- 實用的平行四邊形教案 推薦度:
- 《平行四邊形的面積》教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
平行四邊形教案集合7篇
作為一無名無私奉獻的教育工作者,可能需要進行教案編寫工作,借助教案可以讓教學工作更科學化。那么你有了解過教案嗎?以下是小編為大家收集的平行四邊形教案7篇,歡迎閱讀與收藏。
平行四邊形教案 篇1
一、學習目標
。、經(jīng)歷探索多項式與多項式相乘的運算法則的過程,發(fā)展有條理的思考及語言表達能力。
2、 會進行簡單的多項式與多項式的乘法運算
二、學習過程
(一)自學導航
1、創(chuàng)設(shè)情境
某地區(qū)在退耕還林期間,將一塊長m米、寬a米的長方形林區(qū)的長、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。
這塊林區(qū)現(xiàn)在的長為 米,寬為 米。因而面積為________米2。
還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。
由于這兩個算式表示的都是同一塊地的面積,則有 =
如果把(m+n)看作一個整體,你還能用別的方法得到這個等式嗎?
2、概括:
多項式乘以多項式的法則:
3、計算
。1) (2)
4、練一練
。1)
。ǘ┖献鞴リP(guān)
1、某酒店的廚房進行改造,在廚房的中間設(shè)計一個準備臺,要求四面的過道寬都為x米,已知廚房的長寬分別為8米和5米,用代數(shù)式表示該廚房過道的總面積。
2、解方程
(三)達標訓練
1、填空題:
(1) = =
。2) = 。
2、計算
。1) (2)
。3) (4)
(四)提升
1、怎樣進行多項式與多項式的乘法運算?
2、若 的乘積中不含 和 項,則a= b=
應用題
第三十五講 應用題
在本講中將介紹各類應用題的解法與技巧.
當今數(shù)學已經(jīng)滲入到整個社會的各個領(lǐng)域,因此,應用數(shù)學去觀察、分析日常生活現(xiàn)象,去解決日常生活問題,成為各類數(shù)學競賽的一個熱點.
應用性問題能引導學生關(guān)心生活、關(guān)心社會,使學生充分到數(shù)學與自然和人類社會的密切聯(lián)系,增強對數(shù)學的理解和應用數(shù)學的信心.
解答應用性問題,關(guān)鍵是要學會運用數(shù)學知識去觀察、分析、概括所給的實際問題,揭示其數(shù)學本質(zhì),將其轉(zhuǎn)化為數(shù)學模型.其求解程序如下:
在初中范圍內(nèi)常見的數(shù)學模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.
例題求解
一、用數(shù)式模型解決應用題
數(shù)與式是最基本的數(shù)學語言,由于它能夠有效、簡捷、準確地揭示數(shù)學的本質(zhì),富有通用性和啟發(fā)性,因而成為描述和表達數(shù)學問題的重要方法.
【例1】(20xx年安徽中考題)某風景區(qū)對5個旅游景點的門票價格進行了調(diào)整,據(jù)統(tǒng)計,調(diào)價前后各景點的游客人數(shù)基本不變。有關(guān)數(shù)據(jù)如下表所示:
景點ABCDE
原價(元)1010152025
現(xiàn)價(元)55152530
平均日人數(shù)(千人)11232
。1)該風景區(qū)稱調(diào)整前后這5個景點門票的平均收費不變,平均日總收入持平。問風景區(qū)是怎樣計算的?
。2)另一方面,游客認為調(diào)整收費后風景區(qū)的平均日總收入相對于調(diào)價前,實際上增加了約9.4%。問游客是 怎樣計算的?
。3)你認為風景區(qū)和游客哪一個的說法較能反映整體實際?
思路點撥 (1)風景區(qū)是這樣計算的:
調(diào)整前的平均價格: ,設(shè)整后的平均價格:
∵調(diào)整前后的平均價格不變,平均日人數(shù)不變.
∴平均日總收入持平.
( 2)游客是這樣計算的:
原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)
現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日總收入增加了
。3)游客的說法較能反映整體實際.
二、用方程模型解應用題
研究和解決生產(chǎn)實際和現(xiàn)實生恬中有關(guān)問題常常要用到方程<組)的知識,它可以幫助人們從數(shù)量關(guān)系和相等關(guān)系的角度去認識和理解現(xiàn)實世界.
【例2】 (重慶中考題)某中學新建了一棟4層的教學大樓,每層樓有8間教室,進出這棟大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門大小也相同.安全檢查中,對4道門進行了測試:當同時開啟一道正門和兩道側(cè)門時,2min內(nèi)可以通過560名學生;當同時開啟一道正門和一道側(cè)門時,4mln內(nèi)可以通過800名學生.
(1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學生?
(2)檢查中發(fā)現(xiàn),緊急情況時因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學生應在5min內(nèi)通過這4道門安全撤離.假設(shè)這棟教學大樓每間教室最多有45名學生,問:建造的這4道門整否符合安全規(guī)定?請說明理由.
思路點撥 列方程(組)的關(guān)鍵是找到題中等量關(guān)系:兩種測試中通過的學生數(shù)量.設(shè)未知數(shù)時一般問什么設(shè)什么.“符合安全規(guī)定”之義為最大通過量不小于學生總數(shù).
(1)設(shè)平均每分鐘一道正門可以通過x名學生,一道側(cè)門可以通過y名學生,由題意得:
,解得:
(2)這棟樓最多有學生4×8×4 5=1440(名).
擁擠時5min4道門能通過.
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道門符合安全規(guī)定.
三、用不等式模型解應用題
現(xiàn)實世界中的不等關(guān)系是普遍存在的,許多問題有時并不需要研究它們之間的相等關(guān)系,只需要確定某個量的變化范圍,即可對所研究的問題有比較清楚的認識.
【例3】 (蘇州中考題)我國東南沿海某地的風力資源豐富,一年內(nèi)月平均的風速不小于3m/s的時間共約160天,其中日平均風速不小于6m/s的時間占60天.為了充分利用“風能”這種“綠色資源”,該地擬建一個小型風力發(fā)電場,決定選用A、B兩種型號的風力發(fā)電機,根據(jù)產(chǎn)品說明,這兩種風力發(fā)電機在各種風速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:
日平均風速v(米/秒)v<33≤v<6v≥6
日發(fā)電量 (千瓦?時)A型發(fā)電機O≥36≥150
B型發(fā)電機O≥24≥90
根據(jù)上面的數(shù)據(jù)回答:
(1)若這個發(fā)電場購x臺A型風力發(fā)電機,則預計這些A型風力發(fā)電機一年的發(fā)電總量至少為 千瓦?時;
(2)已知A型風力發(fā)電機每臺O.3萬元,B型風力發(fā)電機每臺O.2萬元.該發(fā)電場擬購置風力發(fā)電機共10臺,希望購機的費用不超過2.6萬元,而建成的風力發(fā)電場每年的發(fā)電總量不少于102000千瓦?時,請你提供符合條件的購機方案.
根據(jù)上面的數(shù)據(jù)回答:
思路點撥 (1) (100×36+60×150)x=12600x;
(2)設(shè)購A型發(fā)電機x臺,則購B型發(fā)電機(10—x)臺,
解法一根據(jù)題意得:
解得5≤x ≤6.
故可購A型發(fā)電機5臺,B型發(fā)電機5臺;或購A型發(fā)電機6臺,B型發(fā)電視4臺.
四、用函數(shù)知識解決的應用題
函數(shù)類應用問題主要有以下兩種類型:(1)從實際問題出發(fā),引進數(shù)學符號,建立函數(shù)關(guān)系;(2)由提供的基本模型和初始條件去確定函數(shù)關(guān)系式.
【例4】 (揚州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤楊”報刊零售點.對經(jīng)營的某種晚報,楊嫂提供丁如下信息:
、儋I進每份0.20元,賣出每份0.30元;
、谝粋月內(nèi)(以30天計),有20天每天可以賣出200份,其余10天每天只能賣出120份;
、垡粋月內(nèi),每天從報社買進的報紙份數(shù)必須相同.當天賣不掉的報紙,以每份0.10元退回給報社;
(1)填表:
一個月內(nèi)每天買進該種晚報的份數(shù)100150
當月利潤(單位:元)
(2)設(shè)每天從報社買進該種晚報x份,120≤x≤200時,月利潤為y元,試求出y與x的函數(shù)關(guān)系式,并求月利潤的最大值.
思路點撥(1)填表:
一個月內(nèi)每天買進該種晚報的份數(shù)100150
當月利潤(單位:元)300390
(2)由題意可知,一個月內(nèi)的20天可獲利潤:
20×=2x(元);其余10天可獲利潤:
10=240—x(元);
故y=x+240,(120≤x≤200), 當x=200時,月利潤y的最大值為440元.
注 根據(jù)題意,正確列出函數(shù)關(guān)系式,是解決問題的關(guān)鍵,這里特別要注意自變量x的取值范圍.
另外,初三還會提及統(tǒng)計型應用題,幾何型應用題.
【例5】 (桂林市)某公司需在一月(31天)內(nèi)完成新建辦公樓的裝修工程.如果由甲、乙兩個工程隊合做,12天可完成;如果由甲、乙兩隊單獨做,甲隊比乙隊少用10天完成.
(1)求甲、乙兩工程隊單獨完成此項工程所需的天數(shù).
(2)如果請甲工程隊施工,公司每日需付費用200 0元;如果請乙工程隊施工,公司每日需付費用1400元.在規(guī)定時間內(nèi):A.請甲隊單獨完成此項工程;B.請乙隊單獨完成此項工 程; C.請甲、乙兩隊合作完成此項工程.以上方案哪一種花錢最少?
思路點撥 這是一道策略優(yōu)選問題.工程問題中:工作量=工作效率×工時.
(1)設(shè)乙工程隊單獨完成此項工程需x天,根據(jù)題意得:
, x=30合題意,
所以,甲工程隊單獨完成此項工程需用20天,乙隊需30天.
(2)各種方案所需的費用分別為:
A.請甲隊需20xx×20=40000元;
B.請乙隊需1400×30=4200元;
C.請甲、乙兩隊合作需(20xx+1400)×12=40800元.
所隊單獨請甲隊完成此項工程花錢最少.
【例6】 (2全國聯(lián)賽初賽題)一支科學考察隊前往某條河流的上游去考察一個生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進若干天后到達目的地,然后在生態(tài)區(qū)考察了若干天,完成任務(wù)后以每天25km的速度返回,在出發(fā)后的第60天,考察隊行進了24km后回到出發(fā)點,試問:科學考察隊的生態(tài)區(qū)考察了多少天?
思路點撥 挖掘題目中隱藏條件是關(guān)鍵!
設(shè)考察隊到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
這里x、y是正整數(shù),現(xiàn)設(shè) 法求出①的`一組合題意的解,然后計算出z的值.
為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負整數(shù)).用輾轉(zhuǎn)相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
與①的左端比較可知,x0 =-3,y0=-2.
下面再求出①的合題意的解.
由不定方程的知識可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t為整數(shù).按題意0 ∴z=60—(x+y)=23. 答:考察隊在生態(tài)區(qū)考察的天數(shù)是23天. 注 本題涉及到的未知量多,最終轉(zhuǎn)化為二元一次不定方程來解,希讀者仔細咀嚼所用方法. 【例7】 (江蘇省第17屆初中競賽題)華鑫超市對顧客實行優(yōu)惠購物,規(guī)定如下: (1)若一次購物少于200元,則不予優(yōu)惠; (2)若一次購物滿200元,但不超過500元,按標價給予九折優(yōu)惠; (3)若一次購物超過500元,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折 優(yōu)惠. 小明兩次去該超市購物,分別付款198元與554元.現(xiàn)在小亮決定一次去購 買小明分兩次購買的同樣多的物品,他需付款多少? 思路點撥 應付198元購物款討論: 第一次付款198元,可是所購物品的實價,未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應分兩種情況加以討論. 情形1 當198元為購物不打折付的錢時,所購物品的原價為198元 . 又554=450+104,其中450元為購物500元打九折付的錢,104元為購物打八折付的錢;104÷0. 8 =130(元). 因此,554元所購物品的原價為130+500=630(元),于是購買小呀花198 +630=828(元)所購的全部物品,小亮一次性購買應付500×0.9+(828-500)×0.8=712.4(元). 情形2 當198元為購物打九折付的錢時,所購物品的原價為198 ÷0.9=220(元) .仿情形1的討論,,購220+630=850{元}物品一次性付款應為500×0.9+(850-500)×0.8=730(元). 綜上所述,小亮一次去超市購買小明已購的同樣多的物品,應付款712.40元或730元 【例8】 (20xx年全國數(shù)學競賽題)某項工程,如果由甲、乙兩隊承包,2 天完成,需180000元;由乙、丙兩隊承包,3 天完成,需付150000元;由甲、丙兩隊承包,2 天完成,需付160000元.現(xiàn)在工程由一個隊單獨承包,在保證一周完成的前提下,哪個隊承包費用最少? 思路點撥 關(guān)鍵問題是甲、乙、丙單獨做各需的天數(shù)及獨做時各方日付工資.分兩個層次考慮: 設(shè)甲、乙、丙單獨承包各需x、y、z天完成. 則 ,解得 再設(shè)甲、乙、丙單獨工作一天,各需付u、v、w元, 則 ,解得 于是,由甲隊單獨承包,費用是45500×4=182000 (元). 由乙隊單獨承包,費用是29500×6= 177000 (元). 而丙隊不能在一周內(nèi)完成.所以由乙隊承包費用最少. 學歷訓練 。ˋ級) 1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴散,某制藥廠接到了生產(chǎn)240箱過氧乙酸消毒液的任務(wù).在生產(chǎn)了60箱后,需要加快生產(chǎn),每天比原來多生產(chǎn)15箱,結(jié)果6天就完成了任務(wù).求加快速度后每天生產(chǎn)多少箱消毒液? 2.(山東省競賽題)某市為鼓勵節(jié)約用水,對自來水妁收費標準作如下規(guī)定:每月每戶用水中不超過10t部分按0.45元/噸收費;超過10t而不超過20t部分按每噸0.8元收費;超過20t部分按每噸1.50元收費,某月甲戶比乙戶多繳水費7.10元,乙戶比丙戶多繳水費3.75元,問甲、乙、丙該月各繳水費多少?(自來水按整噸收費) 3.(江蘇省競賽題)甲、乙、丙三人共解出100道數(shù)學題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問:難題多還是容易題多?多的比少的多幾道題? 4.某人從A地到B地乘坐出租車有兩種方案,一種出租車收費標準是起步價10元,每千米1.2元;另一種出租車收費標準是起步價8元,每千米1.4元,問選擇哪一種出租車比較合適? (提示:根據(jù)目前出租車管理條例,車型不同,起步價可以不同,但起步價的最大行駛里程是相同的,且此里程內(nèi)只收起步價而不管其行駛里程是多少) (B級) 1.(全國初中數(shù)學競賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺抽水機抽水,40min可抽完;如果用4臺抽水機抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機 臺. 2.(希望杯)有一批影碟機(VCD)原售價:800元/臺.甲商場用如下辦法促銷: 購買臺數(shù)1~5臺6~10臺11~15臺16~20臺20臺以上 每臺價格760元720元680元640元600元 乙商場用如下辦法促銷:每次購買1~8臺,每臺打九折;每次購買9~16臺,每臺打八五折; 每次購買17~24臺,每臺打八折;每次購買24臺以上,每臺打七五折. 。1)請仿照甲商場的促銷列表,列出到乙商場購買VCD的購買臺數(shù)與每臺價格的對照表; (2)現(xiàn)在有A、B、C三個單位,且單位要買10臺VCD,B單位要買16臺VCD,C單位要買20臺VCD,問他們到哪家商場購買花費較少? 3.(河北創(chuàng)新與知識應用競賽題)某錢幣收藏愛好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請你據(jù)此設(shè)計兌換方案. 4.從自動扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運動且男孩每分鐘走動的級數(shù)是女孩的兩倍,已知男孩走了27級到達扶梯頂部,而女孩走了18級到達扶梯頂部(設(shè)男孩、女孩每次只踏—級).問: (1)扶梯露在外面的部分有多少級? (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級數(shù)和扶梯的級數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時走了多少級臺階? 5.某化肥廠庫存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍. 6.(黃岡競賽題)有麥田5塊A、B、C、D、E,它們的產(chǎn)量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場,這5塊麥田生產(chǎn)的麥子都在此打場.問建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運輸量最小?圖中圓圈內(nèi)的數(shù)字為產(chǎn)量,直線段上的字母a、b、d表示距離,且b < a 多邊形的邊角與對角線 j.Co M 第十四講 多邊形的邊角與對角線 邊、角、對角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內(nèi)外角度數(shù)、對角線條數(shù)是解與多邊形相關(guān)的基本問題,常用到三角形內(nèi)角和、多邊形內(nèi)、外角和定理、不等式、方程等知識. 多邊形 的內(nèi)角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質(zhì)的規(guī)律;360°是一個常數(shù),把內(nèi)角問題轉(zhuǎn)化為外角問題,以靜制動是解多邊形有關(guān)問題的常用技巧. 將多邊形問題轉(zhuǎn)化為三角形問題來處理是解多邊形問題的基本策略,連對角線或向外補形、對內(nèi)分割是轉(zhuǎn)化的常用方法,從凸 邊形的一個頂點引出的對角線把 凸 邊形分成 個多角形,凸n邊形一共可引出 對角線. 例題求解 【例1】在一個多邊形中,除了兩個內(nèi)角外,其余內(nèi)角之和為20xx°,則這個多邊形的邊數(shù)是 . (江蘇省競賽題) 思路點撥 設(shè)除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關(guān)于x、y的不定方程;又0° 鏈接 世界上的萬事萬物是一個不斷地聚合和分裂的過程,點是幾何學最原始的概念,點生線、線生面、面生體,幾何元素的聚合不斷產(chǎn)生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質(zhì),多邊形可分成三角形,三角形可以合成其他 一些幾何圖形. 【例2】 在凸10邊形的所有內(nèi)角中,銳角的個數(shù)最多是( ) A.0 B.1 C.3 D.5 (全國初中數(shù)學競賽題) 思路點撥 多邊形的內(nèi)角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內(nèi)角為銳角的個數(shù)討論轉(zhuǎn)化為 外角為鈍角的個數(shù)的探討. 【例3】 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開成為兩個三角形,在平面上把這兩個三角形拼成一個四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標出圖中直角),并分別寫出所拼四邊形的對角線的長. (烏魯木齊市中考題) 思路點撥 把動手操作與合情想象相結(jié)合 ,解題的關(guān)鍵是能注意到重合的邊作為四邊形對角線有不同情形. 注 教學建模是當今教學教育、考試改革最熱門的一個話題,簡單地說,“數(shù)學建!本褪峭ㄟ^數(shù)學化(引元、畫圖等)把實際問題特化為一個數(shù)學問題,再運用相應的數(shù)學知識方法(模型)解決問題. 本例通過設(shè)元,把“沒有重疊、沒有空隙”轉(zhuǎn)譯成等式,通過不定方程求解. 【例4】 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當圍繞一點拼在一起的幾個多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形. (1)請根據(jù)下列圖形,填寫表中空格: (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形? (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說明你的理由. (陜西省中考題) 思路點撥 本例主要研究兩個問題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點接合的地方,n個內(nèi)角的和為360°,這樣,將問題的討論轉(zhuǎn)化為求不定方程的正整數(shù)解. 【例5】 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個單位,得到新的五邊形A'B'C'D'E'. 。1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個五邊形嗎?說明理由. (2)證明五邊形A'B'C'D'E'的周長比五邊形ABCD正的周長至少增加25個單位. (江蘇省競賽題) 思路點撥 (1)5塊陰影部分要能拼成一個五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長逼近估算. 1.如圖,用硬紙片剪一個長為16cm、寬為12cm的長方形,再沿對角線把它分成兩個三角形,用這兩個三角形可拼出各種三角形和四邊形來,其中周長最大的是 ?,周長最小的是 cm. (選6《莢國中小學數(shù)學課程標準》) 2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 . 4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個圖案: (1)第4個圖案中有白色地面磚 塊; (2)第n個圖案中有白色地面磚 塊. (江西省中考題) 5.凸n邊形中有且僅有兩個內(nèi)角為鈍角,則n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀請賽試題) 6.一個凸多邊 形的每一內(nèi)角都等于140°,那么,從這個多邊形的一個頂點出發(fā)的對角線的條數(shù)是( ) A.9條 B.8條 C.7條 D. 6條 7.有一個邊長為4m的正六邊形客廳,用邊長為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( ) A.216塊 B.288塊 C.384塊 D.512塊 ( “希望杯”邀請賽試題) 8.已知△ABC是邊長為2的等邊三角形,△ACD是一個含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個凸四邊形ABCD. 。1))畫出四邊形ABCD; (2)求出四邊形ABCD的對角線BD的長. (上海市閔行區(qū)中考題) 9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù). (北京市競賽題) 10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對邊A3A4的中點,連結(jié)A1B1,我們稱A1B1是這個五邊形的一條中對線,如果五邊形的每條中對線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對角線和它平行. (安徽省中考題) 11.如圖,凸四邊形有 個;∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重慶市競賽題) 12.如圖,延長凸五邊形A1A2A3A4A5的各邊相交得到5個角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長凸n邊形(n≥5)的各邊相交,則得到的n個角的和等于 . ( “希望杯”邀請賽試題) 13.設(shè)有一個邊長為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復上述過程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復上述過程,所得到的圖形記作A4,那么,A4的周長是 ;A4這個多邊形的面積是原三角形面積的 倍. (全國初中數(shù)學聯(lián)賽題) 14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競賽題) 15.在一個n邊形中,除了一個內(nèi)角外,其余(n一1)個內(nèi)角的和為2750°,則這個內(nèi)角的度數(shù)為( ) A.130° D.140° C .105° D.120° 16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長為( ) A.4 B.4 C.3 D. 3 (江蘇省競賽題) 注 按題中的方法'不斷地做下去,就會成為下圖那樣的圖形,它的邊界有一個美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學現(xiàn)象都導致分形,分形是新興學科“混沌”的重要分支. 17.如圖,設(shè)∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山東省競賽題) 18.平面上有A、B,C、D四點,其中任何三點都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個三角形的內(nèi)角不超過45°. 19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長都是整數(shù),求n. (上海市競賽題) 20.如圖,凸八邊形ABCDEFGH的8 個內(nèi)角都相等,邊AB、BC、CD、DE、EF、FG的長分別為7,4,2,5,6,2,求該八邊形的周長. 21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開后支撐起來放在地面上的情況,如果折疊起來,床頭部分被折到了床面之下(這里的A、B、C、D各點都是活動的),活動床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設(shè)計而成的,其折疊過程可由圖2的變換反映出來. 如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長時,才能實現(xiàn)上述的折疊變化? (淄博市中考題) 22.一個凸n邊形由若干個邊長為1的正方形或正三角形無重疊、無間隙地拼成,求此凸n邊形各個內(nèi)角的大小,并畫出這樣的 凸n邊形的草圖. 圖形的平移與旋轉(zhuǎn) 前蘇聯(lián)數(shù)學家亞格龍將幾何學定義為:幾何學是研究幾何圖形在運動中不變的那些性質(zhì)的學科. 幾何變換是指把一個幾何圖形Fl變換成另一個幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉(zhuǎn)是常見的合同變換. 如圖1,若把平面圖形Fl上的各點按一定方向移動一定距離得到圖形F2后,則由的變換叫平移變換. 平移前后的圖形全等,對應線段平行且相等,對應角相等. 如圖2,若把平面圖Fl繞一定點旋轉(zhuǎn)一個角度得到圖形F2,則由Fl到F2的變換叫旋轉(zhuǎn)變換,其中定點叫旋轉(zhuǎn)中心,定角叫旋轉(zhuǎn)角. 旋轉(zhuǎn)前后的圖形全等,對應線段相等,對應角相等,對應點到旋轉(zhuǎn)中心的距離相等. 通過平移或旋轉(zhuǎn),把部分圖形搬到新的位置,使問題的條件相對集中,從而使條件與待求結(jié)論之間的關(guān)系明朗化,促使問題的解決. 注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關(guān)系,而線段本身的大小要改變. 例題求解 【例1】如圖,P為正方形ABCD內(nèi)一點,PA:PB:PC=1:2:3,則∠APD= . 思路點撥 通過旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個三角形. 【例2】 如圖,在等腰Rt△ABC的斜邊AB上取兩點M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長的三角形的形狀是( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨x、m、n的變化而改變 思路點撥 把△ACN繞C點順時針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可. 注 下列情形,常實施旋轉(zhuǎn)變換: (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°; (2)圖形中有線段的中點,將圖形繞中點旋轉(zhuǎn)180°,構(gòu)造中心對稱全等三角形; (3)圖形中出現(xiàn)有公共端點的線段,將含有相等線段的圖形繞公共端點,旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合. 【例3】 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等. (全俄數(shù)學奧林匹克競賽題) 思路點撥 設(shè)法將復雜的條件BC?FF=ED?AB=AF?CD>0用一個基本圖形表示,題設(shè)中有平行條件,可考慮實施平移變換. 注 平移變換常與平行線相關(guān),往往要用到平行四邊形的性質(zhì),平移變換可將角,線段移到適當?shù)奈恢,使分散的條件相對集中,促使問題的解決. 【例4】 如圖,在等腰△ABC的兩腰AB、AC上分別取點E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競賽題) 思路點撥 本例實際上就是證明2EF≥BC,不便直接證明,通過平移把BC與EF集中到同一個三角形中. 注 三角形中的不等關(guān)系,涉及到以下基本知識: (1)兩點間線段最短,垂線段最短; (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊; (3)同一個三角形中大邊對大角(大角對大邊),三角形的一個外角大于任何一個和它不相鄰的內(nèi)角. 【例5】 如圖,等邊△ABC的邊長為 ,點P是△ABC內(nèi)的一點,且PA2+PB2=PC2,若PC=5,求PA、PB的長. (“希望杯”邀請賽試題) 思路點撥 題設(shè)條件滿足勾股關(guān)系PA2+PB2=PC2的三邊PA、PB、PC不構(gòu)成三角形,不能直接應用,通過旋轉(zhuǎn)變換使其集中到一個三角形中,這是解本例的關(guān) 鍵. 學歷訓練 1.如圖,P是正方形ABCD內(nèi)一點,現(xiàn)將△ABP繞點B顧時針方向旋轉(zhuǎn)能與△CBP′重合,若PB=3,則PP′= . 2.如圖,P是等邊△ABC內(nèi)一點,PA=6,PB=8,PC=10,則∠APB . 3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長為 . 4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動的距離AA'是( ) A. B. C.l D. (20xx年荊州市中考題) 5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點C、F,給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP. 當∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),上述結(jié)論中始終正確的有( ) A.1個 B.2個 C .3個 D.4個 (20xx年江蘇省蘇州市中考題) 6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長為( ) A.2 B.3 C . D. (20xx年武漢市選拔賽試題) 7.如圖,正方形ABCD和正方形EFGH的邊長分別為 和 ,對角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長叫做兩個正方形的中心距,當中心O2在直線 上平移時,正方形EFGH也隨之平移,在平移時正方形EFGH的形狀、大小沒有變化. (1)計算:O1D= ,O2F= ; (2)當中心O2在直線 上平移到兩個正方形只有一個公共點時,中心距O1O2= ; (3)隨著中心O2在直線 上平移,兩個正方形的公共點的個數(shù)還有哪些變化?并求出相對應的中心距的值或取值范圍(不必寫出計算過程). (徐州市中考題) 8.圖形的操做過程(本題中四個矩形的水平方向的邊長均為a,豎直 方向的邊長均為b): 在圖a中,將線段A1A2向右平移1個單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分); 在圖b中, 將折線A1A2A3向右平移1個單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分); (1)在圖c中,請你類似地畫一條有兩個折點的折線,同樣向右平移1個單位,從而得到一個封閉圖形,并用斜線畫出陰影; 。2)請你分別寫出上述三個圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ; 。3)聯(lián)想與探索: 如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個單位),請你猜想空白部分表示的草地面積是多少?并說明你的猜想是正確的. (20xx年河北省中考題) 9.如圖,已知點C為線段AB上一點,△ACM、△CBN是等邊三角形,求證:AN=BM. 說明及要求:本題是《幾何》第二冊幾15中第13題,現(xiàn)要求: (1)將△ACM繞C點按逆時針方向旋轉(zhuǎn)180°,使A點落在CB上,請對照原題圖在圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡). (2)在①所得的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請證明;若不成立,請說明理由. (3)在①得到的圖形中,設(shè)MA的延長線與BN相交于D點,請你判斷△ABD與四邊形MDNC的形狀,并證明你的結(jié)論. 10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點3cm的點P為中心,把這個三角形按逆時針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積是 cm2. 11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點E在DC上,AE、BC的延長線交于點F,若AE=10,則S△ADE+S△CEF的值是 . (紹興市中考題) 12.如圖,在△ABC中,∠BAC=120°,P是△ABC內(nèi)一點,則PA+PB+PC與AB+AC的大小關(guān)系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無法確定 13.如圖,設(shè)P到等邊三角形ABC兩頂點A、B的距離分別為2、3,則PC所能達到的最大值為( ) A. B. C .5 D.6 (20xx年武漢市選拔賽試題) 14.如圖,已知△ABC中,AB=AC,D為AB上一點,E為AC 延長線上一點,BD=CE,連DE,求證:DE>DC. 15.如圖,P為等邊△ABC內(nèi)一點,PA、PB、PC的長為正整數(shù),且PA2+PB2=PC2,設(shè)PA=m,n為大于5的實數(shù),滿 ,求△ABC的面積. 16.如圖,五羊大學建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門,B為分校大門,為方便人員來往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點水平距離(與小河平行方向)120米,為使A、B兩點間來往路程最短,兩座橋都按這個目標而建,那么,此時A、D兩點間來往的路程是多少米? (“五羊杯”競賽題) 17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內(nèi)一點,點O到△ABC各邊的距離都等于1,將△ABC繞 點O順時針旋轉(zhuǎn)45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ. (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC與△A1BlC1公共部分的面積. (山東省競賽題) 18.(1)操作與證明:如圖1,O是邊長為a的正方形ACBD的中心,將一塊半徑足夠長,圓心角為直角的扇形紙板的圓心放在O點處,并將紙板繞O點旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值. (2)嘗試與思考:如圖2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或正五邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn), 當扇形紙板的圓心角為 時,正三角形的邊被紙板覆蓋部分的總長度為定值a;當扇形紙板的圓心角為 時,正五邊形的邊被紙板覆蓋部分的總長度也為定值a. (3)探究與引申:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點處,并將紙板繞O點旋轉(zhuǎn).當扇形紙板的圓心角為 時,正n邊形的邊被紙板覆蓋部分 的總長度為定值a;這時正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系;若不是定值,請說明理由. 教材分析 1、課標分析:《數(shù)學課程標準》提出:“要讓學生在參與特定的數(shù)學活動,在具體情境中初步認識對象的特征,獲得一些體驗!彼^體驗,從教育的角度看,是一種親歷親為的活動,是一種積極參與活動的學習方式。本節(jié)課的設(shè)計充分利用學生已有的生活經(jīng)驗,把這一學習內(nèi)容設(shè)計成實踐活動,讓學生在自主探究合作學習中理解平行四邊形面積的計算公式,并了解平行四邊形與其他幾種圖形間的關(guān)系,讓學生經(jīng)歷學習過程,充分體驗數(shù)學學習,感受成功的喜悅,增強信心,同時培養(yǎng)學生思維的靈活性,與他人合作的態(tài)度以及學習數(shù)學的興趣。 2、教材分析: 《平行四邊形的面積》是義務(wù)教育課程標準實驗教材五年級上冊第五單元第一課時的內(nèi)容。該內(nèi)容是在學生已學會長方形、正方形的面積計算,已掌握平行四邊形的特征,會畫平行四邊形的底和對應的高的基礎(chǔ)上教學的。通過本節(jié)課的學習,能為學生推導三角形、梯形面積的計算公式提供方法遷移,同時也為進一步學習立體圖形的表面積做了準備。 由于學生已掌握了長方形的面積計算公式,所以當學生掌握了割補法,把平行四邊形轉(zhuǎn)化成長方形之后,平行四邊形面積的計算公式就自然而然的產(chǎn)生了。本節(jié)課的教學不僅培養(yǎng)了學生的觀察比較、分析綜合的能力,還培養(yǎng)了學生動手操作、探索創(chuàng)新的能力,是學習多邊形面積計算,掌握轉(zhuǎn)化思想的起始內(nèi)容。 學情分析 五年級學生正處在形象思維和邏輯思維過渡時期。他們有了一定空間觀念和邏輯思維能力。但對于理解圖形面積計算的公式推導和描述推導的過程還是有難度的。這就需要教師利用生動形象的教學媒介讓學生去參與、去操作、去實踐,才能讓學生通過體驗,掌握規(guī)律,形成技能。這節(jié)課中生動形象的多媒體有助于學生將這些抽象的事物轉(zhuǎn)化為易于理解、易于接受的事物,多媒體的使用在教學中起到了不可替代的作用。 教學目標 (1)使學生通過探索理解和掌握平行四邊形的面積公式,會計算平行四邊形的面積。 (2)通過操作,觀察、比較活動,初步認識轉(zhuǎn)化的方法,培養(yǎng)學生的觀察、分析、概括、推導能力,發(fā)展學生的空間觀念。 (3)培養(yǎng)學生學習數(shù)學的興趣及積極參與、團結(jié)協(xié)作的精神。 教學重點和難點 教學重點:使學生通過探索、理解和掌握平行四邊形的面積、計算公式、會計算平行四邊形的面積。 教學難點:通過學生動手操作,用割補的方法把一個平行四邊形轉(zhuǎn)化為一個長方形,找出兩個圖形間的聯(lián)系,推導出平行四邊形的面積公式。 教學過程 一、情感交流 二、探究新知 1、舊知鋪墊 。1)、說出平面圖形名稱并對它們進行分類。 。2)、計算正方形、長方形的面積。(強調(diào)長方形面積計算公式) 設(shè)計目的:從學生熟悉的知識點入手,能夠降低門檻順理成章的.引入新知識。 2、 導入新課 3、 探究平行四邊形面積計算方法。 。1)、在方子格中數(shù)出長方形的面積。 。2)、在方子格中數(shù)出平行四邊形的面積(不滿一格的按半格計算)。要求學生說出平行四邊形對應的底和高。 (3)、通過觀察表格,試著猜測平行四邊形的面積計算方法。 。4)、共同探討如何計算平行四邊形的面積。 、俪鍪酒叫兴倪呅,引導學生明確其底和高。 、趯W生在學具上標明其底并畫出對應的高。 ③討論:能否把平行四邊形轉(zhuǎn)化為已學過的平面圖形再計算(保證面積不會發(fā)生變化) 、苄〗M交流如何操作的。(割補法) 、輰W生代表匯報各組的操作方法以及得到的結(jié)論。 ⑥幻燈片演示割補的過程。 ⑦引導學生歸納平行四邊形面積計算公式。(讓學生明確算平行四邊形面積的必須條件) 4、 課堂小練筆。 設(shè)計目的:達到讓學生動手操作,從實踐中掌握知識,并能夠從實踐中總結(jié)知識。讓學生明白知識來源于生活,又用于生活。 三、課堂練習 四、小結(jié)本課 五、課堂作業(yè) 板書設(shè)計 平行四邊形 面積 = 底 × 高 長方形 面積 = 長 × 寬 S表示平行四邊形的面積 a表示底 h表示高 S=a×h s=a.h S=ah 四年級數(shù)學上冊《平行四邊形、梯形特征》教學設(shè)計教學目標: 1、學生理解平行四邊形和梯形的概念及特征。 2、使學生了解學過的所有四邊形之間的關(guān)系,并會用集合圖表示。 3、通過操作活動,使學生經(jīng)歷認識平行四邊形和梯形的全過程,掌握它們的特征。 4、通過活動,讓學生從中感受到學習的樂趣,體會到成功的喜悅,從而提高學習的興趣。 教學重點:理解平行四邊形和梯形的概念及特征。了解學過的'所有四邊形之間的關(guān)系,并會用集合圖表示。 教學難點:理解平行四邊形和梯形的概念及特征。用集合圖表示學過的所有四邊形之間的關(guān)系。 教具準備:圖形、剪子、七巧板。 教學過程: 一、創(chuàng)設(shè)情景 感知圖形 。、出示校園圖(70頁)在我們美麗的校園中,你能找到那些四邊形? 。、畫出你喜歡的一個四邊形。說一說什么樣的圖形是四邊形? 展示學生畫出的四邊形,請學生標出它們的名稱。 長方形 平行四邊形 梯形 正方形 。、小組交流:從四邊形的特點來看,四邊形可以分成幾類?學生討論交流。 二、探究新知 1、歸納平行四邊形和梯形的概念。 有什么特點的圖形是平行四邊形?(兩組對邊分別平行的四邊形叫做平行四邊形。) 強調(diào)說明:只要四邊形的每組對邊分別平行,就能確定它的每組對邊相等。因此平行四邊形的定義是兩組對邊分別平行的四邊形。 提問:生活中你見過這樣的圖形嗎?它們的外形像什么? 這些圖形有幾條邊?幾個角?是什么圖形? 這幾個四邊形有邊有什么特點? 它是平行四邊形嗎? 你們在量這些圖形時,是否發(fā)現(xiàn)它們都有一個共同的特點?如果有,是什么? 只有一組對邊平行的四邊形叫做梯形。 。、現(xiàn)在你有什么問題嗎? 長方形和正方形是平行四邊形嗎?為什么? 。、用集合圖表示四邊形之間的關(guān)系。我們學過的長方形、正方形、平行四邊形、剛剛認識的梯形,你能用這個集合圈來表示他們的關(guān)系嗎? 。、判斷: 長方形是特殊的平行四邊形。( ) 兩個完全一樣的梯形可以拼成一個平行四邊形。( ) 一個梯形中只有一組對邊平行。( ) 三、鞏固練習。 1、在梯形里畫兩條線段,把它分割成三個三角形。你有幾種畫法?學生展示 2、七巧板拼一拼 用兩塊拼一個梯形 用三塊拼一個梯形 用一套七巧板拼一個平行四邊形 。、 下面的圖形中有( )個大小不同的梯形。 。、 用兩個完全一樣的梯形,能拼成一個平行四邊形嗎? 把1張?zhí)菪渭埣粢淮,再拼成一個平行四邊形。 拿一張長方行紙,不對折,剪一次,再拼出一個梯形。 四、課堂小結(jié):通過這節(jié)課的學習,你有何體會和收獲? 五、作業(yè): 。、把一個平行四邊形剪成兩個圖形,然后拼成一個三角形,這個三角是什么三角形?有幾種剪拼的方法? 。、把一張平行四邊形的紙剪一下,分成兩個梯形,有多少種剪法? 一、教學目標: 1.使學生掌握平行四邊形的意義及特征,了解它的特性。 2.通過觀察、動手,培養(yǎng)學生抽象概括能力和初步的空間觀念。 3.滲透事物是相互聯(lián)系的辯證唯物主義觀點。培養(yǎng)學生觀察和認識周圍圖形的興趣和認識。 二、教學重點:平行四邊形的意義。 三、教學難點:抽象概括平行四邊形的意義。 四、教學過程: (一)、老師出示一個長方形框架. 1、老師動手拉它的一組相對的角,請同學們觀察:這個框架還是長方形嗎?為什么? (這個圖形不是長方形了,因為它的四個角不是直角) 我們把這樣的圖形叫做平行四邊形.在黑板右上角貼出一個平行四邊形. 2.請同學們觀察:黑板上還有哪些平行四邊形? (分類中的“其它四邊形”都是平行四邊形)老師把黑板上的“其它四邊形”改寫成“平行四邊形”) 問:同學們平時見過平行四邊形嗎?請舉例來說.(有一種防盜網(wǎng)上的圖形、籬笆上的圖形,有的編織圖案) 3.平行四邊形和長方形有什么相同點和不同點?(老師又一次演示長方形活動框架) (它們的相同點是都有四條邊且對邊相等、它們都有四個角;不同點是:長方形的四個角必須是直角) 今天,我們又認識了一個圖形——平行四邊形. (二)通過活動,再次感知平行四邊形。 1. 小朋友看過魔術(shù)表演嗎?咱們來變個魔術(shù),請打開1號紙袋?匆豢,里面有什么?(6根硬紙條,4個圖釘) 師:咱們要圍一個長方形框,得用幾根硬紙條?4根什么樣的硬紙條?請小組的同學討論選出來。 學生討論篩選后,教師提問:你們選了什么樣的?為什么這樣選? 最后小組合作用圖釘固定出長方形框。 圍好后,請小朋友推一推,拉一拉,看圖形變了沒有?(學生操作) 在日常生活中我們經(jīng)常見到這種圖形。請看屏幕。(課件顯示“紡織圖案”、“樓梯扶手”、“籬笆”,并閃動其中的幾何圖形再抽象出來。) 2. 學生自己發(fā)現(xiàn)平行四邊形與長方形、正方形的共同點。觀察后交流。 3. 分組操作、研究平行四邊形的特征。 。1)回憶研究長方形、正方形特點的方法。(量一量、折一折、比一比) 。2)打開2號紙袋(里面有兩張平行四邊形紙片),用剛才的方法,也可以想別的辦法,也可以觀察變平行四邊形框的過程,小組討論平行四邊形4條邊和 4個角的特點。 。3)分組交流,教師小結(jié)。 4. 辨認平行四邊形。 完成課本練習三十九第2題,指生訂正并說出理由。 (三)鞏固練習 1、判斷題: (1)長方形、正方形和平行四邊形都是四邊形.( ) (2)四個角都是直角的四邊形一定是正方形.( ) (3)一個四邊形,它的四條邊相等,這個四邊形一定是正方形.( ) (4)對邊相等的四邊形都是長方形.( ) (5)有個四邊形,它的四個角都是直角,那么,這個四邊形不是正方形就是長方形.( ) 2.思考題: 有兩個大小一樣的長方形,長都是4分米,寬都是2分米. (1)把這兩個長方形拼成一個正方形,你是怎樣拼的? (2)把這兩個長方形拼成一個大的長方形,它的長是多少?寬是多少?你是怎樣拼的? (四)全課總結(jié) 通過今天的學習你有什么收獲?談一談。 教學反思: 在整節(jié)課的設(shè)計中,我注重將游戲、活動引入教學。如在導入新課時,創(chuàng)設(shè)問題情境,利用教具有熟悉的長方形一拉動變成了要學的內(nèi)容平行四邊形,既復習了舊知識長方形,又很自然地過渡到新知識,使學生體會到數(shù)學知識都有內(nèi)在聯(lián)系。在探索階段,讓學生在實踐活動中,經(jīng)歷、體驗數(shù)學知識的形成過程。在鞏固拓展時,創(chuàng)始了讓學生“辨、拼、說”的.活動,課堂上學生始終樂此不疲,興趣盎然。 在教學設(shè)計中,我注重把思考貫穿教學的全過程,將實踐與思考貫穿教學的全過程,讓學生在觀察實踐交流中思考,尤其是特別注重為學生創(chuàng)設(shè)獨立思考的空章。然后通過學生的動手操作,最大限度地調(diào)動學生多種感觀,讓他們的手、眼、腦等都參與到學習活動中去。教學時有意識地為學生提供具有充分再創(chuàng)造的通道,激勵了學生進行再創(chuàng)造的活動。設(shè)計學生喜歡又富有挑戰(zhàn)性的問題,激發(fā)學生主動思考和創(chuàng)造的欲望。通過"變魔術(shù)"引出平行四邊形,激發(fā)了學生的觀察興趣,從而使學生認識平行四邊形的特性,在輕松學習中學習數(shù)學。 教學中感到不足的是設(shè)計的練習不很多,題的類型不夠新穎,在練習的設(shè)計中,應能引起學生的興趣,使學生樂于探究。 教學反思: 學生的數(shù)學學習內(nèi)容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學生主動地進行觀察、實驗、驗證、推理與交流等數(shù)學活動。因此,本節(jié)課我讓學生把自己制作的長方形框架拿出來拉動后可以得到一個平行四邊形引入新課,激起探究的興趣。在探究平行四邊形的特征時,引導學生小組討論:一個平行四邊形和一個三角形的框架,比較一下,它們之間有什么不同。再引導學生觀察平行四邊形,歸納、概括平行四邊形的特征。讓每個學生都有觀察、操作、分析、思考的機會,提供給學生一個廣泛的、自由的活動空間。當學生通過動手動腦,在探索中初步發(fā)現(xiàn)平行四邊形的特征。學生學得非常積極主動:數(shù)學教學活動要幫助學生在自主探究和合作交流的過程中真正理解和掌握基本的數(shù)學思想和方法,因此在數(shù)平行四邊形時,引導學生有序地進行觀察,主動探究規(guī)律,滲透有序思維的方法。整節(jié)課從實際出發(fā)運用現(xiàn)代教學手段,突破了教學的難點。反思整個教學過程,我認為教學的益處在于有效地引導了學生在活動中享受到學習的樂趣,體驗到合作、交流的成功,從而大大提高了教學效果。 不足:課中的練習量還是不夠,可以多做些練習突出平行四邊形的特征。 教學目標: 1、在聯(lián)系生活實際和動手操作的過程中認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,認識平行四邊形的高。 2、在活動中進一步積累認識圖形的學習經(jīng)驗,學會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能測量或畫出平行四邊形的高。 3、感受圖形與生活的聯(lián)系,感受平面圖形的學習價值,進一步發(fā)展對空間與圖形的學習興趣。 教學重點:進一步認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,會畫高。 教學難點:引導學生發(fā)現(xiàn)平行四邊形的特征。 教學準備:實物投影。 教學過程: 一、創(chuàng)設(shè)情境、導入新課。 1、出示長方形,談話:老師手里問成的是什么圖形? 學生:長方形 教師移動成平行四邊形,談話:仔細看,現(xiàn)在圍成的是什么圖形? 學生:平行四邊形 揭題:今天我們進一步認識平行四邊形(揭題) [從學生熟悉的長方形漸變成平行四邊形,既關(guān)注學生的原認知,又符合學生的認知規(guī)律,同時為后面發(fā)現(xiàn)平行四邊形邊的特點和比較長方形、平行四邊形的異同點提供了鋪墊] 2、教師談話:同學們在生活中見到過平行四邊形嗎? 生1:我們校門口的移動門上有平行四邊形; 生2:一種衣架是平行四邊形; 生3:我家曬衣服的伸向外面的欄桿是平行四邊形的; 生4:看,墻上那個圖上有平行四邊形; 談話:只要你善于觀察生活,其實生活中經(jīng)常能看到平行四邊形。出示掛圖(電動移門、樓梯扶欄、籬笆),你能從中找出平行四邊形嗎? 學生上臺指。 [通過讓學生在生活實踐中找平行四邊形,比劃出平行四邊形的樣子,挖掘?qū)W生對平行四邊形的潛在表象認識,建立初步的感性表象。] 二、實踐操作、探究特點。 1、談話:同學們都認識了平行四邊形,閉上眼睛在小腦袋里想一想平形四邊形是什么樣子的?好,腦子里有平行四邊形樣子了嗎?如果老師讓你做一個平行四邊形,你準備怎么做? 學生思考。 2、學生用手頭材料做,做完后交流:我是怎么做平行四邊形的?教師巡視指導。 3、談話:誰愿意上臺來展示自己是怎么做的? 生1:我用釘子板圍; 生2:我用小棒擺的; 生3:我用方格圖上畫; 生4:我是直接折的; 生5:我是用剪刀剪的; 4、談話:同學們想出的辦法真多,請同學們觀察一下自己面前的平行四邊形,它的邊有什么共同特點呢? 小組交流:有什么發(fā)現(xiàn)? 5、交流匯報: 生1:我們小組覺得上下兩條邊可能平行;左右兩條邊可能平行。 (師板書:互相平行) 師:你是怎么發(fā)現(xiàn)的? 生1:我是看出來的,上下兩條邊延長后不相交; 師:其他小組發(fā)現(xiàn)這個特點了嗎?你有辦法證明嗎? 生2:我們的平行四邊形上下兩條邊延長后也不相交,我可以用畫平行線方法證明,左右也一樣; 師明確:上下兩條邊稱為一組對邊,左右一組對邊,可以稱兩組對邊。(板書:兩組對邊) 生3:我們可以用三角尺平移的辦法證明對邊是平行的。 小組討論后提問并板書:兩組對邊互相平行。 生3:我們小組發(fā)現(xiàn)兩組對邊都是相等的? 師:你們聽明白他的意思了嗎? 生4:就是上下兩條邊相等,左右兩條邊相等。 師規(guī)范語言:你指的是兩組對邊分別相等,是嗎?(板書) 談話:其他小組發(fā)現(xiàn)這個特點了嗎?你有辦法證明嗎? 生5:上下兩個小棒長度相等,左右長度也相等; 生6:我上下拉出的都是3格,左右是2格,都是相等; 小結(jié):通過以上研究,我們已經(jīng)知道了平行四邊形的特點:兩組對邊分別平行且相等。 5、教師在釘子板上圍想想做做1,判斷:哪些圖形是平行四邊形,為什么。 生1:1、3、4是平行四邊形,因為他們符合平行四邊形特點兩組對邊分別平行且 相等。 生2:2不是,因為它上下對邊平行不相等,左右對邊相等又不平行,所以不是平行四邊形。 生3:2是梯形,所以不是平行四邊形。 [學生經(jīng)歷制作平行四邊形的過程,討論、探究、發(fā)現(xiàn)平行四邊形邊的特點,學生交流自己的驗證方法,并用發(fā)現(xiàn)的特點去判斷圖形是否平行四邊形。經(jīng)歷制做研究發(fā)現(xiàn)應用的過程,符合學生的認識規(guī)律。] 三、認識高、底。 1、談話:出示一張平行四邊形的圖,介紹:這是一個平行四邊形,上下對邊是一組平行線,你能量出兩條平行線之間的距離嗎?應該怎么量?把你量的線段畫出來。 學生自己嘗試后交流。教師指導明確平行線之間的垂直線段就是平行線之間的距離。 2、老師剛才發(fā)現(xiàn),大家畫的垂直線段位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數(shù)條。) 老師示范畫一組的垂直線段,說明:在平行四邊形里,一組對邊之間的垂直線段就是平行四邊形的高,而對邊就是底。 3、學生自主看書上P44頁,說一說:什么是平行四邊形的高?什么是底? [由復習平行線之間距離入手,讓學生動手量、畫,然后明確平形四邊形高、底的含義,注重鏈接知識的最近發(fā)展區(qū),符合學生的認知規(guī)律] 4、師出示實物平行四邊形,指一指兩組底邊上的高。 5、找出底邊上的高:(圖略) 6、做書上試一試,量出底和高分別是多少? (1)先指一指高垂直于哪條邊;(2)量出每個平行四邊形的底和高各是多少厘米。 7、想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高,注意畫上直角 標記。如果有錯誤,讓學生說說錯在哪里。 [平行四邊形的高、底的認識是本課教學的難點,通過量平行線間的距離,使學生逐步認識平行四邊形的高和底。在扎實認識了高和底的基礎(chǔ)上,讓學生經(jīng)歷指高、找高、量高、畫高的過程,并通過變式,加深對知識點的掌握。] 四、練習提高。 1、談話:課一開始,老師將長方形一拉變成平行四邊形,現(xiàn)在老師再輕輕一移又變成了長方形,同學們觀察一下,長方形和平行四邊形哪里變了,哪里沒變,討論一下它們有什么相同點和不同點呢? 學生小組交流,集體匯報。 生1:相同點是它們的對邊都是平行且相等; 生2 :不同點是長方形的角都是直角,而平行四邊形的角不是直角; 生3:平行四邊形是長方形變形后產(chǎn)生的; 2、教師:平行四邊形不改變邊長的情況下可以改變成不同形狀的平行四邊形,這就是平行四邊形的不穩(wěn)定性。請同學看書上P45頁你知道嗎? 提問:說一說,生活中平行四邊形的這種特點在哪些地方有應用? 生1:有種可以彈的那種拳擊套; 生2:曬衣服的衣架; 生3:捕魚的網(wǎng); 五、實踐游戲: 1、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個平行四邊形,在小組里交流是怎樣拼的。 2、想想做做3,用七巧板中的3塊拼成一個平行四邊形。 出示,你能移動其中的一塊將它改拼成長方形嗎? 3、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的'長方形桌面,該從 哪里鋸開呢?找一張平行四邊形紙試一試。 [練習設(shè)計既富有情趣,又讓學生在活動中體驗到所學平行四邊形知識的價值,再次感悟到數(shù)學知識與現(xiàn)實生活的密切聯(lián)系。] 六、全課小結(jié) 今天我們重點研究了哪種平面圖形?它有什么特點?回想一下,我們通過哪些活動進行研究的? [小結(jié)簡明扼要,既突出本節(jié)課的知識重點,又提升了學生的認知策略。] 教學反思: 一、 激發(fā)原認知關(guān)注學生知識儲備。 用發(fā)展的眼光來設(shè)計學習活動,讓學生在探究中親歷知識形成的過程,遠比讓學生直接但卻被動地獲取現(xiàn)成知識結(jié)論要更加具有深遠的意義和影響,學生的觀察、猜想、探索和創(chuàng)新等其他各方面能力都能得到有效地開發(fā)和鍛煉。紙上得來終覺淺。在體驗中自身感悟的東西理解深刻、印象久遠。對平行四邊形的特征研究,我本著讓學生親歷知識的形成過程的方法,讓學生依據(jù)探究內(nèi)容自己有序探究,自己量一量、比一比、想一想,從而得出平行四邊形的特征,學生自然也得到了有效地學習。 二、重視過程把探究機會讓給學生。 《課標》在基本理念中指出:數(shù)學教學活動,必須建立在學生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)上,為學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握數(shù)學知識。本課正是實踐這種理念的一個典范,如我在教學中提供長短不一的塑料棒和釘字板,讓學生根據(jù)印象中的平行四邊形制作平行四邊形,自主選擇學具圍成各種各樣的平行四邊形,其間學生既能采用最簡單的4根塑料棒來圍成,還有用釘字板圍。操作的成功不但讓學生對平行四邊形原有認知表現(xiàn)外顯,更讓學生為下面進一步觀察平行四邊形邊特點提供了素材,最重要的是提升學生靈活應用數(shù)學解決實際問題的策略與能力,并從中得到成功的體驗,樹立學習的信心。 (一)教學目標 1.使學生理解垂直與平行的概念,會用直尺、三角尺畫垂線和平行線。 2.使學生掌握平行四邊形和梯形的特征。 3.通過多種活動,使學生逐步形成空間觀念。 (二)教材說明和教學建議 教材說明 本單元是在學生學習了角的度量的基礎(chǔ)上教學的,內(nèi)容包括:同一平面內(nèi)兩條直線的特殊位置關(guān)系,即垂直與平行;平行四邊形和梯形的認識。學生在前面已經(jīng)學習了有關(guān)四邊形的知識,對平行四邊形也有了初步的認識,這里著重給出的是平行四邊形的特征以及與正方形、長方形的關(guān)系。梯形在這里是第一次正式出現(xiàn),教材除教學梯形的特征外,還注意說明與平行四邊形的聯(lián)系和區(qū)別。 例題 具體內(nèi)容及要求 垂直與平行 例1 認識同一平面內(nèi)兩條直線的特殊位置關(guān)系:平行和垂直。 例2 學習畫垂線,認識“點到直線的距離”。 例3 學習畫平行線,理解“平行線之間的距離處處相等”。 平行四邊形和梯形 例1 把四邊形分類,概括出平行四邊形和梯形的特征,探討平行四邊形和長方形、正方形的關(guān)系。 例2 認識平行四邊形的不穩(wěn)定性,認識平行四邊形的底和高,及梯形的的各部分名稱。 學習畫高。 教學建議 1.關(guān)注學生已有的生活經(jīng)驗和知識基礎(chǔ),把握教學的起點和難點。 教學的任務(wù)是解決學生現(xiàn)有的認識水平與教育要求之間的矛盾,為學習而設(shè)計教學,是教學設(shè)計的出發(fā)點,也是歸宿。這一單元中涉及的知識點:平行與垂直,平行四邊形與梯形等,一方面這些幾何圖形在日常生活中應用廣泛,學生頭腦中已經(jīng)積累了許多表象;另一方面,經(jīng)過三年的數(shù)學學習,也具備了一定的知識基礎(chǔ)。這些都是影響學生學習新知最重要的因素。為此,教師必須關(guān)注學生已有的生活經(jīng)驗和知識基礎(chǔ),從學生出發(fā),把握教學的起點和難點,根據(jù)學生的實際情況,增加或補充一些內(nèi)容。 2.理清知識之間的內(nèi)在聯(lián)系,突出教學的重點。 由于數(shù)學知識的系統(tǒng)性和嚴密的邏輯性,決定了舊知識中孕育著新內(nèi)容,新知識又是原有知識的擴展。教學時,要善于理清知識間的聯(lián)系,根據(jù)教學目標來確定內(nèi)容的容量、密度和教學的重點,有機地聯(lián)系單元、全冊,乃至整個年級、整個學段的教學內(nèi)容加以研究。如果把“平行與垂直”這一內(nèi)容放到整個教材體系中,就不難發(fā)現(xiàn)它的.學習既需要直線及角的知識做基礎(chǔ),同時又是認識平行四邊形和梯形的基礎(chǔ)。 3.注重學用結(jié)合,就地取材,充實教材內(nèi)容。 盡管教材在素材的選材上盡可能地提供一些現(xiàn)實背景,設(shè)計了一些學以致用的習題,如借助于運動場景里的一些活動器材引出垂直與平行的內(nèi)容,要求學生思考和討論怎樣測定立定跳遠的成績、怎樣修路最近等。但由于教材的容量有限,還需要教師在教學過程中做必要的充實和拓展,使學生理解和認識數(shù)學知識的發(fā)生和發(fā)展過程,進一步認識和體會數(shù)學知識的重要用途,增強應用意識。 4.加強作圖的訓練和指導,重視作圖能力的培養(yǎng)。 這一單元涉及到許多作圖的內(nèi)容,如畫垂線、畫平行線、畫長方形和正方形、畫平行四邊形和梯形的高等,對四年級學生來說,這些都有一定的難度,教學時要加強作圖的訓練和指導,重視作圖能力的培養(yǎng)。 5.本單元可用6課時完成。 教學內(nèi)容:國標蘇教版數(shù)學第八冊P43-45。 教學目標: 1、同學在聯(lián)系生活實際和動手操作的過程中認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,認識平行四邊形的高。 2、同學在活動中進一步積累認識圖形的學習經(jīng)驗,學會用不同方法做出一個平行四邊形,會在方格紙上畫平行四邊形,能正確判斷一個平面圖形是不是平行四邊形,能丈量或畫出平行四邊形的高。 3、同學感受圖形與生活的聯(lián)系,感受平面圖形的學習價值,進一步發(fā)展對“空間與圖形”的學習興趣。 教學重點:進一步認識平行四邊形,發(fā)現(xiàn)平行四邊形的基本特征,會畫高。 教學難點:引導同學發(fā)現(xiàn)平行四邊形的特征。 教學準備:配套多媒體課件。 教學過程: 一、生活導入。 1、(課件出示學校大門關(guān)閉和打開的錄象,最后定格成放大的圖片)教師談話:同學們每天都要經(jīng)過校門進入學校,但是你們注意觀察我們的校門了嗎?從圖片中你們能找到一些平面圖形嗎?根據(jù)回答,教師板書:平行四邊形。 2、你們還能找出我們生活中見過的一些平行四邊形嗎?同學回答后,教師課件出示一些生活中的平行四邊形:如活動衣架、風箏、樓梯欄桿等。 3、今天這節(jié)課我們一起來進一步研究平行四邊形,相信通過研究,我們將有新的收獲。板書完整課題:認識平行四邊形。 。墼u:《數(shù)學課程規(guī)范》指出:“同學的數(shù)學學習內(nèi)容應當是實際的、有意義的、富有挑戰(zhàn)性的!边x擇同學熟悉和感興趣的素材,吸引同學的注意力,激發(fā)同學主動參與學習活動的熱情,讓同學初步感知平行四邊形。] 二、探究特點。 1、剛才同學們已經(jīng)能找出生活中的一些平行四邊形了,那我們能不能利用身邊的一些物品,自身來想方法來制作一個平行四邊形呢?你們可以先看一看資料袋中有哪些資料,再獨立考慮一下準備怎么做;假如有困難的可以先看看學具袋中的平行四邊形再操作。 2、大家已經(jīng)完成了自身的創(chuàng)作,現(xiàn)在請你們和小組的同學交流一下,說說自身的做法和為什么這樣做,然后派代表上來交流。 同學小組交流,教師巡視,并進行一定的輔導。 3、哪個小組派代表上來交流?注意把你的方法展示在投影儀上,然后說說這么做的理由,其他小組等他們說完后可以進行補充。 (1)方法一:用小棒擺。請你說說你為什么這么做?要注意些什么呢? (2)方法二:在釘子板上面圍一個平行四邊形。你介紹一下,在圍的時候要注意些什么?怎樣才干做一個平行四邊形? (3)方法三:在方格紙上畫一個平行四邊形。你能提醒一下大家嗎?應該怎樣才干得到一個平行四邊形? (4)用直尺畫一個平行四邊形。 …… (評:這個個環(huán)節(jié)的設(shè)計,本著同學為主體的思想,敢于放手,讓同學的多種感官參與學習活動,讓同學在操作中體驗平行四邊形的一些特點;既實現(xiàn)了探究過程開放性,也突出了師生之間、同學之間的多向交流,體現(xiàn)那了同學為本的理念。) 4、剛才我們已經(jīng)能用多種方法來制作平行四邊形,現(xiàn)在請大家在方格紙上獨立在方格紙上畫一個平行四邊形,想想應該怎么畫?注意些什么? (評:本環(huán)節(jié)的設(shè)計,通過在方格紙上畫,讓同學再次感知平行四邊形的一些特點,為下面的'猜測、驗證和畫高作了鋪墊。) 5、我們已經(jīng)能夠用不同的方法制作平行四邊形,并且能夠在方格紙上話一個平行四邊形。那么這些大小不同的平行四邊形到底有什么一起特點呢?下面我們一起來研究。 根據(jù)你們在制作平行四邊形的時候的體會,你們可以猜測一下:平行四邊形有哪些特點?(友情提示:課件中出示提示:我們可以從平行四邊形的那些方面來猜測它的特征呢?邊?角?) 6、同學小組討論后提問并板書猜測: 對邊可能平行; 對邊可能相等; 對角相等; …… 7、你們真行,有了這么多的猜測,那我們能夠自身想方法來證明這些猜測是否正確呢?請每個小組先認領(lǐng)一條,時間有多余可以再研究其他的猜測。 同學每小組上臺認領(lǐng)一條猜測,同學分組驗證猜測。 8、經(jīng)過同學們的努力,我們已經(jīng)自身驗證了其中一條猜測,現(xiàn)在我們舊來交流一下,其他小組認真聽好,他們的回答是否正確,你覺得怎樣? 9、小組派代表上來交流自身小組的驗證方法,其他小組在其完成后進行評價。 (1) 兩組對邊分別相等:同學介紹可以用對折或用直尺量的方法來驗證對邊相等后,教師用課件直觀展示。 (2) 兩組對邊分別平行:同學匯報的時候假如不一定很完整,教師用課件展示:兩條對邊分別延伸,然后顯示不相交。 (3) 對角相等:同學說出方法后,教師讓同學再自身量一量。 …… 最后,教師板書出經(jīng)過驗證特點: 兩組對邊分別平行并且相等; 對角相等; 內(nèi)角和是360° (評:這個環(huán)節(jié)的設(shè)計蘊涵了“猜測-驗證-結(jié)論”這樣一個科學的探究方法。給同學提供了充沛的自制探索的空間,引導同學先猜想特點,再放手讓同學自身去驗證和交流,使同學在碰撞和交流中最后的出結(jié)論。在這個過程中,同學充沛展示了自身的思維過程,在交流中與傾聽中把自身的方法與他人的想法進行了比較。) 10、完成“想想做做1”。同學獨立完成后說說理由。 三、認識高、底。 1、出示一張平行四邊形的圖,介紹:這是一個平行四邊形,你能量出平行四邊形兩條紅線間的距離嗎?應該怎么量?把你量的線段畫出來。 同學自身嘗試后交流。 2、老師剛才發(fā)現(xiàn),大家畫的高位置都不一樣,你們想想這是為什么呢?這樣的線段到底有多少條呢?(一組平行線之間的距離處處相等,有無數(shù)條。) 說明:從平行四邊形一條邊上的一點到它對邊的垂直線段是平行四邊形的高,這條對邊是平行四邊形的底。 3、你能畫出另一組對邊上的高,并量一量嗎?同學繼續(xù)嘗試。 完成后,讓同學指一指:兩次畫的高分別垂直于哪一組對邊。板書:高和一組對邊對應。 4、完成“試一試”:(1)先指一指高垂直于哪條邊;(2)量出每個平行四邊形的底和高各是多少厘米。 5、想想做做5,先指一指平行四邊形的底,再畫出這條底邊上的高,注意畫上直角標志。假如有錯誤,讓同學說說錯在哪里。 (這個環(huán)節(jié)的設(shè)計,通過同學自身去量、去畫,從而很方便得到了平行四邊形的高和底的概念,在的出高和底對應的時候比較巧妙,同學學得輕松、明了。設(shè)計的練習也遵循循序漸進的原則,很好地讓同學領(lǐng)悟了高的知識。) 四、練習提高。 1、想想做做1,哪些圖形是平行四邊形,為什么。 2、想想做做2,用2塊、4塊完全一樣的三角尺分別拼成一個平行四邊形,在小組里交流是怎樣拼的。 3、想想做做3,用七巧板中的3塊拼成一個平行四邊形。 出示,你能移動其中的一塊將它改拼生長方形嗎? 4、想想做做4,想把一塊平行四邊形的木板鋸開做成一張盡可能的的長方形桌面,該從哪里鋸開呢?找一張平行四邊形紙試一試。 5、想想做做6,用飲料管作成一個長方形,再拉成平行四邊形,比一比長方形和平行四邊形的相同點和不同點。 (評:在鞏固練習中,注意通過同學動手、動腦來進一步掌握平行四邊形的特點。來年系的層次清楚、逐步提高,同學容易接受,并且注意了引導同學去自主探索、合作交流。) 五、閱讀調(diào)查 自主閱讀“你知道嗎?”,說說有什么收獲,再到生活中去找找類似的例子。 六、全課小結(jié) 今天我們重點研究了哪種平面圖形?它有什么特點?回想一下,我們通過哪些活動進行研究? 【平行四邊形教案】相關(guān)文章: 平行四邊形教案08-10 平行四邊形的面積教案07-17 《平行四邊形的認識》教案09-30 平行四邊形教案優(yōu)秀08-29 平行四邊形面積教案02-29 平行四邊形的認識教案07-30 《平行四邊形的認識》教案07-09 平行四邊形的判定教案07-08 平行四邊形的面積教案06-18 《認識平行四邊形》教案05-28平行四邊形教案 篇2
平行四邊形教案 篇3
平行四邊形教案 篇4
平行四邊形教案 篇5
平行四邊形教案 篇6
平行四邊形教案 篇7