究報告單。

  選擇探究的

  分 數

  分子和分母同時乘以或除以

  一個相同的數

  得到的

  分 數

  選擇的分數與得到的分數是否相等

  相等( ) 不相等( )

  猜想是否成立

  成立( ) 不成立( )

  選擇的分數與得到的分數是否相等相等()不相等()

  猜想是否成立成立()不成立()

 。候炞C方法可用折紙、畫線段圖、計算、實物……

  ②學生合作進行探究。

  ③全班交流:

  a、同桌一起上來,拿好探究報告單及驗證材料等。

  b、兩人合作,一人講解、一人驗證演示。

  c、得到結論:

  (交流2-3組后)問全班同學:你們得到怎樣的結論?(一致通過)

  剛才我們通過集體努力用不同的方法、不同的分數驗證了我們的猜想是成立的。這就是分數的基本性質,板書:分數的基本性質。(齊讀)

  4、議論爭辯,頓悟創(chuàng)新

  讀一讀分數的基本性質,你認為哪些字詞是比較重要的。這里的“相同的數”指的是什么數?為什么要“0除外”?

  5、訓練技能,激勵發(fā)展

  剛才我們通過自己的猜想、驗證得出的這條規(guī)律,學習了分數的基本性質,到底有什么作用呢?讓我們一起來體會一下。

  (1)練習明目的

  根據分數的基本性質,填空。

  1/2=()/8=5/()=()/6=7/()

  采取師生對數的游戲形式進行,如先由教師出分子,再讓學生對出分母,也可以先由學生出分母,再讓教師對出分子。

  (2)慧眼辯是非

 。3)變式練思維

  把下面每組中的異分母分數化成同分母分數。

  A、3/4,4/7B、5/6,4/9C、3/5,5/8

  分數的分母相同了,有什么作用?揭示學習分數的基本性質的重要性,鼓勵學生學好、用好。

  (4)競賽促智慧

 、僭1—9九個數字中任選一些數字組成大小相等的分數。

  可以有:1/2=3/6=4/81/3=2/62/3=4/6這三組。

  并讓學生繼續(xù)往下說,從而得出:任何一個分數與之相等的分數有無數個。

 、诔鍪荆1/a=7/b(說明:a、b都不是0。)

  搶答:a=2、a=3、a=6、b=28、b=56時a或b的值。

  連貫口答:a=1、2、3、4、5……時b的值。(滲透正比例)

  討論:a、b之間的關系是怎樣的?為什么會存在這樣的關系?依據是什么?

  6、回顧,掌握方法

  今天這節(jié)課我們學習的分數的基本性質,回憶一下我們是怎樣學習的?

  學生可能會回答:

  生1:我們是根據“商不變的性質”來學習“分數的基本性質”的。

  生2:我們是通過猜測的方法學的。

  生3:我們還用驗證的方法學習。

  ……

  結果語:是的,這節(jié)課,我們利用除法和分數的關系以及商不變性質,猜想出分數的基本性質,并且進行了驗證與運用,其實數學知識都是相互聯(lián)系的,學習數學就要學會利用已有知識,去學習新的知識,這就是學習數學的一把金鑰匙。老師把這把金鑰匙送給每一位同學。

分數的基本性質教案 篇4

  教學目的:

  理解分數的基本性質,并了解它與除法中商不變的規(guī)律之間的聯(lián)系。

  2.理解和掌握分數的基本性質。

  3.較好實現(xiàn)知識教育與思想教育的有效結合。

  教學難點:

  理解和掌握分數的基本性質,并運用分數的基本性質解決問題,進一步加深分數與除法之間的關系。

  教學準備:

  板書有關習題的幻燈片。

  教學過程:

  一、復習

  1.出示

  在括號里填上適當的數:

  指名說一說結果,并說一說你是根據什么填的?

  二、課堂練習:

  1.自主練習第4題。

  學生先獨立做,教師巡視,并個別指導,集體訂正。

  教師板書題目中的線段,指名讓學生板演。

  在直線那些分數用同一個點表示是什么意思?(就是問哪幾個分數相等。)

  怎樣找出相等的分數?

  讓學生自己找。集體訂正是要求學生說一說你是根據什么找出相等的分數的?

  然后要求學生在書上把這幾個相應的`點找出來。指名板演。

  2.自主練習第5題。

  先讓學生獨立做,教師巡視。個別指導。

  指名說一說你的結果,并說一說你是根據什么填的。重點要求學生說清楚利用分數的基本性質來進行填空。

  教師根據學生的回答選擇幾個題目進行板書。

  3.自主練習第6題。

  先讓學生獨立做。教師巡視并個別指導。注意差生中出現(xiàn)的問題。

  集體訂正。指名說一說自己的計算過程和結果。

  教師根據學生的回答選擇幾個題目進行板書。

  4.自主練習第7題。

  學生獨立做。教師要求有困難的學生分組討論,教師個別指導。

  集體訂正。指名說一說自己的計算過程。教師注意要求學生說清楚計算的根據和理由。

  5.自主練習第8題。

  學生先獨立做。

  集體訂正時,教師先要求學生說一說可以用哪些方法來比較這些分數的大。磕姆N方法最好?

分數的基本性質教案 篇5

  設計說明

  1.注重情境創(chuàng)設,激發(fā)學生的學習興趣。

  偉大的科學家愛因斯坦說過:“興趣是最好的老師!币簿褪钦f一個人一旦對某個事物產生了濃厚的興趣,就會主動地去求知、去探索、去實踐,并在求知、探索、實踐中產生愉快的情緒,因此教學時要重視興趣在智力開發(fā)中的作用。本課時的教學通過分餅這一故事情境來創(chuàng)設一種和諧、愉悅的氣氛,激發(fā)學生的學習興趣和探究新知的積極性。聽教師講完故事之后,學生能說出三個孩子分到的餅的大小是一樣的,并能非常流利地說出三個孩子分別分到每張餅的,,。接著教師提問設疑,導入新課。

  2.突出學生的主體地位,在實踐操作中掌握新知。

  學生是學習的主體,教師要時刻關注學生的主體地位。在探究分數的基本性質的過程中,給予學生充分的學習空間,讓學生自主探究,經歷折一折、畫一畫、剪一剪、比一比的過程,得出分數的基本性質,體驗成功的快樂。

  課前準備

  教師準備 PPT課件

  學生準備 若干張同樣大小的圓形紙片 彩筆

  教學過程

  ⊙故事引入

  1.教師講故事。

  師:老師給大家講一個分餅的故事,你們想聽嗎?(想)三毛家有三兄弟,三兄弟都特別愛吃餅。一天,媽媽買回3張同樣大小的餅,準備分給他們三兄弟吃,媽媽先把第一張餅平均分成兩份,取出其中的一份給了大毛;二毛看見了,說:“太少了,我要吃兩份!眿寢岦c點頭,把第二張餅平均分成四份,取出其中的兩份給了二毛;三毛連忙說:“我最小,我要比他們多吃一些,我要吃四份!眿寢層贮c點頭,把第三張餅平均分成八份,取出其中的四份給了三毛。

  大毛、二毛、三毛都滿意地笑了,媽媽也笑了。

  設計意圖:借助故事給學生創(chuàng)設一個溫馨的學習情境,自然導入新課,迅速吸引學生的注意力,激發(fā)學生的學習興趣。

  2.探究驗證。

  (1)提出猜想。

  師:同學們,你們知道三兄弟之間到底誰分得的`餅多嗎?

  生:同樣多。

  師:這只是大家的猜想,大家的猜想對不對呢?下面就讓我們當一次小數學家,一起來驗證這個猜想吧!

  (2)驗證猜想。

  請同學們拿出課前準備好的圓形紙片,模擬一下媽媽給三兄弟分餅的情境。

 、僬垡徽郏喊衙繌垐A形紙片都看作單位“1”,分別把它們平均折成2份、4份、8份。

 、谕恳煌浚涸谡酆玫膱A形紙片上分別把其中的1份、2份、4份涂上顏色,并用分數表示出來。

 、奂粢患簦喊褕A形紙片中的涂色部分剪下來。

  ④比一比:把剪下的涂色部分重疊,比一比。

  師:通過比較,結果是怎樣的?

  生:同樣大。

  設計意圖:通過自主猜想、自主驗證、自主發(fā)現(xiàn),讓學生在折一折、涂一涂、剪一剪、比一比、說一說的實踐活動中把靜態(tài)的知識轉化為動態(tài)的求知過程,經歷分數的基本性質的形成過程。

  3.揭示課題。

  師:三兄弟分得的餅同樣多,那媽媽是用什么辦法來滿足他們的要求并且又分得那么公平的呢?這就是我們今天要學習的內容:分數的基本性質。(師板書,生齊讀課題)

  ⊙探究新知

  1.觀察比較,探究規(guī)律。

  (1)請同學們觀察,比較三個分數的大小。

  師:三兄弟分得的餅同樣多,那么這三個分數的大小是怎樣的呢?(相等)

  師:從這里我們可以知道,三兄弟分得的餅和剩下的餅同樣多,都是一張餅的一半。

  (2)請同學們仔細觀察,這三個分數什么變了,什么沒變?(分子、分母變了,大小沒變)

  師:這三個分數的分子、分母都不一樣,大小卻相等,這其中到底蘊藏著什么奧秘呢?

  (課件出示:比較它們的分子和分母)

  ①從左往右看,是按照什么規(guī)律變化的?

 、趶挠彝罂矗质前凑帐裁匆(guī)律變化的?小組內討論,交流一下你們的發(fā)現(xiàn)。

  師:我們從左往右看,誰愿意說一說自己的發(fā)現(xiàn)?(分數的分子和分母同時乘相同的數,分數的大小不變)

  師:我們從右往左看,誰愿意說一說自己的發(fā)現(xiàn)?[分數的分子和分母同時除以相同的數(0除外),分數的大小不變]

  師:你們能把這兩個發(fā)現(xiàn)合并成一句話嗎?[分數的分子和分母同時乘或者除以相同的數(0除外),分數的大小不變]

  師:請同學們思考一下,這個數為什么不能是0?同桌之間討論。(因為在分數中,分母不能為0,并且在除法里,0不能作除數,所以這個數不能是0)

  (3)教師總結分數的基本性質。(板書)

分數的基本性質教案 篇6

  教學目標:1,使同學理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。

  2,培養(yǎng)同學發(fā)現(xiàn)問題和解決問題的能力。滲透"事物之間是相互聯(lián)系"的辯證唯物主義觀點。

  教學重點:掌握分數的基本的性質,能運用分數的基本性質解決有關的問題。

  教學難點:理解分數的基本的性質。

  教學課型:新授課

  具準備:課件

  教學過程:

  一,復習鋪墊,準備遷移 [課件1]

  1,120÷30的商是多少 被除數和除數都擴大3倍,商是多少被除數和除數都縮小10倍呢

  2,比較下列每組數的大小。

  3/4( )3/5 15/20( )4/20

  3,把下面的分數改寫成兩個數相除的`形式。

  2/3=( )÷( ) 5/8=( )÷( )

  二,探索新知,發(fā)展智能

  1,同學操作:將手中的紙圓片平均分成若干份。

  2,反饋。

 。1)提問:A,若要求剪下其中的一半,想想剪下的份數各自占圓的幾分之幾

  B,雖然每個同學所剪的份數不同,但它們之間大小關系怎樣

  板書: 1/2=2/4=3/6

  C,觀察一下:這些分數的分子,分母變化有什么規(guī)律

 。2)引導同學概括出分數的基本性質,并與前面的猜測相回應。

 。3)小結:這里的"相同的數",是不是任何數都可以呢

 。愠猓

  板書:分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變。

  3,分數的基本性質與商不變的性質的比較。

  提問:在除法里有商不變的性質,在分數里有分數的基本性質。想一想:根據分數與除法的關系以和整數除法中商不變的性質,你能說明分數的基本性質嗎

  4,鞏固認識。

  P109 。1

 。2)說數接龍。

  5/6=5+5/( )……

  三,運用延伸,深化概念

  1,要求大小不變。[課件2]

  1/3=( )/6 10/15=( )/6 1/4=5/( )

  2,下面分數中哪兩個分數相等 [課件3]

  3/4 21/32 15/20 1/5 4/20

  習后提問:A,依據是什么

  B,3/4和1/5哪個大 你是怎么比較出來的

  C,那么,從中你又有什么新發(fā)現(xiàn) 你的新發(fā)現(xiàn)是什么

  四,全課總結

  提問: A,這節(jié)課你學習了什么

  B,運用分數的性質,你能做什么

  C,本節(jié)課你還有哪些疑問 你還想從哪些方面去探索分數

  的知識呢

  五,家作

  P109 。3,5,6

  板書設計: 分數的基本性質

  1/2=2/4=3/6

  分數的分子和分母同時乘上或者除以相同的數(0除外),分數的大小不變。

分數的基本性質教案 篇7

  教學目的:

  1、理解分數的基本性質;

  2、初步掌握分數性質的應用;

  3、培養(yǎng)學生觀察——探索——抽象——概括的能力;

  4、滲透事物是相互聯(lián)系、發(fā)展變化的辯證唯物主義觀點。

  教學重點:

  從相等的分數中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。

  教學難點:

  形成對分數的基本性質的統(tǒng)一認知。

  教學準備:多媒體,自制演示教具。

  教學過程:

  一、激趣引新:

  1、有位老爺爺把一塊地分給三個兒子。老大分到了這塊地的1/3,老二分到這塊地的2/6,老三分到這塊地的3/9。老大、老二覺得自己很吃虧,于是三人就大吵起來。剛好阿凡提路過,問清爭吵的原因后,哈哈的笑起來,給他們講了幾句話,三兄弟就停止了爭吵。你知道阿凡提為什么會笑?他對三兄弟說了那些話?你想知道嗎?這節(jié)課我們就來解決這個問題。

  2、在下面的()中填上合適的數。

  1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)

  同學們現(xiàn)在已經能用分數的知識來解決問題了。

  二、啟發(fā)引導,探索新知。

  1、下面是六年級三個班的同學到三塊同樣大小面積的正方形地里去種樹,哪個班種植的面積大一些呢?

  通過圖形的平移、旋轉等方法看出三個班種植面積一樣大。

  2.引導觀察得出結論。

 。1)通過拼圖得到1/2=2/4=4/8

  (2)引導觀察、比較,提出問題:分子,分母都不相同,它們的'大小為什么相同呢?

  (3)引導思考探索變化規(guī)律:

  從左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8

  反過來看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  3.共同討論,引導學生抽象概括出分數的基本性質:

 。1)怎么做能使分數的分子和分母發(fā)生變化,而分數的大小都不變呢?

 。2)變化時同時乘或除以小數可以嗎?

 。3)0可以嗎?3/4=3×0/4×0=?(分數的分母不能為0,在除法里0不能作除數,分子和分母都乘或除以相同的數,這個數不能是0。)

  歸納分數基本性質:分數的分子和分母都乘或除以相同的數(0除外)分數的大小不變。

  4.學習分數的基本性質以后,感覺過去我們學過類似的性質是什么呢?(商不變的性質)

 。1)練習在□中填上合適的數

  1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)

  (2)你能把1÷2這個除法算式改寫成分數形式?

  你能用今天所學的知識解決老爺爺分地的問題嗎?(學生交流、匯報)

  5.組織練習

  (1)判斷:

  1/5=1/5×3=1/5()

  5/6=5×2/6×3=10/18()

  8/12=8×4/12÷4=32/3()

  2/5=2+2/5+2=4/7()

  3/4=3÷0.5/4÷0.5()

  分數的分子和分母都乘或除以相同的數,分數的大小不變。()

 。2)畫一畫、填一填

 。3)填空

  1/2=1×()/2×()=6/()

  10/24=10○()/24○()=()/12

  15/60=()/203/()=9/12

  6/18=()/()=()/()(有多少種填法)

  6.通過練習在此性質中哪些是關鍵詞?

  7.鞏固練習(選擇你喜歡的一題來做)

 。1)與1/2相等的分數有多少個?想象一下把手中正方形的紙無限地平分下去,可得到多少個與1/2相等的分數?

 。2)9/24和20/32哪一個數大一些,你能講出判斷的依據嗎?

  三、課堂總結

  今天這節(jié)課同學們學了分數的基本性質,有什么感想呢?回家講給爸爸媽媽聽好嗎!同時希望同學們把今天所學的知識運用到今后的學習和生活中去,做一個生活的有心人。

  四、課堂作業(yè):練習十四第1——3題。

  板書設計:

  分數的基本性質

  1/2=1×2/2×2=2/4=2×2/4×2=4/8

  分數的分子和分母同時乘以一個不為0的數分數的大小不變

  4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2

  分數的分子和分母同時除以一個不為0的數分數的大小不變

  綜上所述分數的基本性質是:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。

分數的基本性質教案 篇8

  教學內容:人教版五年級數學下冊57頁內容。

  教學目標:

  知識與能力:使學生理解和掌握分數的基本性質,并能應用這一規(guī)律解決簡單的實際問題。

  過程與方法:能在觀察、比較、猜想、驗證等學習活動的過程中,有條理、有根據地思考、探究問題,培養(yǎng)學生分析和抽象概括的能力。

  情感態(tài)度價值觀:體驗數學驗證的思想,培養(yǎng)樂于探究的學習態(tài)度。

  教學重點:使學生理解和掌握分數的基本性質。

  教學難點:運用分數的基本性質解決相關的問題。

  教學準備:多媒體課件、正方形紙、直尺、彩筆

  教學過程:

  一、鋪墊孕伏,溫故遷移

  1.比一比:看誰算得又對又快。

  2.說一說:商不變的性質是什么?

  3.想一想:分數與除法有怎樣的關系?

  4.猜一猜:除法中有商不變的規(guī)律,分數中是否具有類似的規(guī)律?

  二、設疑激趣,探究新知

  (一)故事激趣,引出分數。

  說出自己從故事中聽到的`分數。

 。ǘ┬〗M合作,直觀感知。

  1.折一折:拿出三張同樣大小的正方形紙,分別用對折的方法平均分成2份、4份、8份。

  2.畫一畫:畫出折痕所在的直線。

  3.涂一涂:

  (1)給平均分成2份的正方形紙的其中的1份涂上顏色。

  (2)給平均分成4份的正方形紙的其中的2份涂上顏色。

  (3)給平均分成8份的正方形紙的其中的4份涂上顏色。

  4.比一比:比較3張正方形紙涂色部分的大小。

  5.議一議:和同伴說說自己的想法。

  (二)觀察比較,探究規(guī)律。

  1.這三個分數的分子、分母都不同,分數的大小卻相等。你能找出它們之間的變化規(guī)律嗎?請同學們四人一組,討論這個問題。

  2.匯報交流。

  3.啟發(fā)點撥。

  通過從左往右觀察、比較、分析,你發(fā)現(xiàn)了什么?

  引導學生小結得出:分數的分子、分母同時乘相同的數,分數的大小不變。

  那么,從右往左看呢?

  讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。

  4.歸納小結:引導學生概括出分數的基本性質。

  5.啟發(fā)思考:這里的“相同的數”可以是任何數嗎?(補充板書:0除外),你能舉例說明嗎?

  (三)獨立嘗試,運用規(guī)律。

  1.學生獨立思考,完成例2。

  2.反饋交流,訂正點撥。

  3.小結:我們可以運用分數的基本性質把一個分數化成分母不同但大小不變的分數。

  三、達標檢測,內化提升(見《達標測試題》)

  四、總結收獲,評價激勵

  這節(jié)課你有什么收獲?你對自己的哪些表現(xiàn)比較滿意?

  板書設計:

  分數的基本性質

  例1:

  分數的分子、分母同時乘或者除以相同的數(0除外),分數的大小不變。

  例2:

【分數的基本性質教案】相關文章:

分數的基本性質教案04-12

分數的基本性質教案03-16

分數的基本性質的教案02-26

分數的基本性質教案15篇03-21

《分數的基本性質》的說課稿06-24

《分數的基本性質》說課稿07-02

分數的基本性質(說課稿)07-04

分數的基本性質的說課稿07-23

分數的基本性質說課稿03-19

分數的基本性質教案模板8篇04-04