最大公因數(shù)教學(xué)反思
作為一位到崗不久的教師,教學(xué)是重要的工作之一,在寫教學(xué)反思的時候可以反思自己的教學(xué)失誤,快來參考教學(xué)反思是怎么寫的吧!以下是小編幫大家整理的最大公因數(shù)教學(xué)反思,歡迎大家借鑒與參考,希望對大家有所幫助。
最大公因數(shù)教學(xué)反思1
公因數(shù)與最大公因數(shù)這一課教材設(shè)計了一個用邊長6厘米和4厘米正方形鋪長18厘米,寬12厘米長方形的問題,讓學(xué)生在解決實際問題中探索公因數(shù)的認(rèn)識。因此,在教學(xué)中要重視通過嘗試解決問題讓學(xué)生聯(lián)系已有的知識來引入公因數(shù)的認(rèn)識。使學(xué)生初步體會學(xué)習(xí)公因數(shù)在解決實際問題中有著重要作用。
這節(jié)課的上課情況感覺較好,課堂比較流暢,重難點也都注意到了,但是通過學(xué)生作業(yè)反饋情況來看,部分學(xué)生在尋找公因數(shù)和最大公因數(shù)時,容易出現(xiàn)漏掉因數(shù)的情況,如9的因數(shù)容易漏掉因數(shù)3等。在寫公因數(shù)的示意圖時,部分學(xué)生出現(xiàn)中間寫了公因數(shù)后,兩邊還是將所有因數(shù)都寫了進去,這一情況在預(yù)設(shè)時我雖然想到了學(xué)生會錯,也在課堂上進行了說明,但是少數(shù)學(xué)生還是出現(xiàn)了錯誤。
用例舉的策略找出所有公因數(shù)的教學(xué)中,教材上有種層次不同學(xué)生可以掌握的方法參考,在這里的教學(xué)中我只是參照教材注重了這兩種方法的講解,這里教材的應(yīng)是要求學(xué)生有序地列舉就行了,不同水平的學(xué)生采用的'方法可以不一樣,因此,在這部分內(nèi)容的教學(xué)時,有些學(xué)生運用了一些比較獨特的方法尋找公因數(shù),教師應(yīng)該給予肯定,說明只要有序地列舉出因數(shù)來尋找公因數(shù)就可以了。但是,對于學(xué)生出現(xiàn)的各種方法可以讓學(xué)生進行對比,體會哪種方法更好,更適合自己,進而對自己的算法進行優(yōu)化。
最大公因數(shù)教學(xué)反思2
這部分內(nèi)容是在學(xué)生掌握了因數(shù)、倍數(shù)概念的基礎(chǔ)上進行教學(xué)的,主要是為下續(xù)學(xué)習(xí)約分作準(zhǔn)備。教材先創(chuàng)設(shè)了一個剪紙的問題情境,從實際生活中抽象出概念。這樣處理的好處便于揭示數(shù)學(xué)與現(xiàn)實世界的聯(lián)系,有利于學(xué)生理解公因數(shù)、最大公因數(shù)的概念及現(xiàn)實意義,也有利于培養(yǎng)學(xué)生的數(shù)學(xué)抽象能力。但是將解決問題與概念引入結(jié)合在一起,教學(xué)上自然會有一定的難度,所以我將主題圖的自由探索與嘗試選正方形的大小來剪。適當(dāng)降低了一些難度并提高了教學(xué)的效率,最后的效果還是不錯的,很容易就引入了公因數(shù)和最大公因數(shù)的'概念。
在現(xiàn)行《課標(biāo)》中有關(guān)求最大公因數(shù)的要求是:“能找出兩個自然數(shù)的公因數(shù)和最大公因數(shù)”。重在“找”,而現(xiàn)行教材的分子分母都比較小,學(xué)生熟練了以后都能準(zhǔn)確的進行約分,關(guān)鍵還是在練習(xí)的力度上多下功夫。
融入生活實際。我把找公因數(shù)的問題融入實際生活情景中,比如:“有兩根繩子,一根長12米,另一根長28米,要把它們截成同樣長的小段,而且沒有剩余,每段最長應(yīng)是幾米?一共截幾段?”這時學(xué)生理解了求最大公因數(shù)的方法和作用,就不難解決這一問題。結(jié)合生活實際,使學(xué)生真正體會到數(shù)學(xué)學(xué)習(xí)的價值,并清楚地知道“為什么學(xué)”,真正做到了生活知識數(shù)學(xué)化。
最大公因數(shù)教學(xué)反思3
一、,找一個數(shù)的因數(shù)
要成對找,這在教學(xué)因數(shù)時就是一個難點。
二、教學(xué)例題3時,應(yīng)先組織學(xué)生大膽猜測:“哪種紙片能正好鋪滿這個長方形?”再讓學(xué)生實踐驗證。
猜測、驗證的過程是學(xué)生進行探究活動的必要途徑。在實踐驗證的過程中,我緊扣用邊長( )厘米的正方形鋪長方形,能鋪( )層,每層鋪( )個。并與其中有兩種正方形不能正好鋪滿長方形的情況作比較,組織學(xué)生交流:“怎樣的正方形才能正好鋪滿這個長方形?”由于前面鋪墊充分,學(xué)生很順利地得出了結(jié)論。例題3的教學(xué), “哪種哪種紙片能正好鋪滿這個長方形?”“還有哪些邊長整厘米數(shù)的.正方形能正好鋪滿這個長方形?”“任何兩個數(shù)的公因數(shù)個數(shù)都是有限的嗎?”將學(xué)生的思維一步步引向深入,就能激發(fā)學(xué)生自主探究的熱情。
三、教學(xué)例4時,應(yīng)充分放手讓學(xué)生探索8和12的公因數(shù)以及最大公因數(shù)。
交流中,應(yīng)充分肯定學(xué)生的方法,學(xué)生在交流中出現(xiàn)問題時,應(yīng)讓他們自我修正,自我完善。并對四種方法進行比較“看哪種方法更便捷”。最大公因數(shù)的概念也要通過練習(xí),讓學(xué)生自己談對最大公因數(shù)的感悟。
最大公因數(shù)教學(xué)反思4
“因數(shù)和倍數(shù)”的知識,向來是小學(xué)數(shù)學(xué)教學(xué)的難點!白畲蠊驍(shù)”這節(jié)課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進行的,通過這節(jié)課的學(xué)習(xí),學(xué)生會說出兩個數(shù)的公因數(shù)和最大公因數(shù),會求兩個數(shù)的最大公因數(shù),并為后面學(xué)習(xí)分?jǐn)?shù)的約分打好基礎(chǔ)。反思這節(jié)課我認(rèn)為有以下幾點:
一、精心設(shè)計數(shù)學(xué)活動,讓學(xué)生大膽探究。
1、通過找8和12的因數(shù),引出公因數(shù)的概念。
教師引導(dǎo)學(xué)生先寫出8和12的'因數(shù),再觀察發(fā)現(xiàn)8和12有公有的因數(shù),自然引出了公因數(shù)的概念。然后通過集合圈的形式,直觀呈現(xiàn)什么是公因數(shù),什么又是最大公因數(shù)。促進學(xué)生建立”公因數(shù)和最大公因數(shù)”的概念。
2、通過找18和27的最大公因數(shù),掌握找最大公因數(shù)的方法。
掌握了公因數(shù)的概念之后,教師放手給予學(xué)生足夠的時間,讓學(xué)生自主探究找最大公因數(shù)的方法。交流反饋時,考慮到中下水平的學(xué)生,教師只匯報了書本中的三種基本方法,并沒有提到短除法。
二、思路清晰,環(huán)環(huán)相扣。
本節(jié)課,教師從認(rèn)識公因數(shù)——理解最大公因數(shù)——探究找最大公因數(shù)的方法——相應(yīng)的練習(xí)鞏固這幾個環(huán)節(jié)入手,每個環(huán)節(jié)都是層層遞進,環(huán)環(huán)相扣,促進了學(xué)生對概念的理解。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者!痹诒竟(jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計成為學(xué)生探索問題,解決問題的過程,各個環(huán)節(jié)的學(xué)習(xí)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮。
最大公因數(shù)教學(xué)反思5
教材共提供了三種不同的方式求兩個數(shù)的最大公因數(shù),方法一:分別寫出兩個數(shù)的因數(shù),再找最大公因數(shù);方法二:先找出一個數(shù)的所有因數(shù),再看哪些因數(shù)是另一個數(shù)的因數(shù),最后從中找出最大的;方法三:用分解質(zhì)因數(shù)的方法找兩個數(shù)的最大公因數(shù)。我還給學(xué)生補充了用短除法求最大公因數(shù)。這么多方法,教師應(yīng)該向?qū)W生重點推薦哪種呢?教材中補充拓展的分解質(zhì)因數(shù)方法學(xué)生是否都應(yīng)掌握呢?短除法是否都應(yīng)掌握呢?方法一與方法二相比,由于第一種方法便于觀察比較,十分直觀。因此,在課堂教學(xué)中許多學(xué)生暗暗地就選擇了它。方法二與方法三相比,在數(shù)據(jù)偏大且因數(shù)較多時,如果用分解質(zhì)因數(shù)的方法來求最大公因數(shù)不僅正確率高,而且速度也會大幅提高。但是用分解質(zhì)因數(shù)的方法來求最大公因數(shù)對一些學(xué)生來說又有相當(dāng)?shù)碾y度,至于為什么要把兩個數(shù)全部公有的質(zhì)因數(shù)相乘,一些學(xué)生還不太明白。
在教學(xué)中,我認(rèn)為教師不能僅僅只是介紹,還有必要讓學(xué)生們掌握這種方法技能。用短除法求最大公因數(shù)我感覺比較簡單,學(xué)生好接受,好理解。但是短除法求最大公因數(shù)一直要除到所得的商是互質(zhì)數(shù)時為止。如果用此法,學(xué)生必須首先認(rèn)識“互質(zhì)數(shù)”,并能正確判斷。雖然有關(guān)“互質(zhì)數(shù)”的內(nèi)容教材83頁“你知道嗎”中有所涉及,相應(yīng)知識的`考查在練習(xí)十五第6題中也有所體現(xiàn)。至于學(xué)生選用哪種策略找兩個數(shù)的最大公因數(shù),我并不強求。從作業(yè)反饋情況來看,多數(shù)學(xué)生更喜歡方法一,但是我們要提醒學(xué)生養(yǎng)成先觀察數(shù)據(jù)特點,然后再動筆的習(xí)慣。如兩個數(shù)正好成倍數(shù)關(guān)系或互質(zhì)數(shù)關(guān)系時,許多學(xué)生仍舊按部就班地采用一般策略來解決,全班只有少數(shù)的學(xué)生能夠根據(jù)“當(dāng)兩個數(shù)成倍數(shù)關(guān)系時,較小數(shù)就是它們的最大公因數(shù)”的規(guī)律快速找到最大公因數(shù)。在這一方面,教師在教學(xué)中要率先垂范,做好榜樣。在鞏固練習(xí)過程中,也應(yīng)加強訓(xùn)練,每次動筆練習(xí)之前補充一個環(huán)節(jié)——觀察與思考。使學(xué)生除了掌握基本策略方法外,還能靈活快捷地求出一些特例來。
這節(jié)課本來想把教材練習(xí)十五的習(xí)題講解完,但是時間不夠用了,只好下節(jié)課再講。
最大公因數(shù)教學(xué)反思6
【多問幾個為什么】
1、出差兩天,今日回來,與孩子們繼續(xù)暢游《公倍數(shù)和公因數(shù)》單元。
思維一旦被激發(fā),就有點一發(fā)不可收拾。
從第一課時開始,孩子們與我是完全浸潤在了公倍數(shù)與公因數(shù)的歡樂中。我的態(tài)度也從一開始對教材安排的質(zhì)疑,到現(xiàn)在極力擁護教材的安排。
只有放手給孩子們一個構(gòu)建的機會,孩子們才能在構(gòu)建過程中頻頻發(fā)起智慧的邀請。
在學(xué)習(xí)公倍數(shù)的時候,課上巧遇“思維定勢”,孩子們以為兩個數(shù)的公倍數(shù)就是它們的乘積;但是在解決書本上的6和9的公倍數(shù)是多少時,猛然發(fā)現(xiàn),這個方法不能次次實施。孩子們提出了一系列猜想。其中小彧發(fā)現(xiàn),如果將錯就錯,把6和9相乘,也可以,但是要除以它們的最大公因數(shù)。并且,小彧通過舉例,把這個發(fā)現(xiàn)從特殊上升到了一般。
因為當(dāng)時還未學(xué)習(xí)公因數(shù),我就躲避了問題的內(nèi)里。
小何在備學(xué)中說,我最大的問題是,我知道小彧的說法是對的,但是為何6和9兩個數(shù)相乘,再除以最大公因數(shù),得到的就是最小公倍數(shù),其中的道理是什么?
呵呵,好家伙,知道了是什么,自覺追問了為什么?
明天我們要對本章節(jié)的內(nèi)容做個整體梳理,我準(zhǔn)備結(jié)合短除法,讓孩子們意識到小何追問思想的可貴,以及這個方法可行之處究竟是什么。
2、孩子們很愛思考,從第一課時的下課時間開始,就發(fā)現(xiàn)兩個數(shù)若有倍數(shù)關(guān)系,它們的最小公倍數(shù)很奇妙,就是較大的'數(shù)。
第二課時,我們通過教材上的習(xí)題,一起說了這個規(guī)律,即訴說了看到的表面現(xiàn)象。
孩子們還不甘心,提出了問題,為什么兩個數(shù)是倍數(shù)關(guān)系,最小公倍數(shù)就是大的那個數(shù)呢?
一時安靜后,好幾個孩子舉高手,并說清了原因:大數(shù)本身是小數(shù)的倍數(shù),大數(shù)又是自己最小的倍數(shù),理所應(yīng)當(dāng)是兩數(shù)的最小公倍數(shù)。
3、公倍數(shù)的種種猜想,在學(xué)習(xí)公因數(shù)的時候,思想方法得到了遷移。
第一課時,孩子們提出各種猜想,求最大公因數(shù),會不會也像公倍數(shù)中兩個數(shù)有特殊關(guān)系,就能輕松的求出結(jié)果?
【孩子們+數(shù)學(xué)=好玩。】
要做找公倍數(shù)的上本子作業(yè)了,我板書給孩子們看書寫格式,他們拉著臉。
我說,我小時候,就是寫這么多字的。不過,我可以介紹你們寫一種簡單的,用“【】”包住兩個數(shù),中間用逗號隔開,這樣就能代替寫這么多字。孩子們一看,多方便呀!居然都“啪啪啪”鼓起掌來,哈!
我滿懷愜意的說,你們的掌聲與微笑中包含著對數(shù)學(xué)簡潔美的追求!
孩子們爽歪歪了。
不過事后,一個資深老師告訴我,這個環(huán)節(jié),如果讓孩子們創(chuàng)造一下,如何追求簡潔。也許,這樣對于孩子們的思維發(fā)展更有效。一想,我也同意這般。
一節(jié)課,只要知識目標(biāo)達(dá)成,那么,過程方法與情意目標(biāo)是不可分割的。學(xué)生在達(dá)成過程方法目標(biāo)的旅程中,豈有不快樂,不感受到豐富體驗的?
最大公因數(shù)教學(xué)反思7
本節(jié)課,我從學(xué)生已有的知識和經(jīng)驗出發(fā),精心設(shè)計一個童話情境,激發(fā)了學(xué)生的學(xué)習(xí)欲望。先讓學(xué)生動手操作、自學(xué)討論,幫助王叔叔選擇地板磚。再思考探索正方形地板磚的邊長與長方形地面的長、寬之間的關(guān)系。然后用問題的形式,通過復(fù)習(xí)16和12的因數(shù),讓學(xué)生再找兩個數(shù)的因數(shù)、找兩個數(shù)的'公有的因數(shù)、找兩個數(shù)公有的因數(shù)中最大的因數(shù)的過程中,發(fā)現(xiàn)用邊長1厘米、2厘米、4厘米的正方形都正好鋪滿長16厘米,寬12厘米的長方形。在此基礎(chǔ)上,引導(dǎo)學(xué)生思考1、2、4這些數(shù)和16、12有什么關(guān)系,同時揭示公因數(shù)和最大公因數(shù)的概念。
總之,我在教學(xué)的過程中,不但復(fù)習(xí)鞏固舊知,讓學(xué)生在不知不覺中學(xué)會了新知。而且還讓學(xué)生帶著自己的數(shù)學(xué)現(xiàn)實參與數(shù)學(xué)課堂,不斷地利用原有的經(jīng)驗背景對新的問題做出解釋。此過程中我還注意了鼓勵每一個學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語言表述自己的發(fā)現(xiàn),對于有困難的學(xué)生,我從方法上作進一步指導(dǎo),小組長幫助,生生互幫等。以“學(xué)生是學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者為主。培養(yǎng)了學(xué)生動手操作的能力,使他們在愉快的學(xué)習(xí)氛圍中學(xué)會了本節(jié)課的內(nèi)容。
最大公因數(shù)教學(xué)反思8
對于本節(jié)課,我覺得有以下需要解決和認(rèn)識。
1.復(fù)習(xí)尋找因數(shù)的方法。
2.聯(lián)系實際體會學(xué)習(xí)尋找公因數(shù)的必要性。
3.探索尋找2個數(shù)的'公因數(shù)和最大公因數(shù)的方法。
4.結(jié)合集合方法直觀顯示公因數(shù)和最大公因數(shù)。
5.理解學(xué)習(xí)公因數(shù)和最大公因數(shù)的意義以及應(yīng)用。
6.結(jié)合短除法尋找最大公因數(shù)的方法。(這個在人教版中作為了解,在本課中,我向孩子們了解介紹,但未做要求)
在課上,我以為長16dm寬12dm的客廳鋪上正方形方磚,剛好鋪滿,能選用集中方磚,這在無形中蘊含這尋找16和12的因數(shù),這樣能夠孩子們體會尋找公因數(shù)的必要性,引起探究欲望。
孩子們有不同的方法和方式去表示公因數(shù)的方式,在最后介紹集合方式,在交集中更直觀現(xiàn)實公因數(shù),這樣更直觀的顯示,初步滲透集合思想。
學(xué)習(xí)短除法也為后面教學(xué)約分做好先知鋪墊,也為孩子們介紹一種尋找最大公因數(shù)的簡便方法,滿足不同水平學(xué)生學(xué)習(xí)的需要。
最大公因數(shù)教學(xué)反思9
《公因數(shù)和最大公因數(shù)》這部分內(nèi)容是在學(xué)生理解因數(shù)與倍數(shù)的相互關(guān)系,會找1~100的自然數(shù)的因數(shù),并且在學(xué)習(xí)面積概念時積累了“密鋪”的活動經(jīng)驗開展教學(xué)的。對于《公因數(shù)和最大公因數(shù)》這樣一節(jié)概念課的教學(xué),其教學(xué)重、難點我認(rèn)為就是對“公”字意義的理解,也就是如何體驗這個數(shù)既是一個數(shù)的因數(shù),又是另一個數(shù)的因數(shù),才是兩個數(shù)“公有”的因數(shù)。為了突出本節(jié)課的教學(xué)重點、突破教學(xué)難點,結(jié)合我們本學(xué)期的教研主題“如何設(shè)計有效的教學(xué)活動,達(dá)成教學(xué)目標(biāo)”,我主要從以下幾方面入手來嘗試教學(xué):
一、重視活動體驗,讓學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程。
第一次猜想:一個長方形,長4厘米,寬2厘米。如果用同樣大的邊長是整厘米數(shù)的正方形來擺,剛好擺滿沒有剩余,可以選邊長是幾厘米的正方形?讓學(xué)生帶著自己的思考去操作驗證,在操作中體會“同樣大小的正方形”、“擺滿沒有剩余”,初步感知正方形既要把長方形的長擺滿沒有剩余,又要把長方形的寬擺滿沒有剩余。
第二次猜想:現(xiàn)在把長方形變大,長6厘米,寬4厘米,同樣的要求,這次正方形的邊長可以是幾厘米?學(xué)生可以熟練地操作驗證,在活動體驗和交流中進一步感知選擇正方形時既要保證長方形的長擺滿沒有剩余,又要保證長方形的寬擺滿沒有剩余。
第三次猜想:繼續(xù)變大,長18厘米,寬12厘米長方形,還是同樣的要求,用同樣大的小正方形來擺,剛好擺滿沒有剩余,這次可以選邊長是幾厘米的正方形呢?學(xué)生繼續(xù)操作驗證。這時學(xué)生已經(jīng)有了前兩次的操作感知,積累了充分的活動經(jīng)驗,這些活動經(jīng)驗可以支撐他們?nèi)ネ评、想象,找到能“擺滿沒有剩余”的本質(zhì),從而從整體感知正方形邊長的規(guī)律。
然后,發(fā)揮教師的主導(dǎo)作用:“我們前后共擺了三個長方形,得到了黑板上的這些數(shù)據(jù)。仔細(xì)想一想,這些正方形的邊長和什么有關(guān)?有怎樣的關(guān)系呢?”引導(dǎo)學(xué)生觀察數(shù)據(jù),發(fā)現(xiàn)規(guī)律,引出公因數(shù)和最大公因數(shù)的`概念。
通過創(chuàng)設(shè)以上教學(xué)活動,讓學(xué)生在活動中實實在在地經(jīng)歷了公因數(shù)產(chǎn)生的過程,積累豐富的活動經(jīng)驗,充分體驗公因數(shù)的意義。
二、借助幾何直觀,增進學(xué)生對概念意義的理解。
通過上面的操作體驗和思考認(rèn)知,學(xué)生認(rèn)識了公因數(shù)和最大公因數(shù),又經(jīng)歷了找公因數(shù)和最大公因數(shù)的過程,學(xué)生能感知“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”這三個概念之間存在著一些聯(lián)系。為了幫助學(xué)生深入地理解概念,提出問題:“對比這三個概念,現(xiàn)在你能說說它們之間的聯(lián)系與區(qū)別嗎?可以選其中兩個說一說!币龑(dǎo)學(xué)生進一步地思考。這時學(xué)生交流:“‘因數(shù)’是一個數(shù)的,而‘公因數(shù)’是兩個或兩個以上的數(shù)公有的”、“‘最大公因數(shù)’首先它也是‘公因數(shù)’中的一個,而且是‘公因數(shù)’中最大的一個!备鶕(jù)學(xué)生的交流,我通過課件,借助韋恩圖形象直觀地演示了“因數(shù)”與“公因數(shù)”、“公因數(shù)”與“最大公因數(shù)”之間的關(guān)系,增進了學(xué)生對概念意義的理解。
三、通過實際問題,溝通數(shù)學(xué)概念與現(xiàn)實世界的聯(lián)系。
在學(xué)生充分理解區(qū)分了“因數(shù)”、“公因數(shù)”、“最大公因數(shù)”三個概念之后,提出問題:“一根彩帶長16分米,如果要截成小段來裝飾包裝盒,要求每段一樣長且剪完沒有剩余,每段可以是幾分米?(選整分米數(shù))”學(xué)生想到:這是個用因數(shù)的知識解決的問題,求每段可以是幾分米,也就是求16的因數(shù)。這時,引導(dǎo)學(xué)生改編成一個用公因數(shù)來解決的問題,學(xué)生首先想到了
少需要兩個數(shù)據(jù),于是有的學(xué)生想到可以改編成:“兩條彩帶,一條16分米,一條12分米。把它們截成同樣長的小段且沒有剩余,每段可以是幾分米?(選整分米數(shù))”這樣的問題。在學(xué)生思考的過程,既是在進一步理解概念的意義,又找到了“公因數(shù)”、“最大公因數(shù)”概念的現(xiàn)實意義,培養(yǎng)了學(xué)生的數(shù)學(xué)抽象能力。
一節(jié)課下來,我發(fā)現(xiàn)學(xué)生是最棒的!在不斷地實踐探索中,他們的認(rèn)識不斷提升,我仿佛聽得到他們思維拔節(jié)的聲音。
當(dāng)然,仔細(xì)琢磨,這節(jié)課還有很多可圈可點之處,如:
1、在三次操作之后,找正方形邊長與長方形的長和寬有什么關(guān)系環(huán)節(jié),有的孩子不能用數(shù)學(xué)的眼光去觀察、去思考,還停留在操作上,這就說明作為老師,在這兩個環(huán)節(jié)之間沒有為孩子搭建起合適的橋梁,沒有幫孩子找到一個好的思維支點。
2、因為操作感知時間較長,在本節(jié)課的第二個知識目標(biāo)——找公因數(shù)和最大公因數(shù)的方法環(huán)節(jié)就沒有充分的時間將孩子的各種方法展開交流,也是個小小的遺憾。
帶著原有的思考我們做了如上嘗試,然而一節(jié)課的時間是有限的,個人業(yè)務(wù)素養(yǎng)也有待提高,所以沒有做到面面俱到。好在一節(jié)課的結(jié)束并不意味著思考的終止,我又帶著實踐中的新問題上路了。期待著思考的路上,能得到更多領(lǐng)導(dǎo)、同行們的指點與批評!
最大公因數(shù)教學(xué)反思10
這節(jié)課是在學(xué)習(xí)了公因數(shù)和最大公因數(shù)之后教學(xué)的,在實際教學(xué)中我發(fā)現(xiàn)學(xué)生不能靈活利用最大公因數(shù)的知識解決實際問題,有的同學(xué)一看到求最大、最多、最長是多少,便不假思索,直接求它們的最大公因數(shù),至于為什么是求最大公因數(shù),有的同學(xué)不理解,或是知其然而不知其所以然。基于此,我設(shè)計了這節(jié)課。在教學(xué)中,我努力做大了以下幾點:
1、借助操作活動,讓學(xué)生形成解決問題的策略。在教學(xué)中,我以學(xué)生感興趣的六一節(jié)活動貫穿始終,讓學(xué)生在積極、歡愉的氛圍中學(xué)習(xí)。通過給學(xué)生提供具體的材料,讓他們利用已有的'材料,剪一剪、畫一畫、折一折、想一想、算一算,用不同的方法來解決問題。從動手操作中理解要解決這個問題,實質(zhì)上是求已知數(shù)量的最大公因數(shù),并結(jié)合課件演示明確為什么是求最大公因數(shù)。提升了學(xué)生的思維層次。再通過后面的嘗試應(yīng)用,練一練,靈活應(yīng)用等環(huán)節(jié)進一步明確思路。學(xué)生在解決問題的過程中獲得感悟,初步形成解決此類問題的策略。
2、預(yù)設(shè)探究過程,增強學(xué)生的主體意識。嘗試應(yīng)用環(huán)節(jié)更是學(xué)生自主探究的廣闊平臺,我拋出問題后讓學(xué)生獨立探究。為了解決問題,學(xué)生充分調(diào)動已有知識經(jīng)驗、方法、技能,八仙過海各顯神通,找出各種求正方形的邊長最長是多少的方法,從中再次體驗到要解決這個問題實質(zhì)上還是求已知數(shù)量的最大公因數(shù)。整個教學(xué)過程學(xué)生能主動的建構(gòu)知識,而不是簡單模仿,充分體現(xiàn)了學(xué)生是課堂學(xué)習(xí)的主人,課堂是學(xué)生學(xué)習(xí)的天地。
3、教學(xué)中我充分發(fā)揮小組合作學(xué)習(xí)能力,給學(xué)生充分的交流與研究時間,讓學(xué)生在交流展示中明確解決此類問題的策略,達(dá)到把復(fù)雜的問題變得簡單,把簡單的問題變得有厚度。
最大公因數(shù)教學(xué)反思11
日本著名數(shù)學(xué)教育家米山國藏指出:“作為知識的數(shù)學(xué)出校門不到兩年可能就忘了,唯有深深銘記在頭腦中的是數(shù)學(xué)的精神,數(shù)學(xué)的思想、研究的方法和著眼點等,這些隨時隨地發(fā)生作用,使他們終身受益!睆倪@個教學(xué)的設(shè)計中我們可以看到,教學(xué)中不只是讓學(xué)生接受一個概念知識或一種求最大公約數(shù)的方法;不只是注重數(shù)學(xué)形式層面的教學(xué),而是更重視數(shù)學(xué)發(fā)現(xiàn)層面的教學(xué),即讓學(xué)生在經(jīng)歷“數(shù)學(xué)家”解決問題的過程中去理解、去感受一種數(shù)學(xué)的思想和觀念──數(shù)學(xué)化思想。學(xué)生先是感知地板磚中隱含的數(shù)學(xué),會用約數(shù)、倍數(shù)知識解釋簡單的生活現(xiàn)象,進而思考并嘗試解決畫廊內(nèi)裝飾畫的設(shè)計,學(xué)生自然會聯(lián)想到地板磚中數(shù)學(xué)知識。但是,從解釋到應(yīng)用設(shè)計,在沒有學(xué)習(xí)公約數(shù)的情況下會存在較大的難度。于是,創(chuàng)設(shè)了做數(shù)學(xué)的空間。讓他們在設(shè)計正方形的過程中,逐漸感知公約數(shù)的存在,建立了解決這種問題的`數(shù)學(xué)模型。再反思與總結(jié),引導(dǎo)學(xué)生自己創(chuàng)造了“公約數(shù)”與“最大公約數(shù)”的概念。
數(shù)學(xué)化思想觀念是指用數(shù)學(xué)眼光去認(rèn)識和處理周圍事物或數(shù)學(xué)問題,可以培養(yǎng)學(xué)生良好的“用數(shù)學(xué)”意識,使數(shù)學(xué)關(guān)系成為學(xué)生的一種思維模式。而我們的課堂中,大多還是圍繞知識就事論事,沒有從形成學(xué)生思維模式的角度去展開知識形成和問題解決的思維過程,去注重現(xiàn)代的數(shù)學(xué)思想,去隱含重要的數(shù)學(xué)方法,這樣,學(xué)生學(xué)到的只是知識的堆砌,沒有自主的發(fā)展和對數(shù)學(xué)本質(zhì)的領(lǐng)悟。
最大公因數(shù)教學(xué)反思12
“公因數(shù)和最大公因數(shù)”是第三單元第三課時的內(nèi)容,在此之前,已經(jīng)學(xué)過了公倍數(shù)和最小公倍數(shù),掌握了公倍數(shù)和最小公倍數(shù)的概念和求法,這節(jié)課的教學(xué)過程與公倍數(shù)的教學(xué)非常相似,吸取了公倍數(shù)教學(xué)時的教訓(xùn),本節(jié)課教學(xué)公因數(shù)概念的時候,我先讓學(xué)生讀題,說清題意,再進行操作,這樣以來學(xué)生是帶著問題去操作的,不像公倍數(shù)時部分學(xué)生題目都理解不了就開始動手操作,不能完全達(dá)到本題操作的目的。在教學(xué)求公因數(shù)方法的時候,我也讓學(xué)生與公倍數(shù)求法進行了比較,通過比較學(xué)生發(fā)現(xiàn)了公倍數(shù)是無限的,沒有給定范圍時要寫省略號,而公因數(shù)是有限個的,要寫好句號,表示書寫完成;還發(fā)現(xiàn)找公倍數(shù)時是找最小公倍數(shù),而找公因數(shù)是最大公因數(shù);還發(fā)現(xiàn)求公因數(shù)的方法中是先找小數(shù)的因數(shù)再從其中找大數(shù)的因數(shù),而求公倍數(shù)卻是利用大數(shù)翻倍法,找出來的是大數(shù)的倍數(shù),再從其中找出小數(shù)的倍數(shù)。不僅兩個例題的教學(xué)過程相似,連練習(xí)的設(shè)計也是相似的,所以學(xué)生在完成練習(xí)的時候,已經(jīng)對練習(xí)的形式較為熟悉,練習(xí)完成的較好。正因為兩節(jié)課太相似,所以小部分學(xué)生已經(jīng)有些混淆了,分不清怎么求公倍數(shù),怎么求公因數(shù),這個是在以后教學(xué)中要避免的。
這節(jié)課的作業(yè)也能反映一些本節(jié)課上的問題,在教學(xué)公倍數(shù)的時候,我沒有強調(diào)集合中元素的互異性,作業(yè)中不少學(xué)生在公倍數(shù)一欄填寫的數(shù)字,同時出現(xiàn)在左右部分的集合中,在這節(jié)課練習(xí)時,我特意強調(diào)了這一點,希望學(xué)生們能記住,在完成練習(xí)五的時候還發(fā)現(xiàn),部分學(xué)生對于2、3、的倍數(shù)的`特征記得不清楚了,所以在判斷是不是它們的倍數(shù)的時候還有一些人用大數(shù)去除以2、3、5的方法來判斷,耽誤了很多的時間,這是我上課之前沒有想到的,要是在做這一題之前先讓學(xué)生回憶2、3、5的倍數(shù)的特征,想必他們會節(jié)省更多的時間。
最大公因數(shù)教學(xué)反思13
學(xué)生的學(xué)習(xí)過程是一種特殊的認(rèn)知過程,必須在積極主動的情況下在自己的逐步思考和探究中達(dá)到解決的目的。
1、小組討論合作學(xué)習(xí)研究多了,獨立思考就有所忽視。從數(shù)學(xué)學(xué)習(xí)的本質(zhì)來說,獨立思考是主流,合作交流應(yīng)在獨立思考的基礎(chǔ)上進行。只有在獨立思考的前提下,才有交流的可能。因此,在本課設(shè)計時,求兩數(shù)的最大公約數(shù)。先讓學(xué)生課前獨立探究方法,在學(xué)生有充分獨立思考的'基礎(chǔ)上再交流評價。才真正實現(xiàn)每個學(xué)生潛質(zhì)的開發(fā)和學(xué)生之間真正的差異互補。
2、獨特的見解總是在主體迷戀執(zhí)著,充分自由的狀態(tài)中萌芽出來的,在教學(xué)中應(yīng)放下架子,蹲下身子來傾聽學(xué)生,相信每個學(xué)生都會有精彩的表現(xiàn)。正如陶行知所說的:“學(xué)生能做許多你不能做的事,也能做許多你認(rèn)為他不能做的事!辈灰】戳撕⒆,要對每位孩子充滿信心,從而使課堂頻頻發(fā)出精彩的光芒。如本課時在開放題的解答過程中,學(xué)生能在一些簡單的嘗試開始,從中逐步發(fā)現(xiàn)其中的規(guī)律,以至于應(yīng)用獲得的規(guī)律來實現(xiàn)問題解決的最優(yōu)化,不得不驚奇孩子能力的巨大。
3、當(dāng)數(shù)學(xué)問題情境作用于思考者時就有可能展開數(shù)學(xué)思維活動,可以說,問題的設(shè)計和問題的情境的創(chuàng)設(shè)是促進數(shù)學(xué)思考的客觀性因素。讓學(xué)生在問題情境中層層推出數(shù)學(xué)思考“還有沒有其他的方法”“他的方法你認(rèn)為怎樣”“你是怎么想的”鼓勵表揚敢于思索的同學(xué),錯誤的回答也是對正確知識的一種辨析過程,新知識對每個每一次學(xué)習(xí)的學(xué)生都是一個發(fā)現(xiàn)、創(chuàng)造的大空間。
兩個數(shù)的最大公約數(shù)的教學(xué)反思有探究就有發(fā)現(xiàn),有發(fā)現(xiàn)就是
學(xué)習(xí)的成功。成功所帶來的喜悅總是進一步學(xué)習(xí)的最大動力,自主探究的課堂,為個性不同的學(xué)生的發(fā)展留下了必要的空間,讓他們都有機會表達(dá)自己的思想,以自己獨特的方式去學(xué)習(xí)數(shù)學(xué),發(fā)展知識,各自體驗到學(xué)習(xí)數(shù)學(xué)的成功感。
最大公因數(shù)教學(xué)反思14
《標(biāo)準(zhǔn)》指出“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者和合作者!边@一理念要求我們教師的角色必須轉(zhuǎn)變。我想教師的作用必須體現(xiàn)在以下幾個方面。一是要引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗之間的關(guān)聯(lián);二是要提供把學(xué)生置于問題情景之中的機會;三是要營造一個激勵探索和理解的氣氛,為學(xué)生提供有啟發(fā)性的討論模式;四是要鼓勵學(xué)生表達(dá),并且在加深理解的基礎(chǔ)上,對不同的答案開展討論;五是要引導(dǎo)學(xué)生分享彼此的思想和結(jié)果,并重新審視自己的想法。
對照《課標(biāo)》的理念,我對《公因數(shù)與最大公因數(shù)》的教學(xué)作了一點嘗試。
一、引導(dǎo)學(xué)生思考和尋找眼前的問題與自己已有的知識體驗之間的關(guān)聯(lián)。
《公因數(shù)與最大公因數(shù)》是在《公倍數(shù)和最小公倍數(shù)》之后學(xué)習(xí)的一個內(nèi)容。如果我們對本課內(nèi)容作一分析的話,會發(fā)現(xiàn)這兩部分內(nèi)容無論是在教材的呈現(xiàn)程序還是在思考方法上都有其相似之處。基于這一認(rèn)識,在課的開始我作了如下的設(shè)計:
“今天我們學(xué)習(xí)公因數(shù)與最大公因數(shù)。對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”
學(xué)生已經(jīng)學(xué)過公倍數(shù)與最小公倍數(shù),這兩部分內(nèi)容有其相似之處,課始放手讓學(xué)生自由猜測,學(xué)生通過對已有認(rèn)知的檢索,必定會催生出自己的一些想法,從課的實施情況來看,也取得了令人滿意的效果。什么是公因數(shù)和最大公因數(shù)?如何找公因數(shù)與最大公因數(shù)?為什么是最大公因數(shù)面不是最小公因數(shù)?這一些問題在學(xué)生的思考與思維的碰撞中得到了較好的生成。無疑這樣的設(shè)計貼近學(xué)生的最近發(fā)展區(qū),為課堂的有效性奠定了基礎(chǔ)。
二、提供把學(xué)生置于問題情景之中的`機會,營造一個激勵探索和理解的氣氛
“對于今天學(xué)習(xí)的內(nèi)容你有什么猜測?”這一問題的包容性較大,不同的學(xué)生面對這一問題都能說出自己不同的猜測,學(xué)生的差異與個性得到了較好的尊重,真正體現(xiàn)了面向全體的思想。不同學(xué)生在思考這一問題時都有了自己的見解,在相互補充與想互啟發(fā)中生成了本課教學(xué)的內(nèi)容,使學(xué)生充分體會了合作的魅力,構(gòu)建了一個和諧的課堂生活。在這一過程中學(xué)生深深地體會到數(shù)學(xué)知識并不是那么高深莫測、可敬而不可親。數(shù)學(xué)并不可怕,它其實滋生于原有的知識,植根于生活經(jīng)驗之中。這樣的教學(xué)無疑有利于培養(yǎng)學(xué)生的自信心,而自信心的培養(yǎng)不就是教育最有意義而又最根本的內(nèi)容嗎?
三、讓學(xué)生進行獨立思考和自主探索
通過學(xué)生的猜測,我把學(xué)生的提出的問題進行了整理:
。1) 什么是公因數(shù)與最大公因數(shù)?
。2) 怎樣找公因數(shù)與最大公因數(shù)?
。3) 為什么是最大公因數(shù)而不是最小公因數(shù)?
。4) 這一部分知識到底有什么作用?
我先讓學(xué)生獨立思考?然后組織交流,最后讓學(xué)生自學(xué)課本
這樣的設(shè)計對學(xué)生來說具有一定的挑戰(zhàn)性,在問題解決的過程中充分發(fā)揮了學(xué)生的主體性。在這一過程中學(xué)生形成了自己的理解,在與他人合作與交流中逐漸完善了自己的想法。我想這大概就是《標(biāo)準(zhǔn)》中倡導(dǎo)給學(xué)生提供探索與交流的時間和空間的應(yīng)有之意吧。
最大公因數(shù)教學(xué)反思15
本課是在學(xué)生掌握了因數(shù)、倍數(shù)、找因數(shù)的基礎(chǔ)上進行教學(xué),通過找公因數(shù)的過程,讓學(xué)生懂得找公因數(shù)的基本方法。在此基礎(chǔ)上,引出公因數(shù)和最大公因數(shù)的概念,為了加深理解,可以進一步引導(dǎo)學(xué)生觀察分析、討論,讓學(xué)生明確找兩個數(shù)公因數(shù)的方法,并對找有特征的數(shù)字的最大公因數(shù)的特殊方法有所體驗。在此過程中要注意鼓勵每一個學(xué)生參與探索,重視引發(fā)學(xué)生思考,注重學(xué)生間的交流,讓學(xué)生用自己的語言表述自己的發(fā)現(xiàn),但不要歸納成固定的模式讓學(xué)生記憶。對于找公因數(shù)有困難的學(xué)生,教師要從方法上作進一步指導(dǎo)!稊(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“學(xué)生是學(xué)習(xí)的`主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者!痹诒竟(jié)課中,我努力將找最大公因數(shù)的概念教學(xué)課,設(shè)計成為學(xué)生探索問題,解決問題的過程,這樣設(shè)計各個環(huán)節(jié)的教學(xué)流程,體現(xiàn)了教師是組織者——提供數(shù)學(xué)學(xué)習(xí)的材料;引導(dǎo)者——引導(dǎo)學(xué)生利用各種途徑找到公因數(shù),最大公因數(shù);合作者——與學(xué)生共同探討規(guī)律。在整個教學(xué)的過程中,學(xué)生真正成了課堂學(xué)習(xí)的主人,尋找最大公因數(shù)的方法是通過學(xué)生積極主動地探索以及不斷地中驗證得到的,所以整節(jié)課學(xué)生個性得到發(fā)揮,課堂成了學(xué)習(xí)的天地。
【最大公因數(shù)教學(xué)反思】相關(guān)文章:
最大公因數(shù)的教學(xué)反思02-10
公因數(shù)和最大公因數(shù)教學(xué)反思07-20
《最大公因數(shù)》的說課稿12-19
《最大公因數(shù)》說課稿12-19
最大公因數(shù)說課稿12-21
《找最大公因數(shù)》說課稿12-24