倒數(shù)的教學(xué)反思
作為一名優(yōu)秀的教師,教學(xué)是重要的工作之一,通過(guò)教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗(yàn),來(lái)參考自己需要的教學(xué)反思吧!以下是小編收集整理的倒數(shù)的教學(xué)反思,僅供參考,希望能夠幫助到大家。
倒數(shù)的教學(xué)反思1
本節(jié)課我認(rèn)為有三點(diǎn):
1、創(chuàng)設(shè)寬松、民主、和諧的課堂氛圍。課前交流,通過(guò)碰到好朋友,美國(guó)人與中國(guó)人不同的表示方式,一句“誰(shuí)愿意跟老師握手?”一下子把全班同學(xué)的熱情給調(diào)動(dòng)起來(lái)。隨后,我接著說(shuō)道:“我和大家在相處中,我們相互成為了好朋友,你是怎樣理解‘相互成為好朋友’這句話的?”通過(guò)此種形式讓學(xué)生從感性上理解“互為”的含義,為后面學(xué)習(xí)倒數(shù)的意義作了鋪墊,同時(shí)也為寬松的課堂氛圍打下一個(gè)良好的基礎(chǔ)。
2、創(chuàng)造一切機(jī)會(huì),讓學(xué)生自主探索。在進(jìn)行倒數(shù)意義探索時(shí),我說(shuō)出兩個(gè)互相顛倒的分?jǐn)?shù),讓學(xué)生模仿老師在舊知的基礎(chǔ)上也同樣說(shuō)出這樣的兩個(gè)分?jǐn)?shù),然后我的一句“你們發(fā)現(xiàn)了什么?”學(xué)生觀察比較,進(jìn)而發(fā)現(xiàn)規(guī)律,從直觀上初步認(rèn)識(shí)了倒數(shù),并給倒數(shù)下了定義。接著,我出示()times;( )=1,讓學(xué)生寫出乘積是1的兩個(gè)數(shù),盡管倒數(shù)的意義剛剛講過(guò),學(xué)生要想寫出這樣的`兩個(gè)數(shù),還是要?jiǎng)右环X子的。接著,我問(wèn)到:“你們是怎樣這么快就找到了乘積是1的兩個(gè)數(shù)?”從而在學(xué)生的回答中,捕捉有利于下一環(huán)節(jié)---倒數(shù)方法的生成的信息!澳闶窃鯓酉氤鲞@些數(shù)的倒數(shù)呢?能把方法介紹給大家嗎?”求倒數(shù)的方法很簡(jiǎn)單,關(guān)鍵在于讓學(xué)生親歷學(xué)習(xí)過(guò)程,悟出求倒數(shù)的方法。
3、提倡小組合作,在討論中,老師真正以一個(gè)組織者、引導(dǎo)者的身份出現(xiàn),實(shí)現(xiàn)互動(dòng)對(duì)話式教學(xué)。在求倒數(shù)方法之后,我出示了小組討論題:怎樣求一個(gè)整數(shù)的倒數(shù)?1的倒數(shù)是幾?哪些數(shù)可能沒有倒數(shù)?由此學(xué)生展開激烈的討論交流,整數(shù)的倒數(shù)就用1除以整數(shù),1的倒數(shù)是1,0沒有倒數(shù)。 “1的倒數(shù)為什么是1?”“0為什么沒有倒數(shù)?” “0沒有倒數(shù)是因?yàn)?divide;0=0” “0作除數(shù)無(wú)意義。因此,0沒有倒數(shù)!
倒數(shù)的教學(xué)反思2
《倒數(shù)》這一節(jié)課內(nèi)容很簡(jiǎn)單,它是在分?jǐn)?shù)乘法計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的,它主要為分?jǐn)?shù)除法做準(zhǔn)備。本節(jié)課主要讓學(xué)生理解倒數(shù)的意義,掌握求一個(gè)數(shù)的倒數(shù)的方法。學(xué)生必須學(xué)好這部分知識(shí),才能更好地掌握后面的分?jǐn)?shù)除法的計(jì)算和應(yīng)用題。本節(jié)課反思如下:
一、用游戲來(lái)增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的趣味性
這節(jié)課我設(shè)計(jì)的兩個(gè)游戲貫穿了新授內(nèi)容的始終。課的`一開始我是讓學(xué)生聽音樂(lè),找朋友,通過(guò)找朋友的游戲理解“什么是互為好朋友”?從而真正理解“互為”的含義,為以后學(xué)習(xí)倒數(shù)的意義打下基礎(chǔ)。接著我又設(shè)計(jì)“猜字”來(lái)引出倒數(shù)?如:我說(shuō)“吳”“杏”字上下顛倒,變成什么字?那數(shù)學(xué)是不是與有這樣的特征呢?使學(xué)生在做猜字的同時(shí)理解倒數(shù)的意義,同時(shí)也增加了數(shù)學(xué)學(xué)習(xí)的趣味性。
二、引導(dǎo)學(xué)生在自主、探究的活動(dòng)中來(lái)獲取新知
在學(xué)生充分理解倒數(shù)概念后,我開始讓學(xué)生自主探索如何求一個(gè)數(shù)的倒數(shù)。出示:你能求下列數(shù)的倒數(shù)嗎?
我不做講解,學(xué)生自己去尋找。在學(xué)生找好后,我讓學(xué)生一一回答,在回答的過(guò)程中,交流尋找的方法,逐步歸納、抽象出一般方法。如學(xué)生一開始在找3/2的倒數(shù)時(shí),第一名學(xué)生從倒數(shù)的意義去尋找:2/3×()=1,我立即對(duì)此進(jìn)行鼓勵(lì):這是找倒數(shù)的方法,只要掌握了這一點(diǎn),學(xué)生便永遠(yuǎn)不會(huì)忘記如何找倒數(shù)。隨后,我繼續(xù)讓學(xué)生說(shuō)說(shuō)還有什么方法?學(xué)生從前面的算式中,很自然地發(fā)現(xiàn)了只要把分?jǐn)?shù)的分子和分母顛倒位置即可。我沒有以此為滿足,在提供給學(xué)生的材料中,出現(xiàn)了小數(shù)、整數(shù)、1和0,通過(guò)對(duì)這些數(shù)的倒數(shù)的尋找,學(xué)生的認(rèn)知建構(gòu)不斷完整,認(rèn)識(shí)越來(lái)越深,對(duì)方法地理解由表面到本質(zhì),實(shí)現(xiàn)了質(zhì)的轉(zhuǎn)變。
三、不足之處:
由于本課我為了增強(qiáng)學(xué)生學(xué)習(xí)的趣味性,設(shè)計(jì)的游戲環(huán)節(jié)花費(fèi)時(shí)間過(guò)長(zhǎng)。但讓學(xué)生親歷學(xué)習(xí)過(guò)程,勢(shì)必要花去大量的時(shí)間,這樣練習(xí)應(yīng)用的時(shí)間就相對(duì)減少,以至于在求帶分?jǐn)?shù)、小數(shù)的倒數(shù)時(shí)練習(xí)的少,因此,合理安排授課時(shí)間還是應(yīng)當(dāng)講究。
總之,一節(jié)下來(lái),經(jīng)歷了,收獲了。在今后的教學(xué)中我會(huì)更加努力地去上好每一節(jié)課。
倒數(shù)的教學(xué)反思3
教材分析
這節(jié)課的課題是倒數(shù)的認(rèn)識(shí),是一節(jié)新授課,倒數(shù)的認(rèn)識(shí)是北師大版六年制小學(xué)數(shù)學(xué)第十冊(cè)第三單元,分?jǐn)?shù)除法的第一節(jié)內(nèi)容,通過(guò)本節(jié)課的教學(xué),要使學(xué)生掌握以下兩個(gè)知識(shí)點(diǎn)①理解倒數(shù)的意義②會(huì)較熟練地求一個(gè)數(shù)(0除外)的倒數(shù)。本節(jié)課的主要內(nèi)容是怎樣求一個(gè)數(shù)的倒數(shù),倒數(shù)的認(rèn)識(shí)是一節(jié)概念教學(xué)課,它是在分?jǐn)?shù)乘法計(jì)算的基礎(chǔ)上進(jìn)行教學(xué)的,主要是為后面學(xué)習(xí)除法作準(zhǔn)備的,因?yàn)橐粋(gè)數(shù)除以分?jǐn)?shù)的計(jì)算方法是歸結(jié)為乘上這個(gè)分?jǐn)?shù)的倒數(shù),所以本節(jié)課的教學(xué)效果將會(huì)直接影響分?jǐn)?shù)除法的教學(xué)進(jìn)度、在教學(xué)中,必須打下堅(jiān)實(shí)的基礎(chǔ),為以后學(xué)習(xí)分?jǐn)?shù)除法掃清障礙,提高學(xué)習(xí)效率。
學(xué)情分析
學(xué)生能否熟練地求出一個(gè)數(shù)的倒數(shù),將會(huì)直接影響分?jǐn)?shù)除法的計(jì)算和分?jǐn)?shù)四則混合運(yùn)算效率的提高。因此根據(jù)學(xué)生特點(diǎn)和大綱的要求確定本節(jié)課的重點(diǎn)是理解和掌握求一個(gè)數(shù)(0除外)倒數(shù)的方法。只要學(xué)生掌握了方法,再加以適當(dāng)?shù)木毩?xí),求一個(gè)數(shù)(0除外)的倒數(shù)對(duì)學(xué)生來(lái)說(shuō)已經(jīng)是再簡(jiǎn)單不過(guò)的事情了。對(duì)于倒數(shù)的意義來(lái)說(shuō),表面上看起簡(jiǎn)單,即乘積是1的兩個(gè)數(shù)互為倒數(shù)。但學(xué)生在理解的時(shí)候往往把“互為”兩個(gè)字丟掉,例如5和 ,應(yīng)該說(shuō)成5和 互為倒數(shù)而部分同學(xué)會(huì)說(shuō)成5是倒數(shù), 也是倒數(shù),要想使學(xué)生真正理解倒數(shù)的意義,必須抓住關(guān)鍵詞互為化抽象為形象,因此準(zhǔn)確透徹地理解倒數(shù)的意義是本節(jié)課的難點(diǎn)。
教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
只有準(zhǔn)確、理解了倒數(shù)的意義才能初步引導(dǎo)學(xué)生掌握求倒數(shù)的方法,學(xué)生才能逐步的會(huì)求一個(gè)數(shù)的倒數(shù),為以后的學(xué)習(xí)打下基礎(chǔ)。因此,我確定了第一個(gè)目標(biāo),知識(shí)目標(biāo)即:理解倒數(shù)的意義,掌握求一個(gè)數(shù)(0除外)倒數(shù)的方法。
2、能力目標(biāo)
要使學(xué)生理解倒數(shù)的意義,發(fā)現(xiàn)求倒數(shù)的方法,學(xué)生就必須通過(guò)分析、比較抽象等思維過(guò)程。因此確定了第二個(gè)目標(biāo)能力目標(biāo)即:提高學(xué)生運(yùn)用新知識(shí)解題的能力,培養(yǎng)學(xué)生分析、比較概括能力及創(chuàng)造性思維能力。
3、情感目標(biāo)
興趣是最好的老師,只有讓學(xué)生對(duì)數(shù)學(xué)產(chǎn)生興趣,才會(huì)達(dá)到理想的教學(xué)效果,提高學(xué)生的知識(shí)水平)。因此制定第三個(gè)目標(biāo)、情感目標(biāo)即:選用恰當(dāng)?shù)慕虒W(xué)手段和方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):發(fā)現(xiàn)倒數(shù)的特征,理解倒數(shù)的意義
難點(diǎn):求一個(gè)數(shù)的.倒數(shù)的方法
教學(xué)過(guò)程:
一、 創(chuàng)設(shè)情境,理解“互為”
師:當(dāng)碰到好朋友時(shí),美國(guó)人會(huì)熱情的擁抱,我們中國(guó)人一般會(huì)怎樣做呢?
生:握手
師:現(xiàn)在誰(shuí)愿意來(lái)前面和老師握握手,他就會(huì)成為老師最好的朋友。
師:握手是幾個(gè)人的事情呢?
生:兩個(gè)人。
師:通過(guò)今天的相處,我們都互相成了朋友。誰(shuí)能告訴大家,你是怎樣理解“互相成了朋友”這句話的?
生:“互相成了朋友”就是說(shuō)我們是老師的朋友,老師也是我們的朋友。
二、 觀察比較,抽象概念。
師:同學(xué)們,前面我們學(xué)習(xí)了分?jǐn)?shù)的乘法,今天老師給出一些乘法算式,比一比誰(shuí)能最先發(fā)現(xiàn)這組算式的秘密。
(拿出課堂作業(yè)本幫助你)
2/3×3/2 2×1/2
8/11×11/8 1/10×10
7/9×9/7 7×1/7
6/5×5/6 1/5× 5
。◣熝惨晫W(xué)生的情況,并對(duì)分?jǐn)?shù)的格式加以指導(dǎo))
學(xué)生思考后,匯報(bào)結(jié)果:
生1:兩個(gè)乘數(shù)的分子、分母位置顛倒
生2:每個(gè)算式乘積是1
師:現(xiàn)在老師有點(diǎn)疑問(wèn),2不是分?jǐn)?shù),它的分子和分母是什么呢?
生:2可以寫成2/1,分子分母顛倒后,2/1×1/2=1
三、 理解倒數(shù)的意義
師:觀察的真仔細(xì),我們能不能給這樣的數(shù)取個(gè)名字呀?
生:倒數(shù)
師:對(duì),這就是我們今天要研究的課題:倒數(shù)(板書)
師:再看這幾個(gè)算式,2×1/2=1,我們說(shuō):2是1/2的倒數(shù),1/2是2的倒數(shù)
師:看這幾個(gè)算式,倒數(shù)是對(duì)幾個(gè)數(shù)來(lái)說(shuō)的?
生:兩個(gè)數(shù)(師板書)
師:這兩個(gè)數(shù)的乘積有什么特點(diǎn)?
生:乘積是1(師板書)
師:再舉一個(gè)例子:2/3×3/2=1,我們說(shuō):2/3是3/2的倒數(shù),3/2是2/3的倒數(shù),2/3和3/2互為倒數(shù)(師板書:互為倒數(shù))
師:怎么理解“互為”呢?
生:相互的意思
生:就是對(duì)兩個(gè)數(shù)而言的
師:“互為”是對(duì)兩個(gè)數(shù)而說(shuō)的,不能孤立地說(shuō)誰(shuí)是倒數(shù),應(yīng)該說(shuō)誰(shuí)是誰(shuí)的倒數(shù)。
師:你能說(shuō)說(shuō)黑板上其他例子誰(shuí)和誰(shuí)互為倒數(shù)嗎?和你的同桌說(shuō)一說(shuō)
師:除了這幾個(gè)例子,能寫出其他乘積是1的算式嗎?
生:。。。。。。
師:大家表現(xiàn)真好,老師也來(lái)說(shuō)一個(gè),3/5是倒數(shù),對(duì)嗎?
生:不對(duì)
師:你幫老師改正吧
生1:應(yīng)該說(shuō)3/5是5/3的倒數(shù)
生2:。。。。。。
四、 研究求一個(gè)數(shù)的倒數(shù)的方法
師:我們已經(jīng)了解了倒數(shù),現(xiàn)在我們就幫這些數(shù)找一下他們的倒數(shù)朋友吧! (師讀生寫)
3/57/23 35 1 0
把他們的倒數(shù)朋友寫在作業(yè)本上。(師巡視,找兩名學(xué)生板演)
師:這么快,你們是怎樣找到這些數(shù)的倒數(shù)的?
生:分子分母交換位置(師板書找倒數(shù)的方法)
師:15是整數(shù),怎么辦?
生:15=15/1,分子分母交換位置,就是1/15
師:1呢?
生:1=1/1,所以1的倒數(shù)還是1(師板書)
師:0有倒數(shù)嗎?(出現(xiàn)2種答案,小組討論,師巡視)
師:討論完了,那0到底有沒有倒數(shù)呢?
生:沒有
師:理由呢?
生:0不能做分母,0乘任何數(shù)都得0(師板書)
師:找一個(gè)數(shù)(0除外)的倒數(shù)的方法,就是分子和分母交換位置(板書)
五、 總結(jié)收獲、鞏固練習(xí)
師:大家會(huì)找倒數(shù),現(xiàn)在請(qǐng)你做主考官,你說(shuō)一個(gè)數(shù),找一個(gè)同學(xué)說(shuō)它的倒數(shù)
生:。。。。。。
師:大家掌握這么好,總結(jié)一下學(xué)的知識(shí)吧。
生:。。。。
師:想不想再挑戰(zhàn)一下
生:沒問(wèn)題
師:好,那就帶著這份自信認(rèn)真完成,做完小學(xué)數(shù)學(xué)課本第24頁(yè)“練一練”
六、 拓展、提高(由于練習(xí)時(shí)間長(zhǎng),這個(gè)環(huán)節(jié)課后做了補(bǔ)充)
師:老師這有2個(gè)疑問(wèn),能不能幫助老師呀?幫老師求他們的倒數(shù),老師出示小數(shù)和帶分?jǐn)?shù)
生:。。。。
倒數(shù)的教學(xué)反思4
本節(jié)課的知識(shí)是在學(xué)習(xí)了學(xué)生掌握了整數(shù)乘法、分?jǐn)?shù)加法和減法、分?jǐn)?shù)乘法及運(yùn)用等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的,倒數(shù)的認(rèn)識(shí)教學(xué)反思。倒數(shù)這部分內(nèi)容屬于分?jǐn)?shù)的基本知識(shí),學(xué)好倒數(shù)不僅可以解決有關(guān)實(shí)際問(wèn)題,而且還是后面學(xué)習(xí)分?jǐn)?shù)除法、分?jǐn)?shù)四則運(yùn)算和相關(guān)的知識(shí)運(yùn)用打下基礎(chǔ)。
成功之處:
1.重點(diǎn)理解倒數(shù)的含義。在教學(xué)中通過(guò)出示幾組乘積是1的四組算式,讓學(xué)生觀察發(fā)現(xiàn)其中的規(guī)律:兩個(gè)因數(shù)的分子和分母交換了位置,由此得出乘積是1的兩個(gè)數(shù)互為倒數(shù),并指出3/8的倒數(shù)是8/3,而8/3的倒數(shù)是3/8,從而理解互為倒數(shù)的含義。在教學(xué)倒數(shù)的含義時(shí)還要注意兩個(gè)數(shù)互為倒數(shù)的條件:一是乘積是1,二是僅限于兩個(gè)數(shù),為練習(xí)中出現(xiàn)的爭(zhēng)論掃清障礙。
2.重點(diǎn)練習(xí)求小數(shù)和帶分?jǐn)?shù)的倒數(shù)方法。在例1的教學(xué)中,學(xué)生對(duì)于求一個(gè)數(shù)的'倒數(shù)方法都非常容易理解,但是對(duì)于求小數(shù)和帶分?jǐn)?shù)的方法教材沒有涉及,但是要進(jìn)行補(bǔ)充,在后續(xù)的練習(xí)中往往容易出現(xiàn)類似的題目。如果沒有預(yù)設(shè)到,學(xué)生就會(huì)在此知識(shí)點(diǎn)上出現(xiàn)問(wèn)題,影響學(xué)習(xí)知識(shí)的效果。
不足之處:
學(xué)生對(duì)于練習(xí)題中的判斷容易出錯(cuò)。例如:一個(gè)數(shù)的倒數(shù)一定比這個(gè)數(shù)小。通過(guò)這個(gè)題目要讓學(xué)生知道一個(gè)數(shù)可以分為真分?jǐn)?shù)和假分?jǐn)?shù),真分?jǐn)?shù)的倒數(shù)卻比這個(gè)數(shù)大,而假分?jǐn)?shù)又包含兩種情況:一是分子和分母相等的情況,另一種是分子比分母大的情況。分子比分母大的分?jǐn)?shù)的倒數(shù)一定比這個(gè)數(shù)小,而分子和分母相等的分?jǐn)?shù)的倒數(shù)等于這個(gè)分?jǐn)?shù)。
再教設(shè)計(jì):
對(duì)于判斷題的練習(xí)要予以重視,由一題發(fā)散多題,以不變應(yīng)萬(wàn)變。
倒數(shù)的教學(xué)反思5
本節(jié)課我認(rèn)為有三點(diǎn):
1、創(chuàng)設(shè)寬松、民主、和諧的課堂氛圍。課前交流,通過(guò)碰到好朋友,美國(guó)人與中國(guó)人不同的表示方式,一句“誰(shuí)愿意跟老師握手?”一下子把全班同學(xué)的熱情給調(diào)動(dòng)起來(lái)。隨后,我接著說(shuō)道:“我和大家在相處中,我們相互成為了好朋友,你是怎樣理解‘相互成為好朋友’這句話的?”通過(guò)此種形式讓學(xué)生從感性上理解“互為”的含義,為后面學(xué)習(xí)倒數(shù)的意義作了鋪墊,同時(shí)也為寬松的課堂氛圍打下一個(gè)良好的'基礎(chǔ)。
2、創(chuàng)造一切機(jī)會(huì),讓學(xué)生自主探索。在進(jìn)行倒數(shù)意義探索時(shí),我說(shuō)出兩個(gè)互相顛倒的分?jǐn)?shù),讓學(xué)生模仿老師在舊知的基礎(chǔ)上也同樣說(shuō)出這樣的兩個(gè)分?jǐn)?shù),然后我的一句“你們發(fā)現(xiàn)了什么?”學(xué)生觀察比較,進(jìn)而發(fā)現(xiàn)規(guī)律,從直觀上初步認(rèn)識(shí)了倒數(shù),并給倒數(shù)下了定義。接著,我出示()×( )=1,讓學(xué)生寫出乘積是1的兩個(gè)數(shù),盡管倒數(shù)的意義剛剛講過(guò),學(xué)生要想寫出這樣的兩個(gè)數(shù),還是要?jiǎng)右环X子的。接著,我問(wèn)到:“你們是怎樣這么快就找到了乘積是1的兩個(gè)數(shù)?”從而在學(xué)生的回答中,捕捉有利于下一環(huán)節(jié)---倒數(shù)方法的生成的信息!澳闶窃鯓酉氤鲞@些數(shù)的倒數(shù)呢?能把方法介紹給大家嗎?”求倒數(shù)的方法很簡(jiǎn)單,關(guān)鍵在于讓學(xué)生親歷學(xué)習(xí)過(guò)程,悟出求倒數(shù)的方法。
3、提倡小組合作,在討論中,老師真正以一個(gè)組織者、引導(dǎo)者的身份出現(xiàn),實(shí)現(xiàn)互動(dòng)對(duì)話式教學(xué)。在求倒數(shù)方法之后,我出示了小組討論題:怎樣求一個(gè)整數(shù)的倒數(shù)?1的倒數(shù)是幾?哪些數(shù)可能沒有倒數(shù)?由此學(xué)生展開激烈的討論交流,整數(shù)的倒數(shù)就用1除以整數(shù),1的倒數(shù)是1,0沒有倒數(shù)。 “1的倒數(shù)為什么是1?”“0為什么沒有倒數(shù)?” “0沒有倒數(shù)是因?yàn)?÷0=0” “0作除數(shù)無(wú)意義。因此,0沒有倒數(shù)!
倒數(shù)的教學(xué)反思6
《倒數(shù)的認(rèn)識(shí)》這一課內(nèi)容是一節(jié)概念課。比較簡(jiǎn)單,學(xué)生容易接受,是在學(xué)生已經(jīng)熟練掌握分?jǐn)?shù)乘法的計(jì)算方法的基礎(chǔ)上進(jìn)行教學(xué)的,為下章節(jié)分?jǐn)?shù)除法教學(xué)打好基礎(chǔ)。為了使學(xué)生理解掌握“倒數(shù)”的意義,明確倒數(shù)不是指一個(gè)數(shù),而是指兩個(gè)乘積是1的數(shù)之間的關(guān)系。并能正確、迅速地求出一個(gè)數(shù)的倒數(shù),我把教師的主導(dǎo)作用、學(xué)生的主體作用、教科書的示范作用,以及學(xué)生間相互作用有機(jī)地結(jié)合起來(lái),獲得了較好的效果。
創(chuàng)造一切機(jī)會(huì),讓學(xué)生自主探索。課堂學(xué)習(xí)時(shí),出示好幾組乘法算式,讓學(xué)生觀察每道算式,找出共同點(diǎn),進(jìn)行倒數(shù)意義探索。我說(shuō)出兩個(gè)互相顛倒的分?jǐn)?shù),讓學(xué)生模仿老師在舊知的基礎(chǔ)上也同樣說(shuō)出這樣的兩個(gè)分?jǐn)?shù),然后我的一句“你們發(fā)現(xiàn)了什么?”學(xué)生觀察比較,進(jìn)而發(fā)現(xiàn)規(guī)律,從直觀上初步認(rèn)識(shí)了倒數(shù),并給倒數(shù)下了定義。接著,我出示()×( )=1,讓學(xué)生寫出乘積是1的兩個(gè)數(shù),盡管倒數(shù)的意義剛剛講過(guò),學(xué)生要想寫出這樣的兩個(gè)數(shù),還是要?jiǎng)右环X子的。接著,我問(wèn)到:“你們是怎樣這么快就找到了乘積是1的兩個(gè)數(shù)?”從而在學(xué)生的回答中,捕捉有利于下一環(huán)節(jié)---倒數(shù)方法的生成的信息。“你是怎樣想出這些數(shù)的倒數(shù)呢?能把方法介紹給大家嗎?”求倒數(shù)的方法很簡(jiǎn)單,關(guān)鍵在于讓學(xué)生親歷學(xué)習(xí)過(guò)程,悟出求倒數(shù)的方法。而后又讓學(xué)生觀察互為倒數(shù)的'兩個(gè)數(shù)的變化規(guī)律,得出求一個(gè)數(shù)倒數(shù)的方法。進(jìn)而讓學(xué)生舉例子,找出它的倒數(shù)。學(xué)生在舉例子的過(guò)程中就會(huì)發(fā)現(xiàn)一些特殊數(shù)的數(shù),比如“1”的倒數(shù)就是它本身,“0”沒有倒數(shù)。然后老師通過(guò)追問(wèn):“o為什么沒有倒數(shù)”?“1”的倒數(shù)為什么是“1”?明確”1和0“的特殊性。同時(shí)也將倒數(shù)的認(rèn)識(shí)引向本質(zhì)內(nèi)涵:兩數(shù)乘積為1。
新課程標(biāo)準(zhǔn)中指出既要關(guān)注學(xué)生的學(xué)習(xí)結(jié)果,又要關(guān)注學(xué)生的學(xué)習(xí)過(guò)程,更要關(guān)注他們?cè)诨顒?dòng)過(guò)程中所表現(xiàn)出來(lái)的情感與態(tài)度。在本課中,學(xué)生對(duì)同伴提出的問(wèn)題賦予很大的探究熱情,比老師直截了當(dāng)?shù)亟o予要強(qiáng)烈得多。作為新課程的實(shí)施者應(yīng)更好地保護(hù)學(xué)生的這種求知欲,保護(hù)學(xué)生提問(wèn)的信心,這樣才能讓我們的課堂更有人情味,更有生氣,更有參與性,學(xué)生才能真正地脫離教師的疆繩,不總是被教師牽著鼻子走。
倒數(shù)的教學(xué)反思7
環(huán)節(jié)二:把握目標(biāo),相信學(xué)生,做好扶、放、收
1、給學(xué)生獨(dú)立思考的時(shí)間,相信學(xué)生具有獨(dú)立思考的能力。
2、給學(xué)生合作學(xué)習(xí)的機(jī)會(huì);當(dāng)學(xué)生有困惑時(shí),教師可以充分發(fā)揮學(xué)生集體智慧,引導(dǎo)學(xué)生小組合作、互相學(xué)習(xí)、互相交流,在合作中交流、在合作中提高、在合作中解決困惑。
環(huán)節(jié)二:理解倒數(shù)
1、在得出倒數(shù)的概念之后,我并沒有直接的板書出來(lái),而是讓學(xué)生說(shuō)一說(shuō),你是怎樣理解倒數(shù)的?
2、在板書倒數(shù)的概念:乘積是1的兩個(gè)數(shù)互為倒數(shù)。之后,為了加深孩子的理解和記憶,我又拋出了一個(gè)問(wèn)題:你想提醒大家什么?
果然在意料之中,學(xué)生把概念中的關(guān)鍵字和詞分析的特別到位,效果非常好。
環(huán)節(jié)三:如何讓學(xué)生會(huì)求一個(gè)數(shù)的倒數(shù)
基于學(xué)生的知識(shí)基礎(chǔ)和經(jīng)驗(yàn),我沒有采用老師問(wèn)學(xué)生答的方式,沒有特定的順序先研究哪種數(shù)的倒數(shù)再研究哪種數(shù)的倒數(shù),而是引導(dǎo)學(xué)生:你會(huì)求哪種數(shù)的倒數(shù),放手讓學(xué)生自己研究,教師只需要做到心中有數(shù)。學(xué)生在交流、互動(dòng)和共享中學(xué)會(huì)求分?jǐn)?shù)、整數(shù)、小數(shù)的倒數(shù)包括1的倒數(shù)還是1、0沒有倒數(shù)這些知識(shí)難點(diǎn)都變得輕松和簡(jiǎn)單,甚至還有一個(gè)孩子想到了用除法求一個(gè)數(shù)的倒數(shù):如0.5的倒數(shù)可以用1除以0.5就等于2,這都是思維碰撞的火花。但是帶分?jǐn)?shù)一直不見蹤影,為了讓他們想到,我又提出了一個(gè)問(wèn)題這些都太簡(jiǎn)單了,誰(shuí)能想出一個(gè)數(shù)可以難倒大家,一石激起千層浪,學(xué)生開始挖空心思的想特別的數(shù),其中確實(shí)有了一個(gè)意外的收獲,生2:0.1111的倒數(shù),不過(guò)由于這個(gè)數(shù)出的太突然了,就把這個(gè)數(shù)直接放到了問(wèn)題銀行,讓他們下去后再研究。事后在和辦公室的同事交流的時(shí)候才想起0.1111=,而的倒數(shù)就是9,反思自己還是考慮的不夠全面,另外沒有留給孩子思考的時(shí)間,相信他們一定能夠想出來(lái)的,這是這節(jié)課的不足之處也是一處遺憾。
環(huán)節(jié)四:總結(jié)提升
在學(xué)生交流匯報(bào)之后,對(duì)求各種數(shù)的倒數(shù)的方法進(jìn)行了總結(jié),為了讓孩子掌握的.更加牢固,我采用了兒歌的形式:倒數(shù)意義很好記,相互依存互不棄。倒數(shù)求法更容易,子母顛倒即完畢。不但可以突出本節(jié)課的重點(diǎn),也增加了課堂的趣味性。
本節(jié)課我在設(shè)計(jì)教學(xué)時(shí)根據(jù)高效課堂的模式,力求充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性和積極性,引導(dǎo)學(xué)生自主探索與交流合作中再現(xiàn)知識(shí)發(fā)生的過(guò)程,提高學(xué)生的觀察分析和概括歸納的能力,實(shí)現(xiàn)知識(shí)技能與學(xué)生智能的同步發(fā)展。
存在的不足:
1、在引導(dǎo)學(xué)生自學(xué)課本時(shí)問(wèn)題不夠明了:你知道我們今天要研究的是哪種情況下所得的1嗎?后改為:你知道我們今天要研究的是哪種運(yùn)算所得的1?
2、求0.1111的倒數(shù)由于時(shí)間關(guān)系沒有放手讓孩子去研究。
在本課教學(xué)中,使我深深認(rèn)識(shí)到,我們的學(xué)生是樂(lè)于學(xué)習(xí)的。作為教師,應(yīng)該善于把握學(xué)生的特點(diǎn),要相信學(xué)生,給學(xué)生機(jī)會(huì),這樣課堂才能動(dòng)起來(lái)、活起來(lái)。
倒數(shù)的教學(xué)反思8
1、創(chuàng)造一切機(jī)會(huì),讓學(xué)生自主探索。
在教學(xué)倒數(shù)的意義時(shí),先讓每一個(gè)學(xué)生根據(jù)例1的口算、觀察、同桌討論找出這些式子有什么規(guī)律?給這些數(shù)起一個(gè)你喜歡的名字。由此引出課題和倒數(shù)的意義。很自然的把學(xué)生帶入今天的知識(shí)通過(guò)學(xué)生的例子使學(xué)生理解導(dǎo)數(shù)的意義“乘積是1怎么理解”,又通過(guò)舉例說(shuō)清“誰(shuí)是誰(shuí)的倒數(shù)”。這樣學(xué)生對(duì)倒數(shù)的意義理解十分到位,十分透徹。
2、讓學(xué)生在碰撞中體驗(yàn)到成功的'快樂(lè)。
對(duì)于兩個(gè)特例“1”和“0”,在教學(xué)“1的倒數(shù)是1時(shí)”,讓學(xué)生自己獨(dú)立思考互為倒數(shù)的兩個(gè)數(shù)可以是兩個(gè)整數(shù)嗎,然后小組交流,充分發(fā)表自己的看法。在此基礎(chǔ)得出1的倒數(shù)是1,讓后再讓學(xué)生找另外一個(gè)特殊的數(shù)“0”,探討交流得出“0沒有倒數(shù)”。我覺得,這樣做不僅增添了課堂活力,而且還讓學(xué)生經(jīng)歷了探索的過(guò)程,解決了學(xué)生的困惑,更讓學(xué)生體會(huì)到了成功了快樂(lè)。
3、學(xué)生研討氛圍濃厚,主體性得以充分發(fā)揮。
新課標(biāo)指出:“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師要激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈骄亢秃献鹘涣髦欣斫夂驼莆栈镜臄?shù)學(xué)知識(shí)和技能、數(shù)學(xué)思想和方法!痹谡麄(gè)教學(xué)活動(dòng)過(guò)程中,學(xué)生們都能積極思考大膽發(fā)言,特別是在研究求倒數(shù)的方法時(shí),學(xué)生的思維非常活躍,他們經(jīng)過(guò)獨(dú)立思考、小組探究想出了好幾種有效的方法,最后總結(jié)出求一個(gè)數(shù)倒數(shù)的方法,研討氛圍非常濃厚,學(xué)生的主體性得以充分的發(fā)揮,效果較好。
倒數(shù)的教學(xué)反思9
“倒數(shù)的認(rèn)識(shí)”是在學(xué)生掌握了整數(shù)乘法等知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。理解倒數(shù)的意義和會(huì)求一個(gè)數(shù)的倒數(shù)是學(xué)生學(xué)習(xí)分?jǐn)?shù)除法的前提。學(xué)生必須學(xué)好這部分知識(shí),才能更好地掌握后面的分?jǐn)?shù)除法的`計(jì)算和應(yīng)用題。在引入部分,我利用朋友的相互關(guān)系及中國(guó)文字形象的使學(xué)生對(duì)倒數(shù)有了直觀的認(rèn)識(shí),為了使學(xué)生深入了解倒數(shù)的意義,我引導(dǎo)學(xué)生舉了大量分?jǐn)?shù)的例子,并通過(guò)觀察、計(jì)算等方法使學(xué)生明確“互為倒數(shù)的兩個(gè)數(shù)的乘積是1”、“倒數(shù)的兩個(gè)數(shù)只是把分子和分母的位置進(jìn)行了調(diào)換”、更讓我高興的是學(xué)生能注意到“倒數(shù)是相互依存的”。抓住學(xué)生的發(fā)現(xiàn),我引導(dǎo)他們很快就總結(jié)出了倒數(shù)的概念——乘積是1的兩個(gè)數(shù)叫做互為倒數(shù)。
在讓學(xué)生通過(guò)研究求各種數(shù)的倒數(shù)的方法的環(huán)節(jié)上,避免了學(xué)生在學(xué)習(xí)中只會(huì)求分?jǐn)?shù)的倒數(shù)的知識(shí)的單一,延伸的所學(xué)的內(nèi)容。在最后,面對(duì)特殊的0和1這兩個(gè)數(shù)時(shí),“學(xué)生們出現(xiàn)了小小的”爭(zhēng)執(zhí)“。有人認(rèn)為:”0和1有倒數(shù)!坝腥苏J(rèn)為:”0和1沒有倒數(shù)!皩(duì)于學(xué)生的”爭(zhēng)執(zhí)“我沒有直接介入,而是引導(dǎo)他們互相說(shuō)說(shuō)自己的理由,在他們的交流中,學(xué)生們達(dá)成了一致的認(rèn)識(shí):0沒有倒數(shù),1的倒數(shù)時(shí)它本身。并且在說(shuō)明理由時(shí),學(xué)生還認(rèn)為”0不能做分母,所以0沒有倒數(shù)“這個(gè)理由,拓展了我所提供給學(xué)生的知識(shí)內(nèi)容。
倒數(shù)的教學(xué)反思10
此次于老師來(lái)聽課,我按照教學(xué)進(jìn)度選擇的內(nèi)容是第四單元知識(shí)鏈接教材中《倒數(shù)的認(rèn)識(shí)》一課,這一節(jié)課是在學(xué)生學(xué)習(xí)了分?jǐn)?shù)乘法的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,是為后面單元學(xué)習(xí)分?jǐn)?shù)除法知識(shí)做準(zhǔn)備。本節(jié)課的內(nèi)容不多,首先是用兩個(gè)數(shù)的乘積是1這樣的幾個(gè)算式來(lái)引出倒數(shù)的概念,然后是求一個(gè)數(shù)的倒數(shù)的方法。
本節(jié)課我的教學(xué)思路是:
第一大環(huán)節(jié):利用課前三分鐘的口算練習(xí)這一素材,可以按照乘積是否是1進(jìn)行分組整理,再將乘積是1的一類進(jìn)行二次分類,分成分?jǐn)?shù)乘法與小數(shù)乘法,先從比較直觀的分?jǐn)?shù)乘法入手研究因數(shù)的特征,繼而過(guò)渡到小數(shù)乘法算式中因數(shù)的特征,由發(fā)現(xiàn)到猜想再到舉例驗(yàn)證,繼而得出倒數(shù)的概念。
第二大環(huán)節(jié),由如何求一個(gè)數(shù)的倒數(shù)入手?引導(dǎo)學(xué)生交流方法,并在練習(xí)中鞏固求倒數(shù)的方法。
上完這節(jié)課,我的第一感覺是領(lǐng)著孩子繞著知識(shí)點(diǎn)走了一遍,用能力的孩子可能真的理解了倒數(shù)的意義,而大部分的孩子可能只是學(xué)會(huì)了求倒數(shù)的方法,至于是否真正理解了倒數(shù)的意義,還處于模棱兩可的狀態(tài)。結(jié)合著于老師的點(diǎn)評(píng),再回頭看我這節(jié)課的設(shè)計(jì)流程,還真是存在著很大的問(wèn)題:
一、概念上存在偏差
本節(jié)課在研究分?jǐn)?shù)乘法這組算式的特征之后,我引導(dǎo)學(xué)生用“顛倒數(shù)”這樣的'一個(gè)詞來(lái)反復(fù)描述兩個(gè)分?jǐn)?shù)的特征,而忽視了乘積是1的這一個(gè)大的背景。而如果從“為什么它們的乘積是1”這一個(gè)大問(wèn)題入手,學(xué)生會(huì)順藤摸瓜,思考它們因數(shù)之間存在的特殊關(guān)系。
正是因?yàn)楸竟?jié)課,我一直在強(qiáng)調(diào)分?jǐn)?shù)的分子與分母相互顛倒這一點(diǎn),造成學(xué)生沒有真正從意義上理解倒數(shù)的意義,才會(huì)出現(xiàn)在+()=1這個(gè)加法算式中,有的學(xué)生填這一錯(cuò)誤。
二、小步引領(lǐng),走馬觀花
為了鞏固求一個(gè)數(shù)的倒數(shù),在練習(xí)這一環(huán)節(jié)我分四類設(shè)計(jì)并總結(jié)出:
(1)真分?jǐn)?shù)的倒數(shù)都是大于1的假分?jǐn)?shù);
(2)大于1的假分?jǐn)?shù)的倒數(shù)都是真分?jǐn)?shù);
(3)分?jǐn)?shù)單位的倒數(shù)都是自然數(shù);
(4)非零整數(shù)的倒數(shù)都是幾分之一。
反過(guò)頭來(lái)再看,真如于老師所說(shuō)的那樣,學(xué)生根本沒有深刻的記憶,只是走馬觀花,但是如果按照于老師的建議,利用數(shù)軸的形式,在數(shù)軸上表示,我想即方便學(xué)生直觀認(rèn)識(shí),也加深了學(xué)生的認(rèn)識(shí)。
非常感謝于老師能在百忙之中來(lái)聽評(píng)課,感謝于老師的指點(diǎn),借著這次聽課的東風(fēng),在教學(xué)路上且思且行!
倒數(shù)的教學(xué)反思11
《倒數(shù)的認(rèn)識(shí)》是在學(xué)生掌握了分?jǐn)?shù)乘法的基礎(chǔ)上教學(xué)的。在這節(jié)課中,我抓住了兩大主要內(nèi)容展開教學(xué):1、學(xué)習(xí)理解倒數(shù)的意義。2、學(xué)習(xí)求一個(gè)數(shù)的倒數(shù)的方法。我以玩文字游戲?qū)胄抡n,吸引學(xué)生的注意力,同時(shí)給學(xué)生灌輸“倒”的想法,把游戲的現(xiàn)象融入到數(shù)學(xué)當(dāng)中。在理解倒數(shù)的意義時(shí),讓學(xué)生抓住關(guān)鍵的詞語(yǔ)“乘積、互為”來(lái)理解,并強(qiáng)調(diào)倒數(shù)不是孤立的,而是對(duì)于兩個(gè)數(shù)來(lái)說(shuō)的。有了文字游戲的導(dǎo)入,學(xué)生觀察到了互為倒數(shù)的兩個(gè)數(shù)分子、分母的位置發(fā)生了倒換了,對(duì)求真分?jǐn)?shù)和假分?jǐn)?shù)的倒數(shù)容易掌握了,因而課堂的.氛圍很濃,積極踴躍回答問(wèn)題的同學(xué)很多。但對(duì)自然數(shù)的倒數(shù)以及小數(shù)、帶分?jǐn)?shù)的倒數(shù),大部分學(xué)生的思維一下子還轉(zhuǎn)不過(guò)彎了,只有極少數(shù)的學(xué)生能夠說(shuō)出方法。對(duì)于特殊的數(shù)1和0,學(xué)生基本上能夠知道他們的倒數(shù)。
這節(jié)課需要改進(jìn)的地方是:求一個(gè)數(shù)的倒數(shù)還有另外一個(gè)方法就是一個(gè)數(shù)乘以另一個(gè)數(shù),乘積是1,那另一個(gè)數(shù)就是這個(gè)數(shù)的倒數(shù)。如5×( )=1,括號(hào)里的數(shù)就是5的倒數(shù)。這個(gè)方法在這節(jié)課中,我沒有明顯強(qiáng)調(diào)出來(lái),還不能讓學(xué)生真正去理解倒數(shù)的意義。因此,知識(shí)與技能方面的目標(biāo)還不能完成達(dá)到。
倒數(shù)的教學(xué)反思12
本節(jié)課是關(guān)于倒數(shù)概念的教學(xué),教學(xué)中,先引導(dǎo)學(xué)生通過(guò)仔細(xì)觀察互為倒數(shù)的兩個(gè)數(shù)乘積的特點(diǎn),引出倒數(shù)的概念,再讓學(xué)生著重理解概念中的“乘積”和“互為”,使學(xué)生得到數(shù)的概念更加清晰明確。接著讓學(xué)生借助長(zhǎng)方形的'面積進(jìn)一步認(rèn)識(shí)倒數(shù),自己發(fā)現(xiàn)互為倒數(shù)的兩個(gè)數(shù)的分子與分母的位置是互換的,從而發(fā)現(xiàn)1的倒數(shù)是1和0沒有倒數(shù)。通過(guò)學(xué)生自己嘗試去說(shuō),使學(xué)生通過(guò)舉例說(shuō)清“誰(shuí)是誰(shuí)的倒數(shù)”,這樣學(xué)生對(duì)倒數(shù)的意義就能理解得十分到位,十分透徹。
感悟:通過(guò)教學(xué),我感受到教師在教學(xué)中應(yīng)相信學(xué)生的能力,并積極成為學(xué)生學(xué)習(xí)的合作者,教學(xué)中處理好扶與放的關(guān)系,跟學(xué)生獨(dú)立思考的時(shí)間,相信學(xué)生具有獨(dú)立思考的能力。教學(xué)中每一個(gè)問(wèn)題的提出,要使學(xué)生不是坐等別人講,而是能養(yǎng)成自己積極思考的習(xí)慣。當(dāng)學(xué)生有困難時(shí),就可以充分發(fā)揮學(xué)生集體的智慧,引導(dǎo)學(xué)生互相學(xué)習(xí),在合作中提高,在合作中解決困惑。
作業(yè)反饋:例如,在找?guī)Х謹(jǐn)?shù)的倒數(shù)是直接顛倒分?jǐn)?shù)部分的分子與分母。分析錯(cuò)因:找?guī)Х謹(jǐn)?shù)的倒數(shù)的方法不對(duì),忽略帶分?jǐn)?shù)的整數(shù)部分,直接對(duì)分?jǐn)?shù)部分求倒數(shù)了。
糾錯(cuò)心得:在找?guī)Х謹(jǐn)?shù)的倒數(shù)是先要將帶分?jǐn)?shù)化成假分?jǐn)?shù),然后將分子與分母顛倒位置,得到的分?jǐn)?shù)是原帶分?jǐn)?shù)的倒數(shù)。
倒數(shù)的教學(xué)反思13
《倒數(shù)的認(rèn)識(shí)》屬于一節(jié)典型的數(shù)學(xué)概念課,對(duì)概念知識(shí)技能的教學(xué)目標(biāo)的達(dá)成并不是很難。但這樣的課堂,教師可以花更過(guò)的心思達(dá)成其他數(shù)學(xué)素養(yǎng)的培養(yǎng)。在這一節(jié)課上,學(xué)生經(jīng)歷了解到模糊再到深刻理解的概念認(rèn)識(shí)過(guò)程,通過(guò)交流、合作自主梳理總結(jié)方法,在解決問(wèn)題中感受數(shù)學(xué)的嚴(yán)謹(jǐn)之美、科學(xué)之美,這才是學(xué)生最大的收獲。
這節(jié)課對(duì)我自己的教學(xué)的啟示如下:
1、讀懂教材、吃透教材是對(duì)教學(xué)重難點(diǎn)的把脈。教材在編寫上分成三格部分-認(rèn)識(shí)、求解、練習(xí),給出的層次很清楚。呈現(xiàn)方式上是給出算式,學(xué)生計(jì)算,觀察再發(fā)現(xiàn),雖然表現(xiàn)的模式有些生硬,但其指向是學(xué)生自主探究倒數(shù)的定義,倒數(shù)的特征。在例題一當(dāng)中,主要教學(xué)求倒數(shù)的方法,教材并沒有給出所有倒數(shù)的求找方法,是因?yàn)榍蟮箶?shù)的方法也不能一言概之,需要分類思考。那么在教學(xué)過(guò)程中,教師側(cè)重在引導(dǎo)學(xué)生去進(jìn)行有序的分類思考。只有這樣,學(xué)生在接下來(lái)的方法總結(jié)交流是才能總結(jié)的完整、嚴(yán)謹(jǐn)。
2、概念的本質(zhì)遠(yuǎn)高于概念的形式。倒數(shù)的定義是乘積為一的兩個(gè)數(shù)互為倒數(shù),特征是分母、分子相互顛倒的兩個(gè)數(shù)。很多學(xué)生以特征代替定義,這樣的認(rèn)識(shí)是不充分,不準(zhǔn)確的。所以在教學(xué)設(shè)計(jì)中我以游戲的方式寫乘積互為1的兩個(gè)數(shù),那他們寫下的各種形式的兩個(gè)數(shù)互為倒數(shù)嗎?一個(gè)綱領(lǐng)性問(wèn)題順勢(shì)產(chǎn)生,直接激發(fā)學(xué)生求知欲望。對(duì)定義的根本認(rèn)識(shí)直接反應(yīng)在后續(xù)求倒數(shù)方法的多樣性上。教材中給出顛倒分子分母的方法學(xué)生可以用,在對(duì)倒數(shù)認(rèn)識(shí)后,還有相當(dāng)一部分學(xué)生會(huì)用1除以一個(gè)數(shù)求出倒數(shù)。同時(shí)“1”的倒數(shù)是多少?0有倒數(shù)嗎?這樣的問(wèn)題都可迎刃而解。注重?cái)?shù)學(xué)概念的本質(zhì)含義,讓學(xué)生自主經(jīng)歷概念形成的過(guò)程是幾乎所有概念課的要求。
3、在高年級(jí)數(shù)學(xué)教學(xué)中,還要加強(qiáng)學(xué)生數(shù)學(xué)閱讀習(xí)慣培養(yǎng)。數(shù)學(xué)文字的閱讀不僅僅是一種視覺上的`感受,更是思維上的活動(dòng)。在真正閱讀倒數(shù)定義時(shí),學(xué)生大腦里應(yīng)該經(jīng)歷思考、篩選的過(guò)程。從定義中提取核心內(nèi)容,對(duì)疑惑進(jìn)行質(zhì)疑、猜測(cè)、證明,最終達(dá)到對(duì)定義認(rèn)識(shí)的新高度。良好的數(shù)學(xué)閱讀習(xí)慣也可以有效地加強(qiáng)思維的嚴(yán)謹(jǐn)性。
4、放手學(xué)生自主學(xué)習(xí),開展有趣的數(shù)學(xué)活動(dòng)。設(shè)計(jì)有趣的數(shù)學(xué)活動(dòng)是提高學(xué)生參與度的準(zhǔn)繩。這節(jié)課從開課就是速算比賽,然后小組交流對(duì)倒數(shù)的認(rèn)識(shí),生生交流突破對(duì)倒數(shù)認(rèn)識(shí)最后一層隔膜到最后小組內(nèi)總結(jié)求倒數(shù)的方法,這一系列的活動(dòng)都是學(xué)生自主完成的,這樣的教學(xué)過(guò)程對(duì)學(xué)生學(xué)習(xí)的意義完全不同。但要到達(dá)到預(yù)期設(shè)計(jì)的效果,老師需要準(zhǔn)備充分。首先,對(duì)學(xué)生充滿信任,相信學(xué)生的能力,給學(xué)生留有充足的時(shí)間和空間。第二,充分預(yù)設(shè)學(xué)生學(xué)情,這樣才能是老師對(duì)課堂組織的監(jiān)控有的放矢,才便于在更高層面引導(dǎo)學(xué)生活動(dòng)的發(fā)展方向。另外,教師需要對(duì)教案相當(dāng)熟練、在課堂中關(guān)注所有學(xué)生的反饋,尤其后進(jìn)生的知識(shí)生長(zhǎng),從而提高課堂效率。
困惑與不足:
1、課堂節(jié)奏太快留給學(xué)生思考時(shí)間不夠。
2、要適時(shí)注意引導(dǎo)學(xué)生如何正確思考解決問(wèn)題。
3、要注意控制語(yǔ)速和語(yǔ)言的啟發(fā)性、目性。
倒數(shù)的教學(xué)反思14
教材中《倒數(shù)的認(rèn)識(shí)》這一節(jié)課的內(nèi)容不多,首先是用兩個(gè)數(shù)的乘積是1這樣的幾個(gè)算式來(lái)引出倒數(shù)的概念,然后觀察互為倒數(shù)的兩個(gè)數(shù),它們分子、分母的位置發(fā)生了什么變化?來(lái)總結(jié)出:求一個(gè)分?jǐn)?shù)的倒數(shù)時(shí),只要把這個(gè)分?jǐn)?shù)的分子、分母調(diào)換位置就可以了。進(jìn)而對(duì)一些特殊的數(shù)求倒數(shù),比如整數(shù)的倒數(shù)(1的倒數(shù),0有倒數(shù)嗎?)。最后進(jìn)行課堂練習(xí),在練習(xí)中鞏固求一個(gè)數(shù)的倒數(shù),并且總結(jié)出:
。1)真分?jǐn)?shù)的倒數(shù)都是大于1的假分?jǐn)?shù);
(2)大于1的假分?jǐn)?shù)的倒數(shù)都是真分?jǐn)?shù);
。3)分?jǐn)?shù)單位的倒數(shù)都是自然數(shù);
。4)非零整數(shù)的倒數(shù)都是幾分之一。
以上的教學(xué)過(guò)程上課之前我認(rèn)為還是比較合理的,認(rèn)為《倒數(shù)的認(rèn)識(shí)》這一節(jié)課主要是為以后分?jǐn)?shù)的除法做準(zhǔn)備的,然而學(xué)生對(duì)這節(jié)課的掌握效果超出了我預(yù)期的準(zhǔn)備。一節(jié)40分鐘的課,在20多分鐘時(shí)學(xué)生已將上面的內(nèi)容全部進(jìn)行完成,而且掌握的效果還是很不錯(cuò)的,由于課前沒有做好充分的準(zhǔn)備,自己也是第一次教六年級(jí),在題型的積累上很欠缺,使得在后面10多分鐘的時(shí)間里只進(jìn)行相同類型的練習(xí)就結(jié)束了這節(jié)課。
在課后我進(jìn)行了很長(zhǎng)時(shí)間的反思,如果僅僅這樣教這節(jié)課,那么浪費(fèi)的時(shí)間太多了,雖然教材中這節(jié)課的內(nèi)容就這么多,但是在考試中倒數(shù)知識(shí)方面的題卻是很多形式,單憑上面老師教的東西學(xué)生來(lái)完成還是比較吃力的,有些題必須是老師引導(dǎo)才能完成的。所以說(shuō),如果在當(dāng)初的新授課中我將這些題型進(jìn)行滲透,那么,在以后的練習(xí)中、考試中學(xué)生就能很輕松的自己來(lái)完成,我也不用將它作為一個(gè)新知識(shí)點(diǎn)來(lái)講而又花費(fèi)時(shí)間。在課后的`我進(jìn)行了搜集和整理,將與倒數(shù)的知識(shí)有關(guān)的題型全部整理出來(lái),然后有進(jìn)行了篩選,選擇一些難易適中的題添補(bǔ)到這節(jié)課中來(lái),題不能太難,因?yàn)楫吘惯@是一節(jié)新課,要考慮到學(xué)生的消化能力,但題必須有拓展性,對(duì)于以后的稍難的題一部分學(xué)生還是可以根據(jù)前面的知識(shí)有能力完成的,而對(duì)于差一點(diǎn)的學(xué)生也不至于遇到這樣的題而無(wú)從下手。所以在選題上我比較慎重,題太難學(xué)生學(xué)習(xí)沒有積極性,會(huì)認(rèn)為數(shù)學(xué)學(xué)習(xí)高不可攀,享受不到學(xué)習(xí)時(shí)收獲的快樂(lè)。
倒數(shù)的教學(xué)反思15
本節(jié)課是一節(jié)概念課,是陳述性知識(shí),放在這個(gè)單元是起到了承上啟下作用,是為了銜接分?jǐn)?shù)乘法和分?jǐn)?shù)除法計(jì)算法則。其目的就是為除以一個(gè)數(shù)等于乘這個(gè)數(shù)的倒數(shù)做鋪墊,在這個(gè)問(wèn)題上我一直認(rèn)為:為什么要乘這個(gè)數(shù)的倒數(shù)這個(gè)問(wèn)題要說(shuō)清楚,否則分?jǐn)?shù)除法的計(jì)算法則不好理解。
教學(xué)從尋找乘積是1的兩個(gè)分?jǐn)?shù)開始。在給出的8個(gè)分?jǐn)?shù)中,學(xué)生能夠找到三對(duì)乘積是1的分?jǐn)?shù)。這項(xiàng)貌似游戲的活動(dòng)凸顯了“倒數(shù)”是乘積為1的兩個(gè)數(shù)之間的關(guān)系,這正是建立倒數(shù)概念必須充分注意的內(nèi)涵。教材在三對(duì)乘積是1的分?jǐn)?shù)基礎(chǔ)上,指出“乘積是1的兩個(gè)數(shù)互為倒數(shù)”。學(xué)生準(zhǔn)確理解這句話的意思,不僅要知道互成“倒數(shù)”的兩個(gè)數(shù)的乘積是1,還要明白兩個(gè)數(shù)是“互為倒數(shù)”的。教材里三個(gè)卡通的交流,說(shuō)的都是兩個(gè)分?jǐn)?shù)的乘積是1。下面的文字?jǐn)⑹鰪?qiáng)調(diào)兩個(gè)數(shù)“互為倒數(shù)”,還以3/8和8/3為例,引導(dǎo)學(xué)生體會(huì)“甲數(shù)是乙數(shù)的倒數(shù),乙數(shù)也是甲數(shù)的倒數(shù)”。
求已知數(shù)的倒數(shù)分三個(gè)層次教學(xué):先求3/5、2/3等分?jǐn)?shù)的倒數(shù),然后求5、1等整數(shù)的倒數(shù),最后是0沒有倒數(shù)。在第一個(gè)層次里,要求學(xué)生觀察互為倒數(shù)的兩個(gè)分?jǐn)?shù),發(fā)現(xiàn)它們的分子、分母剛好互換位置,一方面進(jìn)一步體會(huì)互為倒數(shù)的兩個(gè)數(shù)的乘積是1,另一方面找到了寫出一個(gè)數(shù)的倒數(shù)的方法。第二個(gè)層次寫出整數(shù)的倒數(shù)?梢詮母拍畛霭l(fā),尋找與這個(gè)整數(shù)相乘等于1的數(shù)。如果把整數(shù)看成分母是1的分?jǐn)?shù),就能像分?jǐn)?shù)那樣直接寫出它的倒數(shù)。第三個(gè)層次理解0沒有倒數(shù),并要求作出相應(yīng)的解釋。這是因?yàn)?和任何數(shù)相乘的積都是0,不存在與0相乘能夠得到1的數(shù)。
倒數(shù)的意義就是一句話:乘積是1的兩個(gè)數(shù)互為倒數(shù)。但是對(duì)于這句話的理解是有著比較豐富的內(nèi)涵的,這也就是概念內(nèi)涵的體現(xiàn)。這節(jié)課的教學(xué)流程分為這樣幾個(gè)基本塊面:首先通過(guò)例題7提出的問(wèn)題——給出倒數(shù)的含義——分層突擊理解倒數(shù)含義——出示形式上的經(jīng)典錯(cuò)例(特別是小數(shù)的倒數(shù))——處理1和0的問(wèn)題(這是本節(jié)課的難點(diǎn))。
本文所談的不是教學(xué)流程上的問(wèn)題,而是通過(guò)倒數(shù)這個(gè)概念,談一談對(duì)概念教學(xué)的理解,從拆句的角度,乘積是1的兩個(gè)數(shù)互為倒數(shù)拆為:乘積是1、兩個(gè)數(shù)、互為倒數(shù)。
針對(duì)倒數(shù)這個(gè)概念,我認(rèn)為:內(nèi)涵是指向正例的,外延是指向反例的。比如:書上出示乘積是1的正例,我們需要出示商、和、差是1的反例;書上說(shuō)的是兩個(gè)數(shù)互為倒數(shù),沒有出示3個(gè)數(shù)的反例。這兩個(gè)反例是針對(duì)倒數(shù)概念本身的。
學(xué)生在倒數(shù)的答案呈現(xiàn)上,習(xí)慣于用等號(hào)表示“的倒數(shù)是”這樣的錯(cuò)誤,比如2=1/2,從數(shù)學(xué)表達(dá)式上說(shuō)這是非常明顯的錯(cuò)誤,學(xué)生確實(shí)犯了,而且每屆都有這樣的情況,在今年的教學(xué)中我已經(jīng)強(qiáng)調(diào)并且糾正了這樣的錯(cuò)誤,這說(shuō)明教學(xué)方式對(duì)于不同學(xué)生是不一樣的,學(xué)生本身的理解和態(tài)度的端正與否也是重要的問(wèn)題,需要引起重視。
本節(jié)課需要重視的第二個(gè)問(wèn)題就是1和0的問(wèn)題,這兩個(gè)問(wèn)題實(shí)際上牽涉到其他的概念:假分?jǐn)?shù)、整數(shù)、自然數(shù)。假分?jǐn)?shù)分為1和大于1的假分?jǐn)?shù);整數(shù)和自然數(shù)里都有0,在這個(gè)問(wèn)題上需要處理好,學(xué)生的理解需要通過(guò)不同的方式來(lái)體現(xiàn)。
單獨(dú)的概念教學(xué),或者說(shuō)倒數(shù)概念本身不是一個(gè)很復(fù)雜的問(wèn)題,有關(guān)倒數(shù)的知識(shí)主要包括兩點(diǎn):一點(diǎn)是倒數(shù)的意義,另一點(diǎn)是求倒數(shù)的方法。學(xué)生建立倒數(shù)的概念以后,求一個(gè)數(shù)的倒數(shù)就容易了。因此,例7十分重視概念的形成以及對(duì)概念的準(zhǔn)確把握。
相同的教學(xué)內(nèi)容,幾年的教學(xué)實(shí)踐下來(lái),發(fā)現(xiàn):同樣的.教學(xué)內(nèi)容,同樣的知識(shí)點(diǎn),為什么會(huì)出現(xiàn)這么大的差別?究其原因就是因?yàn)槲覀冃枰P(guān)注概念結(jié)構(gòu)出現(xiàn)的次序,比如:整數(shù)的概念是復(fù)習(xí)、假分?jǐn)?shù)的概念是辨析。
皮亞杰理論中認(rèn)知發(fā)展的三個(gè)基本過(guò)程——同化、順應(yīng)、平衡,對(duì)于倒數(shù)概念來(lái)說(shuō),學(xué)生之前毫無(wú)經(jīng)驗(yàn),是屬于順應(yīng),其實(shí)順應(yīng)更類似一個(gè)質(zhì)變的過(guò)程,有對(duì)于知識(shí)結(jié)構(gòu)的擴(kuò)展和修正,會(huì)形成一個(gè)新的認(rèn)知圖式。
但是本節(jié)課的教學(xué)難度不大,原因是這個(gè)知識(shí)點(diǎn)本身是不難的,從形式到本質(zhì),需要考慮的問(wèn)題主要就是0,所以我在教學(xué)的時(shí)候特別關(guān)注了數(shù)字0的問(wèn)題,然后在書本上39頁(yè)第19題的處理上特別強(qiáng)調(diào)了數(shù)字1的問(wèn)題。
從整個(gè)概念系統(tǒng)來(lái)說(shuō),同化和順應(yīng)是相互依存的,如:本節(jié)課中倒數(shù)的概念是順應(yīng),而用到的外圍概念是整數(shù)、自然數(shù)、假分?jǐn)?shù),我在學(xué)習(xí)的時(shí)候注重對(duì)概念本身的解讀,數(shù)包括自然數(shù)和整數(shù),倒數(shù)的形式是分?jǐn)?shù),但不是分?jǐn)?shù)的整數(shù)和小數(shù)需要先轉(zhuǎn)化為最簡(jiǎn)分?jǐn)?shù)之后再處理。
在概念的形式實(shí)現(xiàn)之后的環(huán)節(jié)就是對(duì)倒數(shù)概念的辨析,如:題目a都有倒數(shù),這句話本身是有問(wèn)題的,但是我們關(guān)注的點(diǎn)應(yīng)該是a這個(gè)數(shù)的取值范圍,是取正整數(shù)?負(fù)整數(shù)?0?非正整數(shù)?非負(fù)整數(shù)?自然數(shù)?這里都是學(xué)生需要考慮的問(wèn)題,其實(shí)有沒有倒數(shù)的核心概念就是:0沒有倒數(shù),但是對(duì)于具體的表現(xiàn)形式是我們需要花時(shí)間去思量的問(wèn)題。
【倒數(shù)的教學(xué)反思】相關(guān)文章:
倒數(shù)的認(rèn)識(shí)教學(xué)反思02-17
認(rèn)識(shí)倒數(shù)教學(xué)反思11-05
《倒數(shù)的認(rèn)識(shí)》教學(xué)反思02-27
倒數(shù)的認(rèn)識(shí)教學(xué)反思07-04
倒數(shù)教學(xué)反思案例05-14
《倒數(shù)的認(rèn)識(shí)》教學(xué)反思范文05-19
數(shù)學(xué)倒數(shù)的認(rèn)識(shí)教學(xué)反思09-30