- 實(shí)用的平行四邊形教案 推薦度:
- 《平行四邊形的面積》教案 推薦度:
- 平行四邊形教案 推薦度:
- 相關(guān)推薦
精選平行四邊形教案模板集合十篇
作為一名人民教師,往往需要進(jìn)行教案編寫工作,教案有助于順利而有效地開展教學(xué)活動(dòng)。如何把教案做到重點(diǎn)突出呢?下面是小編精心整理的平行四邊形教案10篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
平行四邊形教案 篇1
教學(xué)過程
一、課堂引入
1.平行四邊形的性質(zhì);平行四邊形的判定;它們之間有什么聯(lián)系?
2.你能說說平行四邊形性質(zhì)與判定的用途嗎?
。ù穑浩叫兴倪呅沃R(shí)的運(yùn)用包括三個(gè)方面:一是直接運(yùn)用平行四邊形的性質(zhì)去解決某些問題.例如求角的度數(shù),線段的長度,證明角相等或線段相等等;二是判定一個(gè)四邊形是平行四邊形,從而判定直線平行等;三是先判定一個(gè)四邊形是平行四邊形,然后再眼再用平行四邊形的性質(zhì)去解決某些問題.)
3.創(chuàng)設(shè)情境
實(shí)驗(yàn):請(qǐng)同學(xué)們思考:將任意一個(gè)三角形分成四個(gè)全等的三角形,你是如何切割的?(答案如圖)
圖中有幾個(gè)平行四邊形?你是如何判斷的?
二、例習(xí)題分析
例1(教材P98例4)如圖,點(diǎn)D、E、分別為△ABC邊AB、AC的中點(diǎn),求證:DE∥BC且DE=BC.
分析:所證明的結(jié)論既有平行關(guān)系,又有數(shù)量關(guān)系,聯(lián)想已學(xué)過的知識(shí),可以把要證明的內(nèi)容轉(zhuǎn)化到一個(gè)平行四邊形中,利用平行四邊形的對(duì)邊平行且相等的性質(zhì)來證明結(jié)論成立,從而使問題得到解決,這就需要添加適當(dāng)?shù)?輔助線來構(gòu)造平行四邊形.
方法1:如圖(1),延長DE到F,使EF=DE,連接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四邊形BCFD是平行四邊形.所以DF∥BC,DF=BC,因?yàn)镈E=DF,所以DE∥BC且DE=BC.
。ㄒ部梢赃^點(diǎn)C作CF∥AB交DE的延長線于F點(diǎn),證明方法與上面大體相同)
方法2:如圖(2),延長DE到F,使EF=DE,連接CF、CD和AF,又AE=EC,所以四邊形ADCF是平行四邊形.所以AD∥FC,且AD=FC.因?yàn)锳D=BD,所以BD∥FC,且BD=FC.所以四邊形ADCF是平行四邊形.所以DF∥BC,且DF=BC,因?yàn)镈E=DF,所以DE∥BC且DE=BC.
定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線.
【思考】:
。1)想一想:①一個(gè)三角形的中位線共有幾條?②三角形的中位線與中線有什么區(qū)別?
。2)三角形的中位線與第三邊有怎樣的關(guān)系?
。ù穑海1)一個(gè)三角形的中位線共有三條;三角形的中位線與中線的區(qū)別主要是線段的端點(diǎn)不同.中位線是中點(diǎn)與中點(diǎn)的連線;中線是頂點(diǎn)與對(duì)邊中點(diǎn)的連線.(2)三角形的中位線與第三邊的關(guān)系:三角形的中位線平行與第三邊,且等于第三邊的一半.)
三角形中位線的性質(zhì):三角形的中位線平行與第三邊,且等于第三邊的一半。
平行四邊形教案 篇2
教學(xué)內(nèi)容:
義務(wù)教育六年制小學(xué)《數(shù)學(xué)》第九冊(cè)P64-P66
教學(xué)目的:
1、讓學(xué)生知道平行四邊形面積公式的推導(dǎo)過程,掌握平行四邊形面積的計(jì)算公式,并能應(yīng)用公式正確地計(jì)算平行四邊形面積,數(shù)學(xué)教案-平行四邊形面積計(jì)算。
2、通過操作、觀察與比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問題的能力。
3、使學(xué)生初步感受到事物是相互聯(lián)系的,在一定條件下可以相互轉(zhuǎn)化。
4、培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
教學(xué)重點(diǎn):
掌握平行四邊形面積公式。
教學(xué)難點(diǎn):
平行四邊形面積公式的推導(dǎo)過程。
教具、學(xué)具準(zhǔn)備:
1、多媒體計(jì)算機(jī)及課件;
2、投影儀;
3、硬紙板做成的可拉動(dòng)的長方形框架;
4、每個(gè)學(xué)生5張平行四邊形硬紙片及剪刀一把。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入:
1、我們認(rèn)識(shí)的平面幾何圖形有哪些呢?(微機(jī)出示,圖形略)
2、在這幾個(gè)圖形中你們會(huì)求哪幾個(gè)的面積呢?(微機(jī)出示長方形和正方形的面積公式)
3、大家想不想知道其他幾個(gè)圖形的面積怎么求呢?我們這個(gè)單元就來學(xué)習(xí)“多邊形面積的計(jì)算”。
二、質(zhì)疑引新:
1、老師知道同學(xué)們都很喜歡流氓兔,今天流氓兔遇到了一個(gè)難題,我們一起來幫它解決好不好?
2、微機(jī)顯示動(dòng)畫故事:有一天,流氓兔在跑步的時(shí)候,遇到了一個(gè)長方形框架,它不小心踹了一腳,把長方形變成了平行四邊形,流氓兔很奇怪:形狀改變了,面積改變了嗎?
3、演示教具:將硬紙板做成的長方形框架,拉動(dòng)其一角,變?yōu)槠叫兴倪呅巍?/p>
4、解決這個(gè)問題最好的辦法就是將兩個(gè)圖形的面積都求出來進(jìn)行比較,長方形的面積我們會(huì)求了,平行四邊形的面積要怎么求呢?這節(jié)可我們就一起來學(xué)習(xí)平行四邊形面積的計(jì)算。(板書課題:平行四邊形面積的計(jì)算)
三、引導(dǎo)探求:
。ㄒ唬、復(fù)習(xí)鋪墊:
1、什么圖形是平行四邊形呢?
2、拿出一個(gè)準(zhǔn)備好的平行四邊形,找找它的底和高,并把高畫下來,比比看誰畫得多。
3、微機(jī)顯示并小結(jié):平行四邊形可以作無數(shù)條高,以不同的邊為底對(duì)應(yīng)的高是不同的。
。ǘ、推導(dǎo)公式:
1、小小魔術(shù)師:我們現(xiàn)在來做一個(gè)變一變的小游戲(微機(jī)顯示一個(gè)不規(guī)則圖形),我們可以直接用所學(xué)過的求面積公式來求它的面積嗎?
2、能不能把它轉(zhuǎn)化成我們學(xué)過的圖形呢?(用割補(bǔ)法轉(zhuǎn)化為長方形)
3、能不能用同樣的方法把一個(gè)平行四邊形轉(zhuǎn)化成長方形呢?請(qǐng)同學(xué)們拿出準(zhǔn)備好的多個(gè)平行四邊形紙片及剪刀,自己動(dòng)手,運(yùn)用所學(xué)過的割補(bǔ)法將平行四邊形轉(zhuǎn)化為長方形。
4、學(xué)生實(shí)驗(yàn)操作,教師巡視指導(dǎo)。
5、學(xué)生交流實(shí)驗(yàn)情況:
、、誰愿意把你的轉(zhuǎn)化方法說給大家聽呢?請(qǐng)上臺(tái)來交流。ㄓ猛队皟x演示剪拼過程)
、、有沒有不同的剪拼方法?(繼續(xù)請(qǐng)同學(xué)演示)。
、、微機(jī)演示各種轉(zhuǎn)化方法。
6、歸納總結(jié)規(guī)律:
沿著平行四邊形的任意一條高剪開,都可以通過平移把平行四邊形拼合成一個(gè)長方形。并引導(dǎo)學(xué)生形成以下概念:
、、平行四邊形剪拼成長方形后,什么變了?什么沒變?
、、剪拼成的長方形的長與寬分別與平行四邊形的底和高有什么關(guān)系?
、、剪樣成的圖形面積怎樣計(jì)算?得出:
因?yàn)椋浩叫兴倪呅蔚拿娣e=長方形的面積=長×寬=底×高
所以:平行四邊形的面積=底×高
(板書平行四邊形面積推導(dǎo)過程)
7、文字公式不方便,我們一起來學(xué)習(xí)用字母公式表示,如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么S=a×h(板書)。同時(shí)強(qiáng)調(diào):在含有字母的式子中,字母和字母之間的乘號(hào)可以記作".",也可以省略不寫,所以平行四邊形的面積公式還可以記作S=a.h或S=ah(板書)。
8、讓學(xué)生閉上眼睛,在輕柔的音樂中回憶平行四邊形面積計(jì)算的'推導(dǎo)過程。
四、鞏固練習(xí):
1、剛才我們已經(jīng)推導(dǎo)出了平行四邊形的面積公式,那么,要求平行四邊形的面積,必須要知道哪幾個(gè)條件?(底和高,強(qiáng)調(diào)高是底邊上的高)
2、練習(xí):
、、(微機(jī)顯示例一)求平行四邊形的面積
、、判斷題(微機(jī)顯示,強(qiáng)調(diào)高是底邊上的高)
、、比較等底等高的平行四邊形面積的大。ㄓ们竺娣e的公式計(jì)算、比較,得出結(jié)論:等底等高的平行四邊形面積相等)
、、思考題:用求面積的公式解決流氓兔的難題(微機(jī)演示,得出結(jié)論:原長方形與改變后的平行四邊形比較,長方形的長等于平行四邊形的底,長方形的寬不等于平行四邊形的高,所以二者的面積不相等)。
五、問答總結(jié):
1、通過這節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?
2、平行四邊形面積的計(jì)算公式是什么?
3、平行四邊形面積公式是如何推導(dǎo)得出的?
六、課后作業(yè):P67 1、2、3、5 《指導(dǎo)叢書》練習(xí)十六 1
平行四邊形教案 篇3
練習(xí)要求:使學(xué)生進(jìn)一步掌握平行四邊形、三角形和梯形的面積公式,能正確、熟練地計(jì)算它們的面積。
練習(xí)重點(diǎn):正確運(yùn)用公式計(jì)算所學(xué)的圖形的面積。
教具準(zhǔn)備:投影
教學(xué)過程:
一、基本練習(xí)
1.回答下列各圖面積地計(jì)算公式和字母公式。
長方形長×寬ab
正方形邊長×邊長a2
平行四邊形底×高ah
三角形底×高÷2ah÷2
梯形(上底+下底)×高÷2(a+b)h÷2
2.平行四邊形、三角形、梯形的面積公式是怎樣推導(dǎo)出來的?
二、指導(dǎo)練習(xí)
1.練習(xí)十八第12題:計(jì)算下面每個(gè)圖形的面積。
3米8米12米
5.6米9.5米12米
5厘米
5.4
分5.8厘米5.2厘米
米
3分米5厘米7厘米
、攀—(dú)立審題,計(jì)算每個(gè)圖形的面積。
、茙熝惨,看同學(xué)們?cè)谟?jì)算書三角形和梯形的的面積時(shí)是否注意了“除以2”
、侵6名學(xué)生板演,集體訂正。
2.練習(xí)十八第15題。生獨(dú)立審題并計(jì)算出三角形的面積,注意單位的換算。
三、課堂練習(xí)
練習(xí)十八第14題
四、攻破難題
1.16題:一個(gè)魚塘的形狀是梯形,它的上底長21米,下底長45米,面積是759平方米。它的高是多少?
分析與解:
、乓阎菪蔚拿娣e=(上底+下底)×高÷2
、粕系祝碌祝21+45=66米
、歉撸759÷66×2=23米20厘米
2.17題:已知右面梯形的上底
是20厘米,下底是34厘米,其中涂色
部分的'面積是340平方厘米。這個(gè)梯形
的面積是多少?34厘米
分析與解:要求梯形的面積,但不知道高。根據(jù)陰影部分是三角形,又知道三角形的面積和底,可以求出它的高,也就是梯形的高,再算出梯形的面積。
高:340×2÷34=20厘米,
面積:(34+20)×20÷2=540平方厘米
3.18題:在下面的梯形中,剪下一個(gè)最大的三角形,剩下的是什么圖形?剩下的圖形的面積是多少平方厘米?
15厘米
12厘米
25厘米
分析與解:以下底為底,一上底上的任意一點(diǎn)為三角形的頂點(diǎn)剪下的三角形都是最大的。因?yàn)樗械娜切蔚牡缀透叨紱]有變,剩下的圖形可能是一個(gè)三角形,也可能是兩個(gè)三角形。
。15+25)×12÷2=240平方厘米
25×12÷2=150平方厘米
240-150=90平方厘米
4.思考題4厘米
右圖中,梯形的面積是7212
平方厘米。請(qǐng)你算出陰影厘
部分的面積。米
解法一:先算出沒有陰影部分
的面積:4×12÷2=24平方厘米,
再用梯形的面積減去這個(gè)三角形
的面積:72-24=48平方厘米。
解法二:陰影部分是一個(gè)三角形,這個(gè)三角形的高是12厘米,底與梯形的下底是同一條線段,先算出梯形的下底:
72×2÷12-4=8厘米
再算陰影部分的面積:8×12÷2=48平方厘米。
五、作業(yè)
練習(xí)十八11、13題
平行四邊形教案 篇4
教學(xué)目標(biāo):
1、知識(shí)與能力目標(biāo):通過學(xué)生自主探索、動(dòng)手實(shí)踐推導(dǎo)出平行四邊形面積計(jì)算公式,能正確求平行四邊形的面積。
2、過程與方法目標(biāo):讓學(xué)生經(jīng)歷平行四邊形面積公式的推導(dǎo)過程,通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,滲透轉(zhuǎn)化的思想方法。
3、情感態(tài)度與價(jià)值觀目標(biāo):培養(yǎng)學(xué)生的分析、綜合、抽象、概括和解決實(shí)際問題的能力;使學(xué)生感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),體驗(yàn)數(shù)學(xué)的實(shí)用價(jià)值。
教學(xué)重點(diǎn):
探究并推導(dǎo)平行四邊形面積的計(jì)算公式,并能正確運(yùn)用。
教學(xué)難點(diǎn):
平行四邊形面積公式的推導(dǎo)方法――轉(zhuǎn)化與等積變形。
教學(xué)方法:
利用知識(shí)遷移及剪、移、拼的實(shí)際操作來分解教學(xué)難點(diǎn),引導(dǎo)學(xué)生理解平行四邊形與長方形的等積轉(zhuǎn)化,通過剪、移、拼找出平行四邊形底和高與長方形長和寬的關(guān)系,把握面積始終不變的特點(diǎn),歸納出平行四邊形等積轉(zhuǎn)化成長方形面積。
教具、學(xué)具準(zhǔn)備:
多媒體課件、平行四邊形紙片、長方紙卡,剪刀等。
教學(xué)過程:
一、情境激趣
二、自主探究
古時(shí)候,有一位老地主給他的兩個(gè)兒子分地,大兒子分了一塊長方形的地,小兒子分得了一塊平行四邊形的地?墒莾蓚(gè)兒子都覺得自己分的地太少,對(duì)方的土地多,為此兩個(gè)兒子爭論不休。老地主十分苦惱,不知如何是好。這個(gè)難題同學(xué)們想想辦法能解決嗎?
在很久以前,我們的祖先計(jì)算平行四邊形的面積和計(jì)算長方形的面積一樣,采取了數(shù)方格的方法。老師也為你們準(zhǔn)備了一個(gè)格子圖,你們來數(shù)一數(shù)它們的面積是多少?
1、數(shù)方格,比較兩個(gè)圖形面積的大小。
。1)提出要求:每個(gè)方格表示1平方厘米,不滿一格的都按半格計(jì)算。
。2)小組合作,學(xué)生用數(shù)方格的方法計(jì)算兩個(gè)圖形的面積并填寫研究報(bào)告單。
。3)反饋匯報(bào)數(shù)的結(jié)果,得出:用數(shù)方格的方法知道了兩個(gè)圖形的面積一樣大。
(4)提出問題:如果平行四邊形很大,用數(shù)方格的方法麻煩嗎?
。▽W(xué)生:麻煩,有局限性。)
。5)觀察表格,你發(fā)現(xiàn)了什么?
出示表格平行四邊形底底邊上的高面積
長方形長寬面積
(6)引導(dǎo)學(xué)生交流自己的發(fā)現(xiàn)。
反饋:平行四邊形的底和長方形的長相等,平行四邊形的高和長方形的寬相等,平行四邊形的面積和長方形的面積相等;平行四邊形的面積等于底乘高。
。7)提出猜想:猜想:平行四邊形的面積=底高是否適合所有的平行四邊形面積呢?
2、動(dòng)手操作,驗(yàn)證猜想。
。1)提出要求:小組分工合作,利用三角尺、剪刀,動(dòng)手剪一剪、拼一拼,把平行四邊形想辦法轉(zhuǎn)變成一個(gè)長方形。完成后和小組的同學(xué)互相交流自己的方法。
。2)學(xué)生展示,平行四邊形變成長方形的方法。(沿著平行四邊形的高將平行四邊形剪成兩個(gè)直角梯形,拼成一個(gè)長方形。)
(3)觀察并思考:
、倨闯傻拈L方形和原來的平行四邊形比較,什么變了?什么沒變?
、谄闯傻拈L方形的長與寬分別與原來平行四邊形的底和高有什么關(guān)系?
。5)交流反饋,引導(dǎo)學(xué)生得出結(jié)論
、傩螤钭兞耍娣e沒變。
、谄闯傻拈L方形,長與原來平行四邊形的底相等,寬與原來平行四邊形的高相等。
(6)根據(jù)長方形的面積公式得出平行四邊形面積公式并用字母表示。
觀察面積公式,要求平行四邊形的面積必須知道哪兩個(gè)條件?
(平行四邊形的底和高)
。7)請(qǐng)大家想一想,我們是怎樣推導(dǎo)出平行四邊形的面積公式的?
(轉(zhuǎn)化圖形的'形狀)
。8)探究活動(dòng)小結(jié):我們把平行四邊形轉(zhuǎn)化成了同它面積相等的長方形,利用長方形面積計(jì)算公式得出了平行四邊的面積等于底乘高,驗(yàn)證了前面的猜想。
3、運(yùn)用公式,解決問題。
(1)出示例1
例1、學(xué)校1棟樓前停車場,每個(gè)車位都是一個(gè)平行四邊形,它的底是6米,高是4米,一個(gè)車位的面積有多少平方米?
(2)學(xué)生獨(dú)立完成并反饋答案。
三、看書釋疑P79~81
四、鞏固運(yùn)用
1、判斷,平行四邊形面積的概念。
。1)、兩個(gè)平行四邊形的高相等,它們的面積就相等( )
(2)、平行四邊形的高不變,底越長,它的面積就越大( ) 。
。3)、一個(gè)平行四邊形的底是9厘米,高是3分米,它的面積是27平方厘米。
2、計(jì)算,平行四邊形的面積。
3、拓展1,你有幾種方法求下面圖形的面積?
4、拓展2 比較,等底等高的平行四邊形的面積。
五、課堂總結(jié)
通過這節(jié)課的學(xué)習(xí),你有哪些收獲?(學(xué)生自由回答。)
平行四邊形教案 篇5
教學(xué)目標(biāo):
1.使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計(jì)算公式,并會(huì)運(yùn)用公式正確地計(jì)算平行四邊形的面積
2.通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問題的能力和邏輯思維能力.
3.對(duì)學(xué)生進(jìn)行辯詐唯物主義觀點(diǎn)的啟蒙教育.
教學(xué)重點(diǎn):
理解公式并正確計(jì)算平行四邊形的面積.
教學(xué)難點(diǎn):
理解平行四邊形面積公式的推導(dǎo)過程.
學(xué)具準(zhǔn)備:
每個(gè)學(xué)生準(zhǔn)備一個(gè)平行四邊形。
教學(xué)過程:
一、導(dǎo)入新課。
1.請(qǐng)同學(xué)翻書到86頁,仔細(xì)觀察,找一找圖中有哪些學(xué)過的圖形?
2.好,下面誰來說一說你找到了哪些學(xué)過的圖形?
3.請(qǐng)觀察這兩個(gè)花壇,哪一個(gè)大呢?假如這塊長方形花壇的長是3米,寬是2米,怎樣計(jì)算它的面積呢?根據(jù)長方形的面積=長寬(板書),得出長方形花壇的面積是6平方米,平行四邊形面積我們還沒有學(xué)過,所以不能計(jì)算出平行四邊形花壇的'面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計(jì)算。
二、民主導(dǎo)學(xué)
。ㄒ唬(shù)方格法
用展示臺(tái)出示方格圖
1.這是什么圖形?(長方形)如果每個(gè)小方格代表1平方厘米,這個(gè)長方形的面積是多少?(18平方厘米)
2.這是什么圖形?(平行四邊形)每一個(gè)方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米?
請(qǐng)同學(xué)認(rèn)真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計(jì)算。然后指名說出數(shù)得的結(jié)果,并說一說是怎樣數(shù)的。
3.請(qǐng)同學(xué)看方格圖填87頁最下方的表,填完后請(qǐng)學(xué)生回答發(fā)現(xiàn)了什么?
小結(jié):如果長方形的長和寬分別等于平行四邊形的底和高,則它們的面積相等。
。ǘ┮敫钛a(bǔ)法
以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數(shù)方格的方法來計(jì)算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計(jì)算平行四邊形面積的方法。
。ㄈ└钛a(bǔ)法
這是一個(gè)平行四邊形,請(qǐng)同學(xué)們把自己準(zhǔn)備的平行四邊形沿著所作的高剪下來,自己拼一下,看可以拼成我們以前學(xué)過的什么圖形?
平行四邊形教案 篇6
教學(xué)內(nèi)容:
教科書第14、15頁的內(nèi)容。
教學(xué)目標(biāo):
1、通過觀察、比較等方法,初步認(rèn)識(shí)平行四邊形,初步感知平行四邊形的特征。
2、參與對(duì)圖形的圍、拼、折等實(shí)踐活動(dòng),體會(huì)圖形的變換,發(fā)展空間觀念。
3、在學(xué)習(xí)活動(dòng)中積累對(duì)數(shù)學(xué)的興趣,培養(yǎng)交往、合作意識(shí)。
教學(xué)重點(diǎn):
認(rèn)識(shí)平行四邊形。
教學(xué)難點(diǎn):
感悟平行四邊形的特征。
教學(xué)過程:
一、情境導(dǎo)入
同學(xué)們,上節(jié)課我們知道了什么是四邊形以及它的特點(diǎn),今天,老師又給你們帶來了一位新朋友(出示平行四邊形圖),你們見過它嗎?這節(jié)課我們就來認(rèn)識(shí)這位新朋友。
二、自主探究
同學(xué)們?cè)谏钪幸娺^這樣的圖形嗎?在哪見過?
看,這是教師在生活中見到的四邊形,你知道這是什么嗎?
課件出示:教材第14頁例2圖
第一幅圖是掛衣服的架子,第二幅圖是圍起來的籬笆墻,第三幅圖是樓梯的扶手。
你能用兩塊完全一樣的.三角尺拼出這樣的平行四邊形嗎?它跟長方形、正方形有什么區(qū)別和聯(lián)系呢?試一試。
學(xué)生動(dòng)手操作,嘗試拼平行四邊形,教師巡視指導(dǎo)。
組織交流,展示學(xué)生拼圖結(jié)果,并讓學(xué)生說說發(fā)現(xiàn)了什么?
(它們的對(duì)邊一樣長,長方形、正方形和平行四邊形都是四邊形,長方形、正方形的四個(gè)角都是直角,平行四邊形的角不是直角)
老師邊畫平行四邊形邊指出:像這樣的四邊形叫做平行四邊形。
三、鞏固練習(xí)
1.想想做做第1題。
學(xué)生獨(dú)立完成,分小組討論, 匯報(bào)。
2.想想做做第2題。
組織學(xué)生想一想,再圍一圍。
3.想想做做第3題。
學(xué)生在書上描一描,教師巡視檢查。
4.想想做做第4題。
學(xué)生動(dòng)手完成。
5. 想想做做第5題。
學(xué)生在家長的幫助下完成。
四、全課總結(jié)
提問:今天這節(jié)課你有什么收獲?
平行四邊形教案 篇7
教材分析
本節(jié)課是在學(xué)生已經(jīng)掌握平行四邊形的特征,理解并能正確運(yùn)用長方形面積計(jì)算公式的基礎(chǔ)上進(jìn)行教學(xué)的,在本節(jié)課中學(xué)生要經(jīng)歷平行四邊形面積計(jì)算公式的推導(dǎo)過程,理解平行四邊形的面積計(jì)算公式,為今后學(xué)習(xí)三角形、梯形等平面圖形面積計(jì)算公式奠定基礎(chǔ)。
教材首先以比較花壇大小的情境引入,充分體現(xiàn)數(shù)學(xué)源于生活的課程理念;通過數(shù)格法,比較平行四邊形和長方形的面積大小,再通過割補(bǔ)法,將平行四邊形轉(zhuǎn)化成與它面積相等的長方形,從而滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。
教學(xué)目標(biāo)
1.探索平行四邊形的面積公式,掌握并能正確運(yùn)用公式解決實(shí)際問題。
2.通過操作、觀察、比較,培養(yǎng)學(xué)生分析、抽象概括能力,滲透轉(zhuǎn)化思想。
3.在探索的過程中獲得成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
根據(jù)目標(biāo)的定位,我將“掌握平行四邊形的面積計(jì)算公式”作為本節(jié)課的重點(diǎn),而本課要突破的難點(diǎn)是“經(jīng)歷平行四邊形面積公式的探究過程”
教學(xué)方法
《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出了重視學(xué)生學(xué)習(xí)過程的全新理念。在本節(jié)課中我主要以引導(dǎo)探究法為主,以學(xué)生參與活動(dòng)為主線,引導(dǎo)學(xué)生大膽猜想、通過數(shù)格子和剪拼驗(yàn)證、觀察比較,使小組教學(xué)和班級(jí)教學(xué)緊密聯(lián)系,并通過自主探索、合作交流發(fā)展能力。
教學(xué)過程
教學(xué)環(huán)節(jié)
教學(xué)活動(dòng)
設(shè)計(jì)意圖
一、創(chuàng)設(shè)情境,引入新知
二、動(dòng)手實(shí)踐、探索新知
三、嘗試練習(xí),提升能力
四、課堂小結(jié),梳理提高
以爭論面積大小的故事情境引入,引出要比較大小就得先算面積;仡櫫碎L方形面積計(jì)算公式=長×寬,并通過回憶長方形
(一)提出猜想
【提問】平行四邊形的面積可能等于什么?
受長方形面積公式的遷移學(xué)生可能會(huì)出現(xiàn)兩種答案:①底×高 ②底×斜邊(學(xué)生爭論)
(二)動(dòng)手驗(yàn)證
。ㄕn前準(zhǔn)備好剪刀、方格紙、尺子、兩個(gè)圖形紙的學(xué)具,放在信封里。)請(qǐng)大家拿出信封,小組合作,驗(yàn)證你的猜想。教師巡視并扮演好合作者的`角色,給予適當(dāng)?shù)刂笇?dǎo)。
1.多數(shù)學(xué)生會(huì)選用數(shù)格法,得到兩個(gè)圖形面積相等。
【追問】如果讓你測量花壇的面積,你也用數(shù)格法嗎?
【詢問】我們能不能把平行四邊形轉(zhuǎn)化成我們熟悉的圖形,再計(jì)算它的面積呢?
再次驗(yàn)證,并提出活動(dòng)要求
(1) 你把平行四邊形轉(zhuǎn)化成什么圖形?
。2) 什么變了,什么沒變?
。3) 平行四邊形的面積怎么算?
2.交流反饋(一個(gè)演示,一個(gè)講解)
【提問】看懂這種方法嗎?有誰的和他不同?
(三)動(dòng)眼觀察
【提問】這兩種方法有什么共同之處?
學(xué)生可能會(huì)發(fā)現(xiàn),都是沿著高剪的,因?yàn)橹挥羞@樣才會(huì)有直角,而且都拼成了長方形。
【追問】什么變了,什么沒變?
學(xué)生發(fā)現(xiàn),形狀變了,面積沒有變。因?yàn)槠叫兴倪呅蔚牡拙拖喈?dāng)于長方形的長,平行四邊形的高就相當(dāng)于長方形的寬,根據(jù)長方形的面積等于長乘寬,所以得到平行四邊形的面積等于底乘高。
。ㄐ〗M內(nèi)、同桌間說一說變化的過程,加深對(duì)公式的理解)
。ㄋ模┳詫W(xué)課本
引導(dǎo)學(xué)生自學(xué)課本,用字母表示公式。
S=ah(用S表示平行四邊形的面積,用a表示平行四邊形的底,h表示平行四邊形的高)
【追問】要求平行四邊形的面積,必須知道什么?
。ㄒ唬┗炯寄苡(xùn)練
(1) 計(jì)算平行四邊形的面積
。2) 藍(lán)色線這條高的長度
(二)解決實(shí)際問題
快樂公園由三個(gè)高都是16m的平行四邊形組成,其中中間是一條長河,兩邊種植花草樹木。(如下圖)
(三)提升思維能力
1.在方格紙上畫一個(gè)面積是24平方厘米的平行四邊形
2.如果這個(gè)平行四邊形的底是4厘米,那么能畫出幾種?
這節(jié)課你學(xué)習(xí)了什么,有哪些收獲?
教材是以比較花壇大小的情境導(dǎo)入,但我認(rèn)為這一情境不是很貼切學(xué)生的認(rèn)知,教師在尊重教材的同時(shí)但又不能拘泥于教材,因此我對(duì)教材進(jìn)行創(chuàng)造性地改編。
感受數(shù)格法不受用,從而激發(fā)起探究欲望。
本環(huán)節(jié)以“大膽猜想—?jiǎng)邮植僮鳌獎(jiǎng)友塾^察—?jiǎng)幽X思考”為主線,引導(dǎo)學(xué)生帶著猜想自主探究,讓不同起點(diǎn)的學(xué)生都能經(jīng)歷平行四邊形面積公式的推導(dǎo)過程,體驗(yàn)轉(zhuǎn)化思想,發(fā)展探索的能力,使學(xué)生在做數(shù)學(xué)的過程中感悟數(shù)學(xué)。
打破學(xué)生思維定勢(shì),感受高和底的對(duì)應(yīng)。
發(fā)散學(xué)生思維,同時(shí)滲透變與不變的辯證唯物思想,感受同底等高。
通過對(duì)全課進(jìn)行總結(jié),幫助學(xué)生梳理知識(shí),形成知識(shí)體系,并幫助學(xué)生對(duì)自己的學(xué)習(xí)方法進(jìn)行小結(jié)。
平行四邊形教案 篇8
教學(xué)建議
1。重點(diǎn) 平行四邊形的判定定理
重點(diǎn)分析 平行四邊形的判定方法涉及平行四邊形元素的各方面,同時(shí)它又與平行四邊形的性質(zhì)聯(lián)系,判定一個(gè)四邊形是否為平行四邊形是利用平行四邊形性質(zhì)解決其他問題的基礎(chǔ),所以平行四邊形的判定定理是本節(jié)的重點(diǎn).
2。難點(diǎn) 靈活運(yùn)用判定定理證明平行四邊形
難點(diǎn)分析 平行四邊形的判定方法較多,綜合性較強(qiáng),能靈活的運(yùn)用判定定理證明平行四邊形,是本節(jié)的難點(diǎn).
3。關(guān)于平行四邊形判定的教法建議
本節(jié)研究平行四邊形的判定方法,重點(diǎn)是四個(gè)判定定理,這也是本章的重點(diǎn)之一.
1.教科書首先指出,用定義可以判定平行四邊形.然后從平行四邊形的性質(zhì)定理的逆命題出發(fā),來探索平行四邊形的判定定理.因此在開始的教學(xué)引入中,要充分調(diào)動(dòng)學(xué)生的情感因素,盡可能利用形式多樣的多媒體課件,激發(fā)學(xué)生興趣,使學(xué)生能很快參與進(jìn)來.
2.素質(zhì)教育的主旨是發(fā)揮學(xué)生的主體因素,讓學(xué)生自主獲取知識(shí).本章重點(diǎn)中前三個(gè)判定定理的順序與它的性質(zhì)定理相對(duì)應(yīng),因此在講授新課時(shí),建議采用實(shí)驗(yàn)式教學(xué)模式或探索式教學(xué)模式:在證明每個(gè)判定定理時(shí),由學(xué)生自己去判斷命題成立與否,并根據(jù)過去所學(xué)知識(shí)去驗(yàn)證自己的結(jié)論,比較各種方法的優(yōu)劣,這樣使每個(gè)學(xué)生都積極參與到教學(xué)中,自己去實(shí)驗(yàn),去探索,去思考,去發(fā)現(xiàn),在動(dòng)手動(dòng)腦中得到的結(jié)論會(huì)更深刻――同時(shí)也要注意保護(hù)學(xué)生的參與積極性.
3.平行四邊形的判定方法較多,綜合性較強(qiáng),能靈活的運(yùn)用判定定理證明平行四邊形,是本節(jié)的難點(diǎn).因此在例題講解時(shí),建議采用啟發(fā)式教學(xué)模式,根據(jù)題目中具體條件結(jié)合圖形引導(dǎo)學(xué)生根據(jù)分析法解題程序從條件或結(jié)論出發(fā),由學(xué)生自己去思考,去分析,充分發(fā)揮學(xué)生的主體作用,對(duì)學(xué)生靈活掌握熟練應(yīng)用各種判定定理會(huì)有幫助.
教學(xué)設(shè)計(jì)示例1
[教學(xué)目標(biāo)]
通過本節(jié)課教學(xué),使學(xué)生訓(xùn)練掌握平行四邊形的各條判定定理,并能靈活地運(yùn)用平行四邊形的性質(zhì)定理和判定定理及以前學(xué)過的知識(shí)進(jìn)行有關(guān)證明,培養(yǎng)學(xué)生的邏輯思維能力,數(shù)學(xué)教案-平行四邊形的判定。
[教學(xué)過程]
一、準(zhǔn)備題系列
1。復(fù)習(xí)舊知識(shí):前面我們學(xué)習(xí)了平行四邊形的性質(zhì),哪位同學(xué)能敘述一下。(答對(duì)者記分,答錯(cuò)的另點(diǎn)同學(xué)補(bǔ)充)
2。小實(shí)驗(yàn):有一塊平行四喧形的玻璃片,假如不小心碰碎了解部分(如圖所示),同學(xué)們想想看,有沒有辦法把原來的平行四邊形重新畫出來?
(讓學(xué)生思考討論,再各自畫圖,畫好后互相交流畫法,教師巡回檢查,初中數(shù)學(xué)教案《數(shù)學(xué)教案-平行四邊形的判定》。對(duì)個(gè)別差生稍加點(diǎn)撥,最后請(qǐng)學(xué)生回答畫圖方法) 學(xué)生可能想到的畫法有:⑴ 分別過A、C作DC、DA的平行線,兩平行線相交于B; ⑵過C作DA的平行線,再在這平行線上截取CB=DA,連結(jié)BA;⑶ 分別以A、C為圓心,以DC、DA的.長為半徑畫弧,兩弧相交于B,連結(jié)AB、CB。
還有一種一法,學(xué)生不易想到,即由平行四邊形對(duì)角線的特性,引導(dǎo)學(xué)生得出 連結(jié)AC,取AC的中點(diǎn)O,再連結(jié)DO,并延長DO至B,使BO=DO,連結(jié)AB、CD。
二、引入新課
上面作出的四邊形是否都是平行四邊形呢?請(qǐng)同學(xué)們猜一猜。生答后師指出這就是今天所要不得 研究的問題“平行四邊形的判定”(板書課題)。
三、嘗試議練
1。要判定我們剛才畫出的四邊形是不是平行四邊形,應(yīng)當(dāng)加以證明。第一種畫法,由平行四邊形的定義可知,它是平行四邊形(定義可作性質(zhì)也可作判定)。
2。現(xiàn)在我們來看看第二種畫法,這就是平行四邊形判定定理一(翻開課本看它的文字?jǐn)⑹觯U?qǐng)想想,一組對(duì)邊平行且相等的四邊形究竟是不是平行四邊形呢?這里已知是什么?求證是什么?請(qǐng)寫出。
自學(xué)課本上的證明過程,看后提問:這個(gè)證明題不作輔助線行不行?為什么?(因?yàn)橐C平行線,一般要證兩角相等,或互補(bǔ),要證兩角相等,一般要證全等三角形,而這里沒有三角形,要連一對(duì)角線才有三角形)
3。再看第三種畫法,在兩組對(duì)邊分別相等的情況下是不是平行四邊形?教師寫出已知、求證,請(qǐng)兩位學(xué)生上臺(tái)證明,其余在課堂練習(xí)本上做。(注意考慮要不要添輔助線)
完成證明后提問哪些學(xué)生是用判定定理一落千丈證明的?哪些是用定義證明的?(解題后思考)
四、變式練習(xí)
1。再看看第四種畫法,可知,已各條件是四邊形的對(duì)角線互相一平分,這種情況下它是不平行四邊形?
閱讀課本上的判定定理之后,要求學(xué)生思考用什么方法求證最簡便?(應(yīng)該用判定定理一) 2。變式題
⑴兩組對(duì)角分別相等的四邊形是不是平行四邊形?為什么?(練習(xí)第1題)(口述證明,不要示書面證明)(問要不要添輔助線?)
、埔唤M對(duì)邊平行,一組對(duì)角相等的四邊形是不是平行四邊形?(教師補(bǔ)充)
、且唤M對(duì)邊相等,一組對(duì)家相等及一組對(duì)邊相等,另一組對(duì)邊相等的四邊形是不是平行四邊形?(引導(dǎo)學(xué)生在草稿紙上畫圖思考,然后回答不是平行四邊形。因?yàn)檫吔遣荒茏C全等三角形)
、茸詫W(xué)課本例1思考:此例證明中,什么地方用了平行四邊形的“性質(zhì)”?什么地方用“判定”定理?
觀察下圖:
平行四邊形ABCD中,<A、<C的平行線分別交對(duì)邊于E和F,求證:AE=FC(怎樣證最簡便?)
五、課堂小結(jié)
1。今天這節(jié)課我們學(xué)了什么?平行四這形的判定有哪些方法?試列舉之。
2。這些平行四邊形的判定方法中最基本的是哪一條?
3。平行四邊形的判定定理和性質(zhì)有什么關(guān)系?同一個(gè)證明題中應(yīng)注意什么地方用判定,什么地方性質(zhì)?
平行四邊形教案 篇9
教學(xué)目標(biāo):
1.使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計(jì)算公式,并會(huì)運(yùn)用公式正確地計(jì)算平行四邊形的面積.
2.通過操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問題的能力和邏輯思維能力.
3.對(duì)學(xué)生進(jìn)行辯詐唯物主義觀點(diǎn)的啟蒙教育.
教學(xué)重點(diǎn):理解公式并正確計(jì)算平行四邊形的面積.
教學(xué)難點(diǎn):理解平行四邊形面積公式的推導(dǎo)過程.
學(xué)具準(zhǔn)備:每個(gè)學(xué)生準(zhǔn)備一個(gè)平行四邊形。
教學(xué)過程:
1、什么是面積?
2、請(qǐng)同學(xué)翻書到80頁,請(qǐng)觀察這兩個(gè)花壇,哪一個(gè)大呢?假如這塊長方形花壇的長是3米,寬是2米,怎樣計(jì)算它的面積呢?
二、導(dǎo)入新課
根據(jù)長方形的面積=長×寬(板書),得出長方形花壇的面積是6平方米,平行四邊形面積我們還沒有學(xué)過,所以不能計(jì)算出平行四邊形花壇的面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計(jì)算。
三、講授新課
(一)、數(shù)方格法
用展示臺(tái)出示方格圖
1、這是什么圖形?(長方形)如果每個(gè)小方格代表1平方厘米,這個(gè)長方形的面積是多少?(18平方厘米)
2、這是什么圖形?(平行四邊形)每一個(gè)方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米?
請(qǐng)同學(xué)認(rèn)真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計(jì)算。然后指名說出數(shù)得的結(jié)果,并說一說是怎樣數(shù)的。
2、請(qǐng)同學(xué)看方格圖填80頁最下方的表,填完后請(qǐng)學(xué)生回答發(fā)現(xiàn)了什么?
:如果長方形的'長和寬分別等于平行四邊形的底和高,則它們的面積相等。
。ǘ┮敫钛a(bǔ)法
以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數(shù)方格的方法來計(jì)算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計(jì)算平行四邊形面積的方法。
。ㄈ└钛a(bǔ)法
1、這是一個(gè)平行四邊形,請(qǐng)同學(xué)們把自己準(zhǔn)備的平行四邊形沿著所作的高剪下來,自己拼一下,看可以拼成我們以前學(xué)過的什么圖形?
2、然后指名到前邊演示。
3、教師示范平行四邊形轉(zhuǎn)化成長方形的過程。
剛才發(fā)現(xiàn)同學(xué)們把平行四邊形轉(zhuǎn)化成長方形時(shí),就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長方形。在變換圖形的位置時(shí),怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在黑板上演示。
、傧妊刂叫兴倪呅蔚母呒粝伦筮叺闹苯侨切巍
、谧笫职醋∈O碌奶菪蔚挠也浚沂帜弥粝碌闹苯侨切窝刂走吢蛴乙苿(dòng)。
③移動(dòng)一段后,左手改按梯形的左部。右手再拿著直角三角形繼續(xù)沿著底邊慢慢向右移動(dòng),到兩個(gè)斜邊重合為止。
請(qǐng)同學(xué)們把自己剪下來的直角三角形放回原處,再沿著平行四邊形的底邊向右慢慢移動(dòng),直到兩個(gè)斜邊重合。(教師巡視指導(dǎo)。)
4、觀察(黑板上在剪拼成的長方形左面放一個(gè)原來的平行四邊形,便于比較。)
、龠@個(gè)由平行四邊形轉(zhuǎn)化成的長方形的面積與原來的平行四邊形的面積比較,有沒有變化?為什么?
、谶@個(gè)長方形的長與平行四邊形的底有什么樣的關(guān)系?
、圻@個(gè)長方形的寬與平行四邊形的高有什么樣的關(guān)系?
教師歸納:任意一個(gè)平行四邊形都可以轉(zhuǎn)化成一個(gè)長方形,它的面積和原來的平行四邊形的面積相等,它的長、寬分別和原來的平行四邊形的底、高相等。
5、引導(dǎo)學(xué)生平行四邊形面積計(jì)算公式。
這個(gè)長方形的面積怎么求?(指名回答后,在長方形右面板書:長方形的面積=長×寬)
那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書:平行四邊形的面積=底×高。)
6、教學(xué)用字母表示平行四邊形的面積公式。
板書:S=a×h,告知S和h的讀音。
說明在含有字母的式子里,字母和字母中間的乘號(hào)可以記作“”,寫成ah,也可以省略不寫,所以平行四邊形面積的計(jì)算公式可以寫成S=ah,或者S=ah。
。6)完成第81頁中間的“填空”。
7、驗(yàn)證公式
學(xué)生利用所學(xué)的公式計(jì)算出“方格圖中平行四邊形的面積”和用數(shù)方格的方法求出的面積相比較“相等”,加以驗(yàn)證。
條件強(qiáng)化:求平行四邊形的面積必須知道哪兩個(gè)條件?(底和高)
。ㄋ模⿷(yīng)用
1、學(xué)生自學(xué)例1后,教師根據(jù)學(xué)生提出的問題講解。
3、判斷,并說明理由。
(1)兩個(gè)平行四邊形的高相等,它們的面積就相等()
(2)平行四邊形底越長,它的面積就越大()
4、做書上82頁2題。
四、體驗(yàn)
今天,你學(xué)會(huì)了什么?怎樣求平行四邊形的面積?平行四邊形的面積計(jì)算公式是怎樣推導(dǎo)的?
五、作業(yè)
練習(xí)十五第1題。
六、板書設(shè)計(jì)
平行四邊形面積的計(jì)算
長方形的面積=長×寬 平行四邊形的面積=底×高
S=a×hS=ah或S=ah
課后反思:
平行四邊形教案 篇10
一、學(xué)習(xí)目標(biāo)
1、經(jīng)歷探索多項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則的過程,發(fā)展有條理的思考及語言表達(dá)能力。
2、 會(huì)進(jìn)行簡單的多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算
二、學(xué)習(xí)過程
(一)自學(xué)導(dǎo)航
1、創(chuàng)設(shè)情境
某地區(qū)在退耕還林期間,將一塊長m米、寬a米的長方形林區(qū)的長、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。
這塊林區(qū)現(xiàn)在的長為 米,寬為 米。因而面積為________米2。
還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。
由于這兩個(gè)算式表示的都是同一塊地的面積,則有 =
如果把(m+n)看作一個(gè)整體,你還能用別的方法得到這個(gè)等式嗎?
2、概括:
多項(xiàng)式乘以多項(xiàng)式的法則:
3、計(jì)算
。1) (2)
4、練一練
。1)
(二)合作攻關(guān)
1、某酒店的廚房進(jìn)行改造,在廚房的中間設(shè)計(jì)一個(gè)準(zhǔn)備臺(tái),要求四面的過道寬都為x米,已知廚房的長寬分別為8米和5米,用代數(shù)式表示該廚房過道的總面積。
2、解方程
(三)達(dá)標(biāo)訓(xùn)練
1、填空題:
(1) = =
。2) = 。
2、計(jì)算
(1) (2)
。3) (4)
(四)提升
1、怎樣進(jìn)行多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算?
2、若 的乘積中不含 和 項(xiàng),則a= b=
應(yīng)用題
第三十五講 應(yīng)用題
在本講中將介紹各類應(yīng)用題的解法與技巧.
當(dāng)今數(shù)學(xué)已經(jīng)滲入到整個(gè)社會(huì)的各個(gè)領(lǐng)域,因此,應(yīng)用數(shù)學(xué)去觀察、分析日常生活現(xiàn)象,去解決日常生活問題,成為各類數(shù)學(xué)競賽的一個(gè)熱點(diǎn).
應(yīng)用性問題能引導(dǎo)學(xué)生關(guān)心生活、關(guān)心社會(huì),使學(xué)生充分到數(shù)學(xué)與自然和人類社會(huì)的密切聯(lián)系,增強(qiáng)對(duì)數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心.
解答應(yīng)用性問題,關(guān)鍵是要學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)去觀察、分析、概括所給的實(shí)際問題,揭示其數(shù)學(xué)本質(zhì),將其轉(zhuǎn)化為數(shù)學(xué)模型.其求解程序如下:
在初中范圍內(nèi)常見的數(shù)學(xué)模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.
例題求解
一、用數(shù)式模型解決應(yīng)用題
數(shù)與式是最基本的數(shù)學(xué)語言,由于它能夠有效、簡捷、準(zhǔn)確地揭示數(shù)學(xué)的本質(zhì),富有通用性和啟發(fā)性,因而成為描述和表達(dá)數(shù)學(xué)問題的重要方法.
【例1】(20xx年安徽中考題)某風(fēng)景區(qū)對(duì)5個(gè)旅游景點(diǎn)的門票價(jià)格進(jìn)行了調(diào)整,據(jù)統(tǒng)計(jì),調(diào)價(jià)前后各景點(diǎn)的游客人數(shù)基本不變。有關(guān)數(shù)據(jù)如下表所示:
景點(diǎn)ABCDE
原價(jià)(元)1010152025
現(xiàn)價(jià)(元)55152530
平均日人數(shù)(千人)11232
(1)該風(fēng)景區(qū)稱調(diào)整前后這5個(gè)景點(diǎn)門票的平均收費(fèi)不變,平均日總收入持平。問風(fēng)景區(qū)是怎樣計(jì)算的?
(2)另一方面,游客認(rèn)為調(diào)整收費(fèi)后風(fēng)景區(qū)的平均日總收入相對(duì)于調(diào)價(jià)前,實(shí)際上增加了約9.4%。問游客是 怎樣計(jì)算的?
。3)你認(rèn)為風(fēng)景區(qū)和游客哪一個(gè)的說法較能反映整體實(shí)際?
思路點(diǎn)撥 (1)風(fēng)景區(qū)是這樣計(jì)算的:
調(diào)整前的平均價(jià)格: ,設(shè)整后的平均價(jià)格:
∵調(diào)整前后的平均價(jià)格不變,平均日人數(shù)不變.
∴平均日總收入持平.
。 2)游客是這樣計(jì)算的:
原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)
現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日總收入增加了
(3)游客的說法較能反映整體實(shí)際.
二、用方程模型解應(yīng)用題
研究和解決生產(chǎn)實(shí)際和現(xiàn)實(shí)生恬中有關(guān)問題常常要用到方程<組)的知識(shí),它可以幫助人們從數(shù)量關(guān)系和相等關(guān)系的角度去認(rèn)識(shí)和理解現(xiàn)實(shí)世界.
【例2】 (重慶中考題)某中學(xué)新建了一棟4層的教學(xué)大樓,每層樓有8間教室,進(jìn)出這棟大樓共有4道門,其中兩道正門大小相同,兩道側(cè)門大小也相同.安全檢查中,對(duì)4道門進(jìn)行了測試:當(dāng)同時(shí)開啟一道正門和兩道側(cè)門時(shí),2min內(nèi)可以通過560名學(xué)生;當(dāng)同時(shí)開啟一道正門和一道側(cè)門時(shí),4mln內(nèi)可以通過800名學(xué)生.
(1)求平均每分鐘一道正門和一道側(cè)門各可以通過多少名學(xué)生?
(2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5min內(nèi)通過這4道門安全撤離.假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問:建造的這4道門整否符合安全規(guī)定?請(qǐng)說明理由.
思路點(diǎn)撥 列方程(組)的關(guān)鍵是找到題中等量關(guān)系:兩種測試中通過的學(xué)生數(shù)量.設(shè)未知數(shù)時(shí)一般問什么設(shè)什么.“符合安全規(guī)定”之義為最大通過量不小于學(xué)生總數(shù).
(1)設(shè)平均每分鐘一道正門可以通過x名學(xué)生,一道側(cè)門可以通過y名學(xué)生,由題意得:
,解得:
(2)這棟樓最多有學(xué)生4×8×4 5=1440(名).
擁擠時(shí)5min4道門能通過.
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道門符合安全規(guī)定.
三、用不等式模型解應(yīng)用題
現(xiàn)實(shí)世界中的不等關(guān)系是普遍存在的,許多問題有時(shí)并不需要研究它們之間的相等關(guān)系,只需要確定某個(gè)量的變化范圍,即可對(duì)所研究的問題有比較清楚的認(rèn)識(shí).
【例3】 (蘇州中考題)我國東南沿海某地的風(fēng)力資源豐富,一年內(nèi)月平均的風(fēng)速不小于3m/s的時(shí)間共約160天,其中日平均風(fēng)速不小于6m/s的時(shí)間占60天.為了充分利用“風(fēng)能”這種“綠色資源”,該地?cái)M建一個(gè)小型風(fēng)力發(fā)電場,決定選用A、B兩種型號(hào)的風(fēng)力發(fā)電機(jī),根據(jù)產(chǎn)品說明,這兩種風(fēng)力發(fā)電機(jī)在各種風(fēng)速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:
日平均風(fēng)速v(米/秒)v<33≤v<6v≥6
日發(fā)電量 (千瓦?時(shí))A型發(fā)電機(jī)O≥36≥150
B型發(fā)電機(jī)O≥24≥90
根據(jù)上面的數(shù)據(jù)回答:
(1)若這個(gè)發(fā)電場購x臺(tái)A型風(fēng)力發(fā)電機(jī),則預(yù)計(jì)這些A型風(fēng)力發(fā)電機(jī)一年的發(fā)電總量至少為 千瓦?時(shí);
(2)已知A型風(fēng)力發(fā)電機(jī)每臺(tái)O.3萬元,B型風(fēng)力發(fā)電機(jī)每臺(tái)O.2萬元.該發(fā)電場擬購置風(fēng)力發(fā)電機(jī)共10臺(tái),希望購機(jī)的費(fèi)用不超過2.6萬元,而建成的風(fēng)力發(fā)電場每年的發(fā)電總量不少于102000千瓦?時(shí),請(qǐng)你提供符合條件的購機(jī)方案.
根據(jù)上面的數(shù)據(jù)回答:
思路點(diǎn)撥 (1) (100×36+60×150)x=12600x;
(2)設(shè)購A型發(fā)電機(jī)x臺(tái),則購B型發(fā)電機(jī)(10—x)臺(tái),
解法一根據(jù)題意得:
解得5≤x ≤6.
故可購A型發(fā)電機(jī)5臺(tái),B型發(fā)電機(jī)5臺(tái);或購A型發(fā)電機(jī)6臺(tái),B型發(fā)電視4臺(tái).
四、用函數(shù)知識(shí)解決的應(yīng)用題
函數(shù)類應(yīng)用問題主要有以下兩種類型:(1)從實(shí)際問題出發(fā),引進(jìn)數(shù)學(xué)符號(hào),建立函數(shù)關(guān)系;(2)由提供的基本模型和初始條件去確定函數(shù)關(guān)系式.
【例4】 (揚(yáng)州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤楊”報(bào)刊零售點(diǎn).對(duì)經(jīng)營的某種晚報(bào),楊嫂提供丁如下信息:
①買進(jìn)每份0.20元,賣出每份0.30元;
、谝粋(gè)月內(nèi)(以30天計(jì)),有20天每天可以賣出200份,其余10天每天只能賣出120份;
、垡粋(gè)月內(nèi),每天從報(bào)社買進(jìn)的報(bào)紙份數(shù)必須相同.當(dāng)天賣不掉的報(bào)紙,以每份0.10元退回給報(bào)社;
(1)填表:
一個(gè)月內(nèi)每天買進(jìn)該種晚報(bào)的份數(shù)100150
當(dāng)月利潤(單位:元)
(2)設(shè)每天從報(bào)社買進(jìn)該種晚報(bào)x份,120≤x≤200時(shí),月利潤為y元,試求出y與x的函數(shù)關(guān)系式,并求月利潤的最大值.
思路點(diǎn)撥(1)填表:
一個(gè)月內(nèi)每天買進(jìn)該種晚報(bào)的份數(shù)100150
當(dāng)月利潤(單位:元)300390
(2)由題意可知,一個(gè)月內(nèi)的20天可獲利潤:
20×=2x(元);其余10天可獲利潤:
10=240—x(元);
故y=x+240,(120≤x≤200), 當(dāng)x=200時(shí),月利潤y的最大值為440元.
注 根據(jù)題意,正確列出函數(shù)關(guān)系式,是解決問題的關(guān)鍵,這里特別要注意自變量x的取值范圍.
另外,初三還會(huì)提及統(tǒng)計(jì)型應(yīng)用題,幾何型應(yīng)用題.
【例5】 (桂林市)某公司需在一月(31天)內(nèi)完成新建辦公樓的裝修工程.如果由甲、乙兩個(gè)工程隊(duì)合做,12天可完成;如果由甲、乙兩隊(duì)單獨(dú)做,甲隊(duì)比乙隊(duì)少用10天完成.
。1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程所需的天數(shù).
(2)如果請(qǐng)甲工程隊(duì)施工,公司每日需付費(fèi)用200 0元;如果請(qǐng)乙工程隊(duì)施工,公司每日需付費(fèi)用1400元.在規(guī)定時(shí)間內(nèi):A.請(qǐng)甲隊(duì)單獨(dú)完成此項(xiàng)工程;B.請(qǐng)乙隊(duì)單獨(dú)完成此項(xiàng)工 程; C.請(qǐng)甲、乙兩隊(duì)合作完成此項(xiàng)工程.以上方案哪一種花錢最少?
思路點(diǎn)撥 這是一道策略優(yōu)選問題.工程問題中:工作量=工作效率×工時(shí).
(1)設(shè)乙工程隊(duì)單獨(dú)完成此項(xiàng)工程需x天,根據(jù)題意得:
, x=30合題意,
所以,甲工程隊(duì)單獨(dú)完成此項(xiàng)工程需用20天,乙隊(duì)需30天.
(2)各種方案所需的費(fèi)用分別為:
A.請(qǐng)甲隊(duì)需20xx×20=40000元;
B.請(qǐng)乙隊(duì)需1400×30=4200元;
C.請(qǐng)甲、乙兩隊(duì)合作需(20xx+1400)×12=40800元.
所隊(duì)單獨(dú)請(qǐng)甲隊(duì)完成此項(xiàng)工程花錢最少.
【例6】 (2全國聯(lián)賽初賽題)一支科學(xué)考察隊(duì)前往某條河流的上游去考察一個(gè)生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進(jìn)若干天后到達(dá)目的地,然后在生態(tài)區(qū)考察了若干天,完成任務(wù)后以每天25km的速度返回,在出發(fā)后的第60天,考察隊(duì)行進(jìn)了24km后回到出發(fā)點(diǎn),試問:科學(xué)考察隊(duì)的生態(tài)區(qū)考察了多少天?
思路點(diǎn)撥 挖掘題目中隱藏條件是關(guān)鍵!
設(shè)考察隊(duì)到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
這里x、y是正整數(shù),現(xiàn)設(shè) 法求出①的.一組合題意的解,然后計(jì)算出z的值.
為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負(fù)整數(shù)).用輾轉(zhuǎn)相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
與①的左端比較可知,x0 =-3,y0=-2.
下面再求出①的合題意的解.
由不定方程的知識(shí)可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t為整數(shù).按題意0 ∴z=60—(x+y)=23. 答:考察隊(duì)在生態(tài)區(qū)考察的天數(shù)是23天. 注 本題涉及到的未知量多,最終轉(zhuǎn)化為二元一次不定方程來解,希讀者仔細(xì)咀嚼所用方法. 【例7】 (江蘇省第17屆初中競賽題)華鑫超市對(duì)顧客實(shí)行優(yōu)惠購物,規(guī)定如下: (1)若一次購物少于200元,則不予優(yōu)惠; (2)若一次購物滿200元,但不超過500元,按標(biāo)價(jià)給予九折優(yōu)惠; (3)若一次購物超過500元,其中500元部分給予九折優(yōu)惠,超過500元部分給予八折 優(yōu)惠. 小明兩次去該超市購物,分別付款198元與554元.現(xiàn)在小亮決定一次去購 買小明分兩次購買的同樣多的物品,他需付款多少? 思路點(diǎn)撥 應(yīng)付198元購物款討論: 第一次付款198元,可是所購物品的實(shí)價(jià),未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應(yīng)分兩種情況加以討論. 情形1 當(dāng)198元為購物不打折付的錢時(shí),所購物品的原價(jià)為198元 . 又554=450+104,其中450元為購物500元打九折付的錢,104元為購物打八折付的錢;104÷0. 8 =130(元). 因此,554元所購物品的原價(jià)為130+500=630(元),于是購買小呀花198 +630=828(元)所購的全部物品,小亮一次性購買應(yīng)付500×0.9+(828-500)×0.8=712.4(元). 情形2 當(dāng)198元為購物打九折付的錢時(shí),所購物品的原價(jià)為198 ÷0.9=220(元) .仿情形1的討論,,購220+630=850{元}物品一次性付款應(yīng)為500×0.9+(850-500)×0.8=730(元). 綜上所述,小亮一次去超市購買小明已購的同樣多的物品,應(yīng)付款712.40元或730元 【例8】 (20xx年全國數(shù)學(xué)競賽題)某項(xiàng)工程,如果由甲、乙兩隊(duì)承包,2 天完成,需180000元;由乙、丙兩隊(duì)承包,3 天完成,需付150000元;由甲、丙兩隊(duì)承包,2 天完成,需付160000元.現(xiàn)在工程由一個(gè)隊(duì)單獨(dú)承包,在保證一周完成的前提下,哪個(gè)隊(duì)承包費(fèi)用最少? 思路點(diǎn)撥 關(guān)鍵問題是甲、乙、丙單獨(dú)做各需的天數(shù)及獨(dú)做時(shí)各方日付工資.分兩個(gè)層次考慮: 設(shè)甲、乙、丙單獨(dú)承包各需x、y、z天完成. 則 ,解得 再設(shè)甲、乙、丙單獨(dú)工作一天,各需付u、v、w元, 則 ,解得 于是,由甲隊(duì)單獨(dú)承包,費(fèi)用是45500×4=182000 (元). 由乙隊(duì)單獨(dú)承包,費(fèi)用是29500×6= 177000 (元). 而丙隊(duì)不能在一周內(nèi)完成.所以由乙隊(duì)承包費(fèi)用最少. 學(xué)歷訓(xùn)練 (A級(jí)) 1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴(kuò)散,某制藥廠接到了生產(chǎn)240箱過氧乙酸消毒液的任務(wù).在生產(chǎn)了60箱后,需要加快生產(chǎn),每天比原來多生產(chǎn)15箱,結(jié)果6天就完成了任務(wù).求加快速度后每天生產(chǎn)多少箱消毒液? 2.(山東省競賽題)某市為鼓勵(lì)節(jié)約用水,對(duì)自來水妁收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水中不超過10t部分按0.45元/噸收費(fèi);超過10t而不超過20t部分按每噸0.8元收費(fèi);超過20t部分按每噸1.50元收費(fèi),某月甲戶比乙戶多繳水費(fèi)7.10元,乙戶比丙戶多繳水費(fèi)3.75元,問甲、乙、丙該月各繳水費(fèi)多少?(自來水按整噸收費(fèi)) 3.(江蘇省競賽題)甲、乙、丙三人共解出100道數(shù)學(xué)題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問:難題多還是容易題多?多的比少的多幾道題? 4.某人從A地到B地乘坐出租車有兩種方案,一種出租車收費(fèi)標(biāo)準(zhǔn)是起步價(jià)10元,每千米1.2元;另一種出租車收費(fèi)標(biāo)準(zhǔn)是起步價(jià)8元,每千米1.4元,問選擇哪一種出租車比較合適? (提示:根據(jù)目前出租車管理?xiàng)l例,車型不同,起步價(jià)可以不同,但起步價(jià)的最大行駛里程是相同的,且此里程內(nèi)只收起步價(jià)而不管其行駛里程是多少) 。˙級(jí)) 1.(全國初中數(shù)學(xué)競賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺(tái)抽水機(jī)抽水,40min可抽完;如果用4臺(tái)抽水機(jī)抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機(jī) 臺(tái). 2.(希望杯)有一批影碟機(jī)(VCD)原售價(jià):800元/臺(tái).甲商場用如下辦法促銷: 購買臺(tái)數(shù)1~5臺(tái)6~10臺(tái)11~15臺(tái)16~20臺(tái)20臺(tái)以上 每臺(tái)價(jià)格760元720元680元640元600元 乙商場用如下辦法促銷:每次購買1~8臺(tái),每臺(tái)打九折;每次購買9~16臺(tái),每臺(tái)打八五折; 每次購買17~24臺(tái),每臺(tái)打八折;每次購買24臺(tái)以上,每臺(tái)打七五折. (1)請(qǐng)仿照甲商場的促銷列表,列出到乙商場購買VCD的購買臺(tái)數(shù)與每臺(tái)價(jià)格的對(duì)照表; (2)現(xiàn)在有A、B、C三個(gè)單位,且單位要買10臺(tái)VCD,B單位要買16臺(tái)VCD,C單位要買20臺(tái)VCD,問他們到哪家商場購買花費(fèi)較少? 3.(河北創(chuàng)新與知識(shí)應(yīng)用競賽題)某錢幣收藏愛好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請(qǐng)你據(jù)此設(shè)計(jì)兌換方案. 4.從自動(dòng)扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運(yùn)動(dòng)且男孩每分鐘走動(dòng)的級(jí)數(shù)是女孩的兩倍,已知男孩走了27級(jí)到達(dá)扶梯頂部,而女孩走了18級(jí)到達(dá)扶梯頂部(設(shè)男孩、女孩每次只踏—級(jí)).問: (1)扶梯露在外面的部分有多少級(jí)? (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級(jí)數(shù)和扶梯的級(jí)數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時(shí)走了多少級(jí)臺(tái)階? 5.某化肥廠庫存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍. 6.(黃岡競賽題)有麥田5塊A、B、C、D、E,它們的產(chǎn)量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場,這5塊麥田生產(chǎn)的麥子都在此打場.問建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運(yùn)輸量最小?圖中圓圈內(nèi)的數(shù)字為產(chǎn)量,直線段上的字母a、b、d表示距離,且b < a 多邊形的邊角與對(duì)角線 j.Co M 第十四講 多邊形的邊角與對(duì)角線 邊、角、對(duì)角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內(nèi)外角度數(shù)、對(duì)角線條數(shù)是解與多邊形相關(guān)的基本問題,常用到三角形內(nèi)角和、多邊形內(nèi)、外角和定理、不等式、方程等知識(shí). 多邊形 的內(nèi)角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質(zhì)的規(guī)律;360°是一個(gè)常數(shù),把內(nèi)角問題轉(zhuǎn)化為外角問題,以靜制動(dòng)是解多邊形有關(guān)問題的常用技巧. 將多邊形問題轉(zhuǎn)化為三角形問題來處理是解多邊形問題的基本策略,連對(duì)角線或向外補(bǔ)形、對(duì)內(nèi)分割是轉(zhuǎn)化的常用方法,從凸 邊形的一個(gè)頂點(diǎn)引出的對(duì)角線把 凸 邊形分成 個(gè)多角形,凸n邊形一共可引出 對(duì)角線. 例題求解 【例1】在一個(gè)多邊形中,除了兩個(gè)內(nèi)角外,其余內(nèi)角之和為20xx°,則這個(gè)多邊形的邊數(shù)是 . (江蘇省競賽題) 思路點(diǎn)撥 設(shè)除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關(guān)于x、y的不定方程;又0° 鏈接 世界上的萬事萬物是一個(gè)不斷地聚合和分裂的過程,點(diǎn)是幾何學(xué)最原始的概念,點(diǎn)生線、線生面、面生體,幾何元素的聚合不斷產(chǎn)生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質(zhì),多邊形可分成三角形,三角形可以合成其他 一些幾何圖形. 【例2】 在凸10邊形的所有內(nèi)角中,銳角的個(gè)數(shù)最多是( ) A.0 B.1 C.3 D.5 (全國初中數(shù)學(xué)競賽題) 思路點(diǎn)撥 多邊形的內(nèi)角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內(nèi)角為銳角的個(gè)數(shù)討論轉(zhuǎn)化為 外角為鈍角的個(gè)數(shù)的探討. 【例3】 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開成為兩個(gè)三角形,在平面上把這兩個(gè)三角形拼成一個(gè)四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標(biāo)出圖中直角),并分別寫出所拼四邊形的對(duì)角線的長. (烏魯木齊市中考題) 思路點(diǎn)撥 把動(dòng)手操作與合情想象相結(jié)合 ,解題的關(guān)鍵是能注意到重合的邊作為四邊形對(duì)角線有不同情形. 注 教學(xué)建模是當(dāng)今教學(xué)教育、考試改革最熱門的一個(gè)話題,簡單地說,“數(shù)學(xué)建模”就是通過數(shù)學(xué)化(引元、畫圖等)把實(shí)際問題特化為一個(gè)數(shù)學(xué)問題,再運(yùn)用相應(yīng)的數(shù)學(xué)知識(shí)方法(模型)解決問題. 本例通過設(shè)元,把“沒有重疊、沒有空隙”轉(zhuǎn)譯成等式,通過不定方程求解. 【例4】 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形. (1)請(qǐng)根據(jù)下列圖形,填寫表中空格: (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形? (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請(qǐng)畫出用這兩種不同的正多邊形鑲嵌成的一個(gè)平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說明你的理由. (陜西省中考題) 思路點(diǎn)撥 本例主要研究兩個(gè)問題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點(diǎn)接合的地方,n個(gè)內(nèi)角的和為360°,這樣,將問題的討論轉(zhuǎn)化為求不定方程的正整數(shù)解. 【例5】 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個(gè)單位,得到新的五邊形A'B'C'D'E'. 。1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個(gè)五邊形嗎?說明理由. (2)證明五邊形A'B'C'D'E'的周長比五邊形ABCD正的周長至少增加25個(gè)單位. (江蘇省競賽題) 思路點(diǎn)撥 (1)5塊陰影部分要能拼成一個(gè)五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點(diǎn)分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長逼近估算. 1.如圖,用硬紙片剪一個(gè)長為16cm、寬為12cm的長方形,再沿對(duì)角線把它分成兩個(gè)三角形,用這兩個(gè)三角形可拼出各種三角形和四邊形來,其中周長最大的是 ?,周長最小的是 cm. (選6《莢國中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)》) 2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 . 4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個(gè)圖案: (1)第4個(gè)圖案中有白色地面磚 塊; (2)第n個(gè)圖案中有白色地面磚 塊. (江西省中考題) 5.凸n邊形中有且僅有兩個(gè)內(nèi)角為鈍角,則n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀請(qǐng)賽試題) 6.一個(gè)凸多邊 形的每一內(nèi)角都等于140°,那么,從這個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)的對(duì)角線的條數(shù)是( ) A.9條 B.8條 C.7條 D. 6條 7.有一個(gè)邊長為4m的正六邊形客廳,用邊長為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( ) A.216塊 B.288塊 C.384塊 D.512塊 ( “希望杯”邀請(qǐng)賽試題) 8.已知△ABC是邊長為2的等邊三角形,△ACD是一個(gè)含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個(gè)凸四邊形ABCD. (1))畫出四邊形ABCD; (2)求出四邊形ABCD的對(duì)角線BD的長. (上海市閔行區(qū)中考題) 9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù). (北京市競賽題) 10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對(duì)邊A3A4的中點(diǎn),連結(jié)A1B1,我們稱A1B1是這個(gè)五邊形的一條中對(duì)線,如果五邊形的每條中對(duì)線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對(duì)角線和它平行. (安徽省中考題) 11.如圖,凸四邊形有 個(gè);∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重慶市競賽題) 12.如圖,延長凸五邊形A1A2A3A4A5的各邊相交得到5個(gè)角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長凸n邊形(n≥5)的各邊相交,則得到的n個(gè)角的和等于 . ( “希望杯”邀請(qǐng)賽試題) 13.設(shè)有一個(gè)邊長為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復(fù)上述過程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復(fù)上述過程,所得到的圖形記作A4,那么,A4的周長是 ;A4這個(gè)多邊形的面積是原三角形面積的 倍. (全國初中數(shù)學(xué)聯(lián)賽題) 14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競賽題) 15.在一個(gè)n邊形中,除了一個(gè)內(nèi)角外,其余(n一1)個(gè)內(nèi)角的和為2750°,則這個(gè)內(nèi)角的度數(shù)為( ) A.130° D.140° C .105° D.120° 16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長為( ) A.4 B.4 C.3 D. 3 (江蘇省競賽題) 注 按題中的方法'不斷地做下去,就會(huì)成為下圖那樣的圖形,它的邊界有一個(gè)美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學(xué)家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學(xué)現(xiàn)象都導(dǎo)致分形,分形是新興學(xué)科“混沌”的重要分支. 17.如圖,設(shè)∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山東省競賽題) 18.平面上有A、B,C、D四點(diǎn),其中任何三點(diǎn)都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個(gè)三角形的內(nèi)角不超過45°. 19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長都是整數(shù),求n. (上海市競賽題) 20.如圖,凸八邊形ABCDEFGH的8 個(gè)內(nèi)角都相等,邊AB、BC、CD、DE、EF、FG的長分別為7,4,2,5,6,2,求該八邊形的周長. 21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開后支撐起來放在地面上的情況,如果折疊起來,床頭部分被折到了床面之下(這里的A、B、C、D各點(diǎn)都是活動(dòng)的),活動(dòng)床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設(shè)計(jì)而成的,其折疊過程可由圖2的變換反映出來. 如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長時(shí),才能實(shí)現(xiàn)上述的折疊變化? (淄博市中考題) 22.一個(gè)凸n邊形由若干個(gè)邊長為1的正方形或正三角形無重疊、無間隙地拼成,求此凸n邊形各個(gè)內(nèi)角的大小,并畫出這樣的 凸n邊形的草圖. 圖形的平移與旋轉(zhuǎn) 前蘇聯(lián)數(shù)學(xué)家亞格龍將幾何學(xué)定義為:幾何學(xué)是研究幾何圖形在運(yùn)動(dòng)中不變的那些性質(zhì)的學(xué)科. 幾何變換是指把一個(gè)幾何圖形Fl變換成另一個(gè)幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉(zhuǎn)是常見的合同變換. 如圖1,若把平面圖形Fl上的各點(diǎn)按一定方向移動(dòng)一定距離得到圖形F2后,則由的變換叫平移變換. 平移前后的圖形全等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等. 如圖2,若把平面圖Fl繞一定點(diǎn)旋轉(zhuǎn)一個(gè)角度得到圖形F2,則由Fl到F2的變換叫旋轉(zhuǎn)變換,其中定點(diǎn)叫旋轉(zhuǎn)中心,定角叫旋轉(zhuǎn)角. 旋轉(zhuǎn)前后的圖形全等,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等. 通過平移或旋轉(zhuǎn),把部分圖形搬到新的位置,使問題的條件相對(duì)集中,從而使條件與待求結(jié)論之間的關(guān)系明朗化,促使問題的解決. 注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關(guān)系,而線段本身的大小要改變. 例題求解 【例1】如圖,P為正方形ABCD內(nèi)一點(diǎn),PA:PB:PC=1:2:3,則∠APD= . 思路點(diǎn)撥 通過旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個(gè)三角形. 【例2】 如圖,在等腰Rt△ABC的斜邊AB上取兩點(diǎn)M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長的三角形的形狀是( ) A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨x、m、n的變化而改變 思路點(diǎn)撥 把△ACN繞C點(diǎn)順時(shí)針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個(gè)與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可. 注 下列情形,常實(shí)施旋轉(zhuǎn)變換: (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°; (2)圖形中有線段的中點(diǎn),將圖形繞中點(diǎn)旋轉(zhuǎn)180°,構(gòu)造中心對(duì)稱全等三角形; (3)圖形中出現(xiàn)有公共端點(diǎn)的線段,將含有相等線段的圖形繞公共端點(diǎn),旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合. 【例3】 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對(duì)邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等. (全俄數(shù)學(xué)奧林匹克競賽題) 思路點(diǎn)撥 設(shè)法將復(fù)雜的條件BC?FF=ED?AB=AF?CD>0用一個(gè)基本圖形表示,題設(shè)中有平行條件,可考慮實(shí)施平移變換. 注 平移變換常與平行線相關(guān),往往要用到平行四邊形的性質(zhì),平移變換可將角,線段移到適當(dāng)?shù)奈恢茫狗稚⒌臈l件相對(duì)集中,促使問題的解決. 【例4】 如圖,在等腰△ABC的兩腰AB、AC上分別取點(diǎn)E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競賽題) 思路點(diǎn)撥 本例實(shí)際上就是證明2EF≥BC,不便直接證明,通過平移把BC與EF集中到同一個(gè)三角形中. 注 三角形中的不等關(guān)系,涉及到以下基本知識(shí): (1)兩點(diǎn)間線段最短,垂線段最短; (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊; (3)同一個(gè)三角形中大邊對(duì)大角(大角對(duì)大邊),三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角. 【例5】 如圖,等邊△ABC的邊長為 ,點(diǎn)P是△ABC內(nèi)的一點(diǎn),且PA2+PB2=PC2,若PC=5,求PA、PB的長. (“希望杯”邀請(qǐng)賽試題) 思路點(diǎn)撥 題設(shè)條件滿足勾股關(guān)系PA2+PB2=PC2的三邊PA、PB、PC不構(gòu)成三角形,不能直接應(yīng)用,通過旋轉(zhuǎn)變換使其集中到一個(gè)三角形中,這是解本例的關(guān) 鍵. 學(xué)歷訓(xùn)練 1.如圖,P是正方形ABCD內(nèi)一點(diǎn),現(xiàn)將△ABP繞點(diǎn)B顧時(shí)針方向旋轉(zhuǎn)能與△CBP′重合,若PB=3,則PP′= . 2.如圖,P是等邊△ABC內(nèi)一點(diǎn),PA=6,PB=8,PC=10,則∠APB . 3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長為 . 4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動(dòng)的距離AA'是( ) A. B. C.l D. (20xx年荊州市中考題) 5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)C、F,給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP. 當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有( ) A.1個(gè) B.2個(gè) C .3個(gè) D.4個(gè) (20xx年江蘇省蘇州市中考題) 6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長為( ) A.2 B.3 C . D. (20xx年武漢市選拔賽試題) 7.如圖,正方形ABCD和正方形EFGH的邊長分別為 和 ,對(duì)角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長叫做兩個(gè)正方形的中心距,當(dāng)中心O2在直線 上平移時(shí),正方形EFGH也隨之平移,在平移時(shí)正方形EFGH的形狀、大小沒有變化. (1)計(jì)算:O1D= ,O2F= ; (2)當(dāng)中心O2在直線 上平移到兩個(gè)正方形只有一個(gè)公共點(diǎn)時(shí),中心距O1O2= ; (3)隨著中心O2在直線 上平移,兩個(gè)正方形的公共點(diǎn)的個(gè)數(shù)還有哪些變化?并求出相對(duì)應(yīng)的中心距的值或取值范圍(不必寫出計(jì)算過程). (徐州市中考題) 8.圖形的操做過程(本題中四個(gè)矩形的水平方向的邊長均為a,豎直 方向的邊長均為b): 在圖a中,將線段A1A2向右平移1個(gè)單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分); 在圖b中, 將折線A1A2A3向右平移1個(gè)單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分); (1)在圖c中,請(qǐng)你類似地畫一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位,從而得到一個(gè)封閉圖形,并用斜線畫出陰影; (2)請(qǐng)你分別寫出上述三個(gè)圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ; 。3)聯(lián)想與探索: 如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個(gè)單位),請(qǐng)你猜想空白部分表示的草地面積是多少?并說明你的猜想是正確的. (20xx年河北省中考題) 9.如圖,已知點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,求證:AN=BM. 說明及要求:本題是《幾何》第二冊(cè)幾15中第13題,現(xiàn)要求: (1)將△ACM繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)180°,使A點(diǎn)落在CB上,請(qǐng)對(duì)照原題圖在圖中畫出符合要求的圖形(不寫作法,保留作圖痕跡). (2)在①所得的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由. (3)在①得到的圖形中,設(shè)MA的延長線與BN相交于D點(diǎn),請(qǐng)你判斷△ABD與四邊形MDNC的形狀,并證明你的結(jié)論. 10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點(diǎn)3cm的點(diǎn)P為中心,把這個(gè)三角形按逆時(shí)針方向旋轉(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積是 cm2. 11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點(diǎn)E在DC上,AE、BC的延長線交于點(diǎn)F,若AE=10,則S△ADE+S△CEF的值是 . (紹興市中考題) 12.如圖,在△ABC中,∠BAC=120°,P是△ABC內(nèi)一點(diǎn),則PA+PB+PC與AB+AC的大小關(guān)系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無法確定 13.如圖,設(shè)P到等邊三角形ABC兩頂點(diǎn)A、B的距離分別為2、3,則PC所能達(dá)到的最大值為( ) A. B. C .5 D.6 (20xx年武漢市選拔賽試題) 14.如圖,已知△ABC中,AB=AC,D為AB上一點(diǎn),E為AC 延長線上一點(diǎn),BD=CE,連DE,求證:DE>DC. 15.如圖,P為等邊△ABC內(nèi)一點(diǎn),PA、PB、PC的長為正整數(shù),且PA2+PB2=PC2,設(shè)PA=m,n為大于5的實(shí)數(shù),滿 ,求△ABC的面積. 16.如圖,五羊大學(xué)建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門,B為分校大門,為方便人員來往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點(diǎn)水平距離(與小河平行方向)120米,為使A、B兩點(diǎn)間來往路程最短,兩座橋都按這個(gè)目標(biāo)而建,那么,此時(shí)A、D兩點(diǎn)間來往的路程是多少米? (“五羊杯”競賽題) 17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內(nèi)一點(diǎn),點(diǎn)O到△ABC各邊的距離都等于1,將△ABC繞 點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ. (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC與△A1BlC1公共部分的面積. (山東省競賽題) 18.(1)操作與證明:如圖1,O是邊長為a的正方形ACBD的中心,將一塊半徑足夠長,圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長度為定值. (2)嘗試與思考:如圖2,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正三角形或正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn), 當(dāng)扇形紙板的圓心角為 時(shí),正三角形的邊被紙板覆蓋部分的總長度為定值a;當(dāng)扇形紙板的圓心角為 時(shí),正五邊形的邊被紙板覆蓋部分的總長度也為定值a. (3)探究與引申:一般地,將一塊半徑足夠長的扇形紙板的圓心放在邊長為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為 時(shí),正n邊形的邊被紙板覆蓋部分 的總長度為定值a;這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫出它與正n邊形面積S之間的關(guān)系;若不是定值,請(qǐng)說明理由. 【平行四邊形教案】相關(guān)文章: 平行四邊形教案08-10 平行四邊形的面積教案07-17 平行四邊形教案優(yōu)秀08-29 平行四邊形面積教案02-29 平行四邊形的認(rèn)識(shí)教案07-30 平行四邊形的判定教案07-08 平行四邊形的面積教案06-18