分式方程教學(xué)反思
身為一名人民教師,課堂教學(xué)是重要的工作之一,寫教學(xué)反思可以快速提升我們的教學(xué)能力,教學(xué)反思應(yīng)該怎么寫才好呢?下面是小編幫大家整理的分式方程教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
分式方程教學(xué)反思1
本節(jié)課作為分式方程的第一節(jié)課,是在學(xué)生掌握了一元一次方程的解法及分式四則混合運算的基礎(chǔ)上展開的,既是前一節(jié)的深化,同時解決了解方程的問題,又為以后的教學(xué)——“應(yīng)用”打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。
本節(jié)的教學(xué)重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學(xué)難點是如何將分式方程轉(zhuǎn)化成整式方程。本節(jié)教材中的引例分式方程較復(fù)雜,學(xué)生直接探索它的'解法有些困難。我是從簡單的整式方程引出分式方程后,再引導(dǎo)學(xué)生探究它的解法。這樣很輕松地找到新知識的切入點:用等式性質(zhì)去分母,轉(zhuǎn)化為整式方程再求解。因此,學(xué)生學(xué)的效果也較好。
我認(rèn)為比較成功的
1、把思考留給學(xué)生,課堂教學(xué)試一試這個環(huán)節(jié)中,我把更多的思維空間留給學(xué)生。問題不輕易直接告訴學(xué)生答案,而由學(xué)生通過動手動腦來獲得,從而發(fā)揮他們的主觀能動性。我主要在做題方法上指導(dǎo),思維方式上點撥。改變那種讓學(xué)生在自己后面亦步亦趨的習(xí)慣,從而成為愛動腦、善動腦的學(xué)習(xí)者。
2、積極正確的引導(dǎo),點撥。保證學(xué)生掌握正確知識,和清晰的解題思路。由于學(xué)生總結(jié)的語言有限,我就把本節(jié)課的重點內(nèi)容:解分式方程的思路,步驟,如何檢驗等都用多媒體形式給學(xué)生展示出來。還有在解分式方程過程中容易出現(xiàn)的問題都給學(xué)生做了強調(diào)。
3、及時檢查糾正,保證學(xué)生認(rèn)識到自己的錯誤并在第一時間內(nèi)更正。學(xué)生在做題過程中我就在教室巡視,及時發(fā)現(xiàn)學(xué)生的錯誤,及時糾正。對于困難的學(xué)生也做個別輔導(dǎo)。
雖然在課堂上做了很多,但也存在許多不足的地方,這也是我在今后教學(xué)中應(yīng)該注意的地方。第一,講例題時,先講一個產(chǎn)生增根的較好,這樣便于說明分式方程有時無解的原因,也便于講清分式方程檢驗的必要性,也是解分式方程與整式方程最大的區(qū)別所在,從而再強調(diào)解分式方程必須檢驗,不能省略不寫這一步。第二,給學(xué)生的鼓勵不是很多。鼓勵可以讓學(xué)生有充分的自信心!靶判氖浅晒Φ囊话搿,“在今后的課堂教學(xué)中,應(yīng)尊重其差異性,盡可能分層教學(xué),評價標(biāo)準(zhǔn)多樣化。多鼓勵,少批評;多肯定,少指責(zé)。用動態(tài)的、發(fā)展的、積極的眼光看待每個學(xué)生,幫助他們樹立自信心。贊美的力量是巨大的,有時,一句贊美的話,可以改變?nèi)说囊簧。一句肯定的話、一個贊許的點頭、一張表示優(yōu)勝的卡片,都是很好的鼓勵,會起到意想不到的良好結(jié)果。
分式方程教學(xué)反思2
1、在復(fù)習(xí)中引入新的教學(xué)重點,回顧以往所學(xué)習(xí)的方程知識,采用讓學(xué)生自己說出幾個一元一次方程并求解的方法,充分發(fā)揮了學(xué)生的主動性,活躍了課堂氣氛。為本節(jié)課開了一個好頭。
2、利用學(xué)生的一個求不出解的一元一次方程(x-1)/3+1=(2x-3)/6,借機讓學(xué)生明確可化為ax=b(a不等于0)的方程才是一元一次方程。自然巧妙的讓學(xué)生為后面的學(xué)習(xí)做好了鋪墊。也吸引了學(xué)生的注意力,讓學(xué)生覺得有趣而一步一步的聽下去。
3、通過設(shè)問,活動,讓學(xué)生親自感知,體驗,在感知和體驗中進行質(zhì)疑、思考與探究,通過質(zhì)疑、思考與探索發(fā)現(xiàn)新知,激發(fā)了學(xué)生的參與熱情,培養(yǎng)了學(xué)生的探索意識,使學(xué)生在喜悅的氣氛下自主的.學(xué)習(xí)。
通過本節(jié)課,也使我領(lǐng)悟到,在今后的教學(xué)中,應(yīng)做到以下幾點:
1、變枯燥為有趣同,讓學(xué)生成為整個教學(xué)的重點。
興趣是最好的老師,只有充分調(diào)動學(xué)生的學(xué)習(xí)熱情,才能使學(xué)生真正參與學(xué)習(xí)中來,才能主動地去學(xué)習(xí)。當(dāng)然,這需要老師多下功夫,多聯(lián)系實際,多設(shè)計情景,讓學(xué)生覺得不是在上課,而是在演電視劇,而他就是其中的主人公。
2、變復(fù)雜為簡單。
越簡單學(xué)生就越想學(xué),越會做學(xué)生就越想做,簡單之中蘊含著大道理,簡單的做多了,熟練了,才可能去做復(fù)雜的。當(dāng)然這需要形式多樣,而不能單一。
3、給學(xué)生足夠的思考空間,不要急于給出答案,就是學(xué)生說錯了,也不要把學(xué)生硬拉過來,而應(yīng)該給學(xué)生留下思考的空間。
分式方程教學(xué)反思3
分式方程在整個初中數(shù)學(xué)中占有十分重要的地位在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:
1.分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進行檢驗。
2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3.解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母
4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
在本節(jié)教學(xué)中,學(xué)生對于一元一次方程的解法已經(jīng)十分了解,學(xué)生在解方程中一般的方法完全能夠解決,在這個問題中不用過多的`用時間,所有的時間全部放給學(xué)生去練習(xí),重點讓學(xué)生去練習(xí)檢驗這一步驟。
通過學(xué)習(xí),學(xué)生感到學(xué)的容易,老師教的輕松。教學(xué)效果十分理想。
分式方程教學(xué)反思4
解分式方程的思想是將分式方程轉(zhuǎn)化為整式方程,驗根是解分式方程必不可少的步驟。分式方程又是解決實際問題的工具之一。
教學(xué)設(shè)計中蘊涵的數(shù)學(xué)思想和數(shù)學(xué)方法:《分式》一章在教學(xué)上應(yīng)多用類比的方法,與分?jǐn)?shù)進行類比教學(xué),使學(xué)生明確分式與分?jǐn)?shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。
教學(xué)目標(biāo):
1.了解分式方程的概念,和產(chǎn)生增根的原因。
2.掌握分式方程的解法,會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。
重點、難點
1.重點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。
2.難點:會解可化為一元一次方程的分式方程,會檢驗一個數(shù)是不是原方程的增根。
3.認(rèn)知難點與突破方法
解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的.思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗根的方法。
要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。
分式方程教學(xué)反思5
一、設(shè)計思路:
在學(xué)習(xí)本章之前已學(xué)過了一元一次方程的解法,對解整式方程特別是一元一次方程的解法思路比較了熟悉,在教受本節(jié)課是要改變教師講例題,學(xué)生模仿的教學(xué)模式,通過說一說,試一試,想一想,練一練等多個教學(xué)環(huán)節(jié),
由學(xué)生預(yù)習(xí),自主學(xué)習(xí),然后再由教師考查和點撥,但是由于種種原因,最終決定給學(xué)生一個半開半閉的區(qū)間,我先作一示范,學(xué)生練習(xí)格式,接著出現(xiàn)沒有根的練習(xí)題,依然讓學(xué)生解決,由于學(xué)生不會檢驗培根的.情況,所以,再詳究沒有根產(chǎn)生的原因,怎樣檢驗沒有根等問題。
這節(jié)課的關(guān)鍵在前面的這步過渡,究竟是給學(xué)生一個完全自由的空間還是說讓學(xué)生在老師的引導(dǎo)下去完成,我們先后作了多次試驗和論證,認(rèn)為“完全開放”符合設(shè)計思路,但是學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),故我們最終決定采用第二套方案。
二、教學(xué)知識點:
在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:
1.分式方程和整式方程的區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就不是原方程的根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進行檢驗。
2、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3、解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母
4、對分式方程可能產(chǎn)生沒有根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
分式方程教學(xué)反思6
一.設(shè)計思路:
設(shè)計思路建立在我校目標(biāo)教學(xué)的前提下,由學(xué)生自主導(dǎo)學(xué),然后再由教師考查和點撥,但是由于種種原因,我最終決定給學(xué)生一個半開半閉的區(qū)間。這節(jié)課的關(guān)鍵在前面的這步過渡,究竟是給學(xué)生一個完全自由的空間還是說讓學(xué)生在老師的引導(dǎo)下去完成,我先后作了多次試驗和論證,認(rèn)為“完全開放”符合設(shè)計思路,但是學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),故我們最終決定和學(xué)生一起共同完成。
二.教學(xué)知識點:
1.在本課的教學(xué)過程中,掌握范圍分式方程的解法是關(guān)鍵,所以由兩個習(xí)題過渡后,我復(fù)習(xí)了一元一次方程的解法,然后引導(dǎo)學(xué)生嘗試?yán)媒庖辉淮畏匠谭椒ǖ腵基礎(chǔ)上一起探索探索解分式方程的解法。我先作一示范,學(xué)生練習(xí)格式,接著出現(xiàn)有增根的練習(xí)題,依然讓學(xué)生解決,由于學(xué)生不會檢驗根的情況,所以,些時再詳究增根產(chǎn)生的原因,怎樣檢驗增根等問題。
2.在利用類比法解分式方程這一過程中,分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)滲透種化歸思想的教學(xué)。
3.本節(jié)課的難點是對分式方程可能產(chǎn)生增根的原因,我為了讓學(xué)生更深刻的理解就用了兩個分式方程的解答過程進行對比,體現(xiàn)驗根的重要性及必要性,
充分體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的教學(xué)體系。
三.課堂效果:
在這節(jié)公開課上,學(xué)生狀態(tài)不錯,所有的學(xué)生都能積極思考,踴躍回答問題,在課堂練習(xí)和最后的課堂小測里,學(xué)生的作答規(guī)范正確,而且對于增根產(chǎn)生的原因及相關(guān)知識點的難題的突破學(xué)生掌握的不錯。
整節(jié)課下來,基本能夠達(dá)成教學(xué)目標(biāo),但是作為年輕教師,我在一些細(xì)節(jié)的處理上仍然需要改進。個別教學(xué)語言不夠規(guī)范,而且利用新知識的學(xué)習(xí)過程,對舊知識的復(fù)習(xí)仍然不夠,語速有點快,個別問題的引導(dǎo)可以更深層次,沒有充分放手讓學(xué)生突破難點,也是比較遺憾的地方,希望聽課的老師給我多提意見,我會珍惜的。
分式方程教學(xué)反思7
本節(jié)的教學(xué)重點是探索分式方程概念、會解可化為一元一次方程的分式方程、明確分式方程與整式方程的區(qū)別和聯(lián)系。教學(xué)難點是如何將分式方程轉(zhuǎn)化成整式方程。
下面結(jié)合教學(xué)過程談?wù)勛约旱膸c感悟:
一、知識鏈接部分我設(shè)計了分式有無意義和找?guī)捉M分式的最簡公分母,幫助學(xué)生回憶舊知識,并且為本節(jié)課解分式方程掃清障礙。
反思:在這個環(huán)節(jié)里,出現(xiàn)了一個問題,就是對學(xué)生估計過高,尤其是最簡公分母的找法中下游的學(xué)生把舊知識忘了,造成浪費了課上的時間。
二、由課本中的百米賽跑的應(yīng)用題引出分式方程的概念。我把課本中的閱讀和一起探究改為幾個小問題讓學(xué)生自主探究然后小組內(nèi)交流討論。由于學(xué)生對于應(yīng)用題的掌握太差,造成在這個環(huán)節(jié)浪費了太多的時間。
反思:因為本節(jié)課的重點和難點是解分式方程,所以在以后的教學(xué)中我個人認(rèn)為這一部分應(yīng)該不用。改為解簡單的整式方程,再給出幾個分式方程讓學(xué)生自己判斷直接得出分式方程的意義,節(jié)省出時間讓學(xué)生重點學(xué)習(xí)和練習(xí)解分式方程。本節(jié)課值得欣喜的是四班的優(yōu)生反應(yīng)靈敏,
四、讓學(xué)生自學(xué)課本例一,也就是解分式方程,分析課本做法的依據(jù),和自己的做法是在否一致,會用課本的方法解題。看完后,我讓學(xué)生自己做到導(dǎo)綱上。很多同學(xué)看完后還不是很理解,所以,我又讓小組自己討論了一下,弄明白如何做題。最后,我在黑板上板書了例題,然后,讓學(xué)生將自己的糾正一下。
反思:這個內(nèi)容是這節(jié)的重難點,由于前面已經(jīng)做過鋪墊,讓學(xué)生自己嘗試解過分式方程,所以,在這里我設(shè)想的是學(xué)生看完課本,明白教材的做法,自己會運用同樣的方法解決分式方程。但是,在實際的操作過程中,發(fā)現(xiàn)一個問題,同學(xué)們并沒有真正理解教材時怎么處理的,他們被第二環(huán)節(jié)中自己的做法禁錮住了,很多同學(xué)都先通分。通分很好,但通分的目的還是為了去分母。這點我沒有強調(diào)到位。同時,檢驗的`過程我沒有板書在黑板,只是口頭強調(diào)了一下,致使很多學(xué)生印象不深,沒有進行檢驗。
糾正措施:重點強調(diào)化分式方程為整式方程的依據(jù)和做法。就這一步,安排幾個題進行專門訓(xùn)練,小組合作,直到每個組員都能找到最簡公分母,并會去掉分母為止。將第二課時提到這節(jié)點撥,在這節(jié)就讓學(xué)生明白分式方程為何要檢驗,從開始就讓學(xué)生養(yǎng)成檢驗的好習(xí)慣。
五、歸納解分式方程的一般步驟。根據(jù)上面的解題過程,小組總結(jié)出解題步驟。(在提示中,學(xué)生初步了解了大體步驟)
六、自學(xué)課本例二,弄明白后做到導(dǎo)綱上。
。ㄟ@個環(huán)節(jié)設(shè)置的目的是讓學(xué)生進一步熟悉分式方程的解法。注意一些細(xì)節(jié)問題。)
七、鞏固練習(xí)。做導(dǎo)綱四道題。小組批閱。
八、總結(jié)這節(jié)課的知識。(由于前面進行不是很順利,總結(jié)有些匆忙)
總體反思
這節(jié)課是一堂新授課。因此,讓學(xué)生對知識有透徹的理解是最重要的。我們的導(dǎo)綱也設(shè)置了很多的環(huán)節(jié)來引導(dǎo)學(xué)生,提高學(xué)生的學(xué)習(xí)興趣。
本節(jié)課的關(guān)鍵是如何過渡,究竟是給學(xué)生一個完全自由的空間還是讓學(xué)生在老師的引導(dǎo)下去完成,“完全開放”符合設(shè)計思路,符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),因此,先講解,做示范,再練習(xí)更好些。
在教學(xué)過程中,由于種種原因,存在著不少的不足。
1、回顧引入部分題目有點多,難度有些高,沒有達(dá)到原來設(shè)想的調(diào)動積極性的作用。應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認(rèn)知規(guī)律。
2、由于經(jīng)驗不足,隨機應(yīng)變的能力有些欠缺,對在教學(xué)中出現(xiàn)的新問題,應(yīng)對的不理想,沒有立刻采取有效措施解決問題。例如,在復(fù)習(xí)整式方程時,學(xué)生并不像想象中對整式方程解題過程很了解,我就引導(dǎo)大家一起復(fù)習(xí)了一下,在這里,如果再臨時出幾個題目鞏固一下,效果也許更好些。
3、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,在看例一的過程中,每一步的依據(jù)都進行了講解,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。同時,通過板書示范分式方程的解題。
4、時間掌握不夠。備學(xué)生不夠充分,導(dǎo)致突發(fā)事件過多,時間被浪費了,以致總結(jié)過于匆忙。
這次的課讓我感觸頗深。在各位老教師無私地指導(dǎo)和細(xì)心地講評中,我更看到了自己的不足,在今后的教學(xué)中,我會多思考,充分的將“學(xué)生備好”,多積累經(jīng)驗,向老教師請教,培養(yǎng)自己應(yīng)對突發(fā)情況的能力,做個成功的“引導(dǎo)者”。
分式方程教學(xué)反思8
1、解可化為一元一次方程的分式方程的基礎(chǔ)是會解一元一次方程,綜合知識運用點多,難點在于要正確地把分式方程化為一元一次方程,問題的關(guān)鍵是在去分母,包括正確乘于各分母的最簡公分母、正確去括號、合并同類項等,學(xué)生在做題時要很小心才行,如果其中有一步走錯了,特別是去分母這一步錯了,后面的功夫便白費了,所以在教學(xué)中教師要引導(dǎo)學(xué)生耐心地攻克每一個難點,千萬不要在去分母時忘記把沒有分母的項也乘于它們的最簡公分母。
2、對于一些分母需要變形的分式方程,強調(diào)要通過因式分解才能找出它們的最簡公分母,在找公分母時還要注意互為相反數(shù)的'情況,千萬不要把問題復(fù)雜化,如果能夠正確地找出最簡公分母并去括號,就接近了成功了。要鼓勵學(xué)生耐心一些,每一步要細(xì)心、細(xì)心再細(xì)心。任何一步錯了都會導(dǎo)致后面的勞動白費。
3、我們在教學(xué)中高估了學(xué)生,以為教師知識點已經(jīng)幫學(xué)生復(fù)習(xí)過了,學(xué)生就會了,可是在做練習(xí)時學(xué)生不是錯這、就是錯那,總之是很難得到正確的答案,所以要真正地能夠做到基本訓(xùn)練到位、學(xué)生能得出正確的結(jié)論才是過關(guān)的體現(xiàn)。
分式方程教學(xué)反思9
列方程解應(yīng)用題七年級一年就遇到了三次,一元一次的,二元一次的,還有這次的分式的,步驟基本上一樣,審、設(shè)、列、解、驗、答。
問題還是出現(xiàn)在審題上,其實方法也類似,找已知的未知的量,找描述等量關(guān)系的語句,可以列表分析,還可以直接將文字轉(zhuǎn)化為數(shù)學(xué)式子,我經(jīng)常在啟發(fā)時說,某某同學(xué)剛才回答時為什么能很快找到等量關(guān)系呢,是因為他知道要關(guān)注那些重要的`東西,比如數(shù)據(jù),比如題中出現(xiàn)的量,等等,就想語文閱讀時弄清楚時間,人物,事情一樣。
于是在課堂上例題的分析,我總是把大量的時間放在啟發(fā)學(xué)生理解題意上,老實說就算是語文的課外閱讀,學(xué)生多讀幾遍也總讀點味道出來了,可對于數(shù)學(xué)問題,有些學(xué)生讀了一遍題目愣是一點感覺沒有,對數(shù)字稍微敏感一點的也能找到相應(yīng)的量吧,但就是這些,讓學(xué)生最頭疼的,最郁悶,想得抓狂了還是找不到等量關(guān)系。
還是多留給學(xué)生點思考的空間吧。其實大多數(shù)的學(xué)生在老師的啟發(fā)下還是能對問題的理解深刻一點的,題目做的多了,總會產(chǎn)生一些感覺,套用一句老話,質(zhì)變是量變的積累,量變到了一定的程度就會發(fā)生質(zhì)變,希望我和學(xué)生們的努力能讓質(zhì)變早日到來。
分式方程教學(xué)反思10
本節(jié)課的重點是探究分式方程的解法,我首先舉一道一元一次方程復(fù)習(xí)其解法,然后通過解一道分式方程,啟發(fā)引導(dǎo)學(xué)生參照一元一次方程的解法,由學(xué)生自己探索、歸納分式方程的解法。學(xué)生不是停留在會課本知識層面,而是站在研究者的角度深入其境,使學(xué)生的思維得到發(fā)揮。
在教學(xué)設(shè)計上,以探究任務(wù)啟發(fā)引導(dǎo)學(xué)生自學(xué)自悟的方式,提供了學(xué)生自主探究的舞臺,營造了鍛練思維的空間,在經(jīng)歷知識的發(fā)現(xiàn)過程中,培養(yǎng)了學(xué)生探究、歸納的能力。在課堂教學(xué)中,我時時注意營造思維氛圍,讓學(xué)生在探究中學(xué)會思考、表達(dá)。
在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:
1。分式方程和整式方程的.區(qū)別:分清楚分式分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。同時,由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個分式有意義,否則,這個根就是原方程的增根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時必須進行檢驗。
2.分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3。解分式方程時,如果分母是多項式時,應(yīng)先寫出將分母進行因式分解的步驟來,從而讓學(xué)生準(zhǔn)確無誤地找出最簡公分母
4.對分式方程可能產(chǎn)生增根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
在教學(xué)方法上,我采用類比滲透思想方法進行教學(xué),通過與一元一次方程解法相比較,啟發(fā)引導(dǎo)學(xué)生自主探究、歸納分式方程的解法。運用類比教學(xué)法具有以下三方面的優(yōu)點:
1。通過復(fù)習(xí)一元一次方程的解法,學(xué)生在探究、歸納分式方程解法的同時進行類比,讓學(xué)生在解分式方程時有法可循,而不會覺得無從下手。
2。把分式方程的解法與一元一次方程的解法進行相比較,讓學(xué)生既可以溫習(xí)舊知識,又可以加深對新知識的記憶。
3。通過對一元一次方程和分式方程解法的類比,更能突顯分式方程解法中驗根的重要性。
分式方程教學(xué)反思11
數(shù)學(xué)的學(xué)習(xí)過程應(yīng)當(dāng)是一個充滿生命力的過程。我們在教學(xué)中也應(yīng)該想辦法讓學(xué)生動起來,使課堂活動起來。在今天我所聽的《分式方程的應(yīng)用》一課,也使我體會到了這一點。
本節(jié)課是《分式方程的應(yīng)用》的第一課時,課堂上顧老師并沒有純粹地就題論題,而是采用了如下方法:一是改變例題和練習(xí)的呈現(xiàn)形式,使教學(xué)內(nèi)容更有趣味性。二是讓學(xué)生自編應(yīng)用題目,體驗學(xué)習(xí)數(shù)學(xué)的快樂。尤其是在讓學(xué)生自編應(yīng)用題的時候,個個都是緊皺眉頭,冥思苦想,很快就開始你說我說,一個個精神抖擻,煞那間教室中一片熱鬧的場面。顧老師這時就抓住這個機會,讓同學(xué)們之間互相交流,各自說出自己編的題目。同學(xué)們都能聯(lián)系自己身邊發(fā)生的或與生活密切相關(guān)的實際例子。通過這樣的活動,我認(rèn)為一方面可以鍛煉學(xué)生的思維,另一方面也可以提高學(xué)生解決實際問題的'能力。從而也可以使學(xué)生體會到數(shù)學(xué)的應(yīng)用價值。
在以后的教學(xué)中,我也要象顧老師一樣,精心設(shè)計活動,充分調(diào)動學(xué)生參與學(xué)習(xí)的積極性,使學(xué)生動起來,課堂活起來,真正使學(xué)生樂有所學(xué),樂有所獲。
分式方程教學(xué)反思12
本節(jié)課的教學(xué)重點是要學(xué)生們建立分式方程應(yīng)用題的思維,會根據(jù)題中的條件找出等量關(guān)系,同時列出分式方程,并解答。我根據(jù)學(xué)生們做的導(dǎo)學(xué)案的情況,對本節(jié)課采取了老師引導(dǎo)學(xué)生展示相結(jié)合的'方法進行教學(xué),我首先從審、設(shè)、列、解、驗、答幾個步驟對第一道應(yīng)用題進行了詳細(xì)的講解和板演。讓學(xué)生們對解分式方程應(yīng)用題的步驟和思路有一個清晰而深刻的認(rèn)識,同時也對書寫的過程有準(zhǔn)確的概念,之后開始讓學(xué)生們展示。通過本節(jié)課的教學(xué)我感覺到有幾點值得肯定,也暴露了很多不足之處:
一、學(xué)生們對于檢驗的過程總是容易丟失,說明還是對檢驗這個必要的步驟理解的不是很深刻,所以會出現(xiàn)遺忘的現(xiàn)象。
二、對于等量關(guān)系的尋找,還有很多學(xué)生有困難,尤其是對題中條件比較多,或是等量關(guān)系比較隱含的應(yīng)用題,在尋找等量關(guān)系的時候感到無從下手,或者出現(xiàn)了顧此失彼的現(xiàn)象。應(yīng)引導(dǎo)學(xué)生列出相應(yīng)的代數(shù)式,再列方程。
分式方程教學(xué)反思13
一、設(shè)計思路:本節(jié)課作為分式方程的第一節(jié)課,是在學(xué)生掌握了一元一次方程的解法及分式四則混合運算的基礎(chǔ)上展開的,既是對前一節(jié)內(nèi)容的深化,又為以后的教學(xué) 應(yīng)用 打下了良好的基礎(chǔ),因而在教材中具有不可忽略的地位與作用。本節(jié)的教學(xué)重點是讓學(xué)生清楚的認(rèn)識到分式方程也是解決實際問題的工具之一,探索分式方程概念,明確分式方程與整式方程的區(qū)別和聯(lián)系。
二.教學(xué)知識點:在本課的教學(xué)過程中,我認(rèn)為應(yīng)從這樣的幾個方面入手:
1、在實際問題中充分理解題意,尋找等量關(guān)系,并依據(jù)等量關(guān)系列出方程。
2、分式方程和整式方程的區(qū)別:分清楚分式方程必須滿足的兩個條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個條件是判斷一個方程是否為分式方程的充要條件。
3、分式方程和整式方程的聯(lián)系:分式方程通過方程兩邊都乘以最簡公分母,約去分母,就可以轉(zhuǎn)化為整式方程來解,教學(xué)時應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
三、總體反思:首先是學(xué)生如何順利的找到題目中的等量關(guān)系,書本給出兩個例子較難,按照書本的`引入,一開始課堂就可能處以一種安靜的思維,處于很難打開的狀態(tài),不能有效地激發(fā)學(xué)生學(xué)習(xí)興趣與激情,所以才在學(xué)案中搭梯子降低難度,讓學(xué)生體會到成功的喜悅,這樣學(xué)生才會愿意繼續(xù)探索與學(xué)習(xí);實際問題的難度設(shè)置上是層層深入,問題也是分層次性,能夠讓不同層面的學(xué)生都有不同的體會與感受。
其次在教學(xué)過程中應(yīng)提高教師自身的隨機應(yīng)變的能力和預(yù)設(shè)問題能力,課前充分備好學(xué)生。例如:以前學(xué)過整式方程,我們以前只是說一次方程之類的,沒有系統(tǒng)的歸類它是整式方程。如果不事先詳細(xì)解釋清楚整式方程這個詞時,合作探究二進行的就不會很順利。
最后,我們應(yīng)讓恰到好處的鼓勵語和評價貫穿于教學(xué)過程中,只有這樣,學(xué)生才能不斷增強自信,在愉悅中探究新知,解決問題。
總而言之,教無定法,學(xué)無定法。我們應(yīng)在教改的道路上不斷充實自我,完善自我。
分式方程教學(xué)反思14
本節(jié)課我主要采取“361”的課堂教學(xué)模式,讓學(xué)生自習(xí)的基礎(chǔ)上進上步加深對知識的掌握。這種學(xué)習(xí)模式符合課改要求,但是經(jīng)過教學(xué)發(fā)現(xiàn),以以往的教學(xué)中,學(xué)生在解分式方程時需要花費很長時間,學(xué)生在有限的時間內(nèi)難以完成教學(xué)任務(wù),但本節(jié)課,通過學(xué)生的課前的預(yù)習(xí),節(jié)約的課堂上的時間。
教學(xué)上應(yīng)多用類比的方法,與分?jǐn)?shù)進行類比教學(xué),使學(xué)生明確分式與分?jǐn)?shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會分式的模型思想,進一步發(fā)展符號感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的解法。
解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時應(yīng)注意重新舊知識的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時要適當(dāng)復(fù)習(xí)一元一次方程的.解法。至于解分式方程時產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗根的方法。
要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡公分母。
在教學(xué)過程中,由于種種原因,存在著不少的不足。
1、回顧引入部分題目有點多,應(yīng)該選擇簡單有代表性的一兩個題目,循序漸進,符合人類認(rèn)知規(guī)律。
2、教學(xué)重點強調(diào)力度不夠。對學(xué)生理解消化能力過于相信,而分式方程的難點就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強化這個過程,應(yīng)該對其進行專項訓(xùn)練或重點分析。例如,就學(xué)生的不同做法進行分析,讓他們明白課本的這種方法最簡單最方便。
3、時間掌握不太好。學(xué)生預(yù)習(xí)還不夠充分,導(dǎo)致突發(fā)事件過多,以致總結(jié)過于匆忙。
分式方程教學(xué)反思15
本節(jié)課在學(xué)生的認(rèn)知水平和已有的知識經(jīng)驗基礎(chǔ)上充分調(diào)動學(xué)生學(xué)習(xí)的自主性,讓學(xué)生通過觀察、類比的方式探究解分式方程的思路和方法,為學(xué)生提供了充分從事活動的機會,使學(xué)生在回顧與思考、合作和討論的過程中理解和掌握知識與技能,體驗感受過程、方法和數(shù)學(xué)思想,培養(yǎng)情感態(tài)度價值觀,從而達(dá)成教學(xué)目標(biāo)。
本節(jié)課關(guān)于分式方程的增根的教學(xué),是通過創(chuàng)設(shè)小亮解法的情境,引導(dǎo)學(xué)生通過思考探索、閱讀理解、動手解題等手段,從而獲取知識、形成技能,發(fā)展思維,學(xué)會學(xué)習(xí),而不是由教師去講解增根的概念和產(chǎn)生原因。
本節(jié)課小結(jié)采取了學(xué)生提出問題、教師解答問題的形式。這種方法一方面為學(xué)生搭建了展示自己的平臺,設(shè)置了獨立思考的想象空間,提供了鍛煉表達(dá)能力的'機會;另一方面也為教師能及時彌補教學(xué)中存在的漏洞創(chuàng)設(shè)了條件和可能。不過,若時間允許的話,有些問題可以由學(xué)生討論解決。
教學(xué)環(huán)節(jié)是否可行,最終是由教學(xué)目標(biāo)是否達(dá)成來檢驗和評價的。所以本節(jié)課的某些教學(xué)環(huán)節(jié)對目標(biāo)的達(dá)成是否行之有效,還有待于在今后的教學(xué)過程中不斷實踐和完善。
【分式方程教學(xué)反思】相關(guān)文章:
《分式方程》教學(xué)反思03-25
分式方程教學(xué)反思02-18
分式方程教學(xué)反思(精選20篇)12-28
分式方程教學(xué)反思15篇02-19
分式方程教學(xué)反思(15篇)03-25
分式方程教學(xué)反思集合15篇03-26
分式方程說課稿07-07
分式方程說課稿02-29
分式方程說課稿(優(yōu))06-26