- 相關(guān)推薦
小學(xué)六年級(jí)圓柱的體積數(shù)學(xué)教學(xué)反思
作為一名到崗不久的人民教師,我們要在教學(xué)中快速成長(zhǎng),對(duì)教學(xué)中的新發(fā)現(xiàn)可以寫(xiě)在教學(xué)反思中,那么什么樣的教學(xué)反思才是好的呢?以下是小編精心整理的小學(xué)六年級(jí)圓柱的體積數(shù)學(xué)教學(xué)反思,希望能夠幫助到大家。
小學(xué)六年級(jí)圓柱的體積數(shù)學(xué)教學(xué)反思1
圓柱的體積一課,重點(diǎn)是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進(jìn)行計(jì)算應(yīng)用。
教學(xué)中學(xué)生存在的問(wèn)題是:
1、學(xué)生對(duì)推導(dǎo)過(guò)程理解有困難,不深入;
2、在計(jì)算的過(guò)程中,單位名稱用錯(cuò),體積單位用面積單位。
3、對(duì)于書(shū)中所給的立體圖形,認(rèn)識(shí)不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯(cuò)。圓柱的高也可以叫做圓柱的長(zhǎng)(個(gè)別學(xué)生不清楚)
突破難點(diǎn)的方法:
1、為了避免單位名稱的錯(cuò)誤,可在課前復(fù)習(xí)中設(shè)計(jì)單位換算的填空題,辨析題等。例如:1平方米=( )平方分米=( )平方厘米 100平方厘米=1立方分米。
2、在學(xué)生利用學(xué)具理解公式的推導(dǎo)過(guò)程時(shí),應(yīng)放手讓學(xué)動(dòng)手動(dòng)腦自己解決,但動(dòng)手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長(zhǎng)方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的`體積公式。
3、注意引導(dǎo)學(xué)生參與到探索知識(shí)的發(fā)生發(fā)展過(guò)程中,突破以往數(shù)學(xué)學(xué)習(xí)單一、被動(dòng)的學(xué)習(xí)方式,關(guān)注學(xué)生的實(shí)踐活動(dòng)和直接經(jīng)驗(yàn),“通過(guò)自己的活動(dòng)”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動(dòng)是數(shù)學(xué)活動(dòng)的重要組成部分,也是學(xué)生學(xué)習(xí)活動(dòng)的重要方式。
小學(xué)六年級(jí)圓柱的體積數(shù)學(xué)教學(xué)反思2
圓柱的體積教學(xué)反思
在這節(jié)課學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),由于條件的限制,沒(méi)有更多的學(xué)具提供給學(xué)生,只一個(gè)教具。為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了學(xué)生。接著再結(jié)合多媒體演示讓學(xué)生感受“把圓柱的底面分的`份數(shù)越多,切開(kāi)后,拼起來(lái)的圖形就越接近長(zhǎng)方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長(zhǎng)方體的長(zhǎng)相當(dāng)于圓柱的哪一部分的長(zhǎng)度,寬是圓柱哪一部分的長(zhǎng)度,高是圓柱的哪一部分的長(zhǎng)度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生基本沒(méi)有親身參與操作,非常遺憾。但我使用了課件-----把圓柱體沿著它的直徑切成諾干等份,拼成一個(gè)近似的長(zhǎng)方體,展示切拼過(guò)程.學(xué)生雖然沒(méi)有親身經(jīng)歷,但也一目了然.,學(xué)習(xí)效果還可以。
圓柱的體積練習(xí)課教學(xué)反思
本節(jié)的練習(xí),提高了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決身邊問(wèn)題的能力,從學(xué)數(shù)學(xué)的角度,注意了數(shù)學(xué)知識(shí)的特點(diǎn)。運(yùn)用已有的知識(shí)經(jīng)驗(yàn)解決新的問(wèn)題,在新舊知識(shí)的聯(lián)系上,使學(xué)生想象合理、聯(lián)系有方。
小學(xué)六年級(jí)圓柱的體積數(shù)學(xué)教學(xué)反思3
本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十二冊(cè)﹙西師版﹚《圓柱的體積》,以前教學(xué)此內(nèi)容時(shí),直接告訴學(xué)生:圓柱的體積=底面積高,用字母表示公式:V=Sh,讓學(xué)生套用公式練習(xí);我教此內(nèi)容時(shí),不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。對(duì)此,我作如下反思:
一、學(xué)生學(xué)到了有價(jià)值的知識(shí)。
學(xué)生通過(guò)實(shí)踐、探索、發(fā)現(xiàn),得到的知識(shí)是活的,這樣的知識(shí)對(duì)學(xué)生自身智力和創(chuàng)造力發(fā)展會(huì)起到積極的推動(dòng)作用。所有的答案不是老師告訴的,而是學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說(shuō)出來(lái)的。這樣的知識(shí)具有個(gè)人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要強(qiáng)調(diào)讓學(xué)生通過(guò)實(shí)踐增強(qiáng)探究和創(chuàng)新意識(shí),學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神。學(xué)生動(dòng)手實(shí)踐、觀察得出結(jié)論的過(guò)程,就是科學(xué)研究的`過(guò)程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識(shí),把學(xué)生當(dāng)成知識(shí)的容器。學(xué)生的學(xué)習(xí)只是被動(dòng)地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過(guò)程,發(fā)現(xiàn)了教學(xué)問(wèn)題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過(guò)程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實(shí)踐和思考的時(shí)間較多,練習(xí)的時(shí)間較少。
小學(xué)六年級(jí)圓柱的體積數(shù)學(xué)教學(xué)反思4
本節(jié)課是在學(xué)習(xí)了圓柱的體積公式后進(jìn)行的解決問(wèn)題。這要求學(xué)生對(duì)圓柱的體積公式掌握的比較扎實(shí),并要求理論與實(shí)際生活相結(jié)合。讓學(xué)生通過(guò)經(jīng)歷發(fā)現(xiàn)和提出問(wèn)題、分析和解決問(wèn)題的完整過(guò)程,掌握問(wèn)題解決的策略。使學(xué)生在解決問(wèn)題的過(guò)程中體會(huì)轉(zhuǎn)化、推理和變中有不變的數(shù)學(xué)思想。
在教學(xué)中教學(xué)我采用操作和演示、講解和嘗試練習(xí)相結(jié)合的方法,是新課與練習(xí)有機(jī)地融為一體,做到講與練相結(jié)合。整節(jié)課我采用啟發(fā)式教學(xué)。從導(dǎo)入新授到獨(dú)立解答問(wèn)題,環(huán)節(jié)清晰,教學(xué)目的明確。通過(guò)提問(wèn)引導(dǎo)學(xué)生自主研究問(wèn)題找到重難點(diǎn),突破重難點(diǎn)。通過(guò)2個(gè)瓶子的倒置,把不規(guī)則的物體轉(zhuǎn)化成規(guī)則物體,再來(lái)求它們的'體積。在進(jìn)行轉(zhuǎn)化時(shí),讓學(xué)生明白倒置前空氣的體積在倒置后屬于哪一部分。倒置前水的體積在倒置后屬于哪一部分。不管在倒置前還是倒置后,什么不變,什么變了?要求瓶子的體積實(shí)際是求什么?在課堂中學(xué)生積極參與,積極思考,小組合作學(xué)習(xí)。在學(xué)習(xí)中學(xué)習(xí)探究氛圍高,體現(xiàn)高年級(jí)學(xué)科特點(diǎn),并且靈活運(yùn)用生命化課堂的四自模式、新技術(shù),運(yùn)用熟練,課堂中使用恰當(dāng)有效。但在教學(xué)時(shí)提出的問(wèn)題應(yīng)該更簡(jiǎn)潔明了。在課堂上如何更好地關(guān)注中等偏下的學(xué)生,我時(shí)常為此感到糾結(jié)。
剛剛嘗試建構(gòu)高效的課堂教學(xué)范式,難免有困惑和疑問(wèn),今后我還要一如繼往地與集體備課成員溝通、交流,共同探討教改新路,讓課堂教學(xué)更高效、更優(yōu)質(zhì)。
小學(xué)六年級(jí)圓柱的體積數(shù)學(xué)教學(xué)反思5
對(duì)《圓柱的體積》一節(jié),備課階段,我跟馮老師討論過(guò),3.19下午,又全程聆聽(tīng)了三位教師的同課異構(gòu),領(lǐng)略了他們不同個(gè)性的教學(xué)風(fēng)格。在我看來(lái),盡管是同課異構(gòu),盡管是個(gè)性課堂,一些基本的原則還是要遵守的。例如,深入地理解教材,例如,盡可能地保持?jǐn)?shù)學(xué)的邏輯嚴(yán)密性,等等。
對(duì)于這節(jié)教材的理解,最嚴(yán)重的分歧可能來(lái)自圓柱的體積公式。教材為什么給出的是“V=Sh”而不是“V=πrh”。我想,這里的原因大概有兩個(gè):一是要統(tǒng)一(柱體的)體積公式,減輕學(xué)生的記憶負(fù)擔(dān)。事實(shí)上,V=Sh也確實(shí)更能體現(xiàn)柱體體積的本質(zhì),不同柱體體積的不同公式,只是進(jìn)一步描述了它們的不同的S罷了。另一個(gè)原因,是為方便學(xué)生對(duì)公式推導(dǎo)過(guò)程的理解。當(dāng)圓柱被分割為有限個(gè)曲面三棱柱并拼為準(zhǔn)長(zhǎng)方體時(shí),半徑r只是接近而并沒(méi)有等于長(zhǎng)方體的寬,只有這個(gè)分割被無(wú)限化(取極限)時(shí),圓柱的半徑才能與長(zhǎng)方體的寬相等。因此,與其讓學(xué)生去費(fèi)解地或不求甚解地觀察“長(zhǎng)方體的寬與圓柱的半徑的關(guān)系”,還不如只觀察兩者的底面積S。在我看來(lái),這樣地處理,是新教材較舊教材高明之處,而有的教師之所以走回老路,恐怕是對(duì)新教材理解不到位的緣故。
對(duì)于這節(jié)課的異構(gòu),分歧最大的地方可能是對(duì)探索或計(jì)算的側(cè)重,以及是否需要、是否可以有多種探索方法。從教材的表述看,這節(jié)課的新授完全圍繞著公式的提出(猜想)、推導(dǎo)(驗(yàn)證)展開(kāi),其第一課時(shí)的教學(xué)重點(diǎn)無(wú)疑應(yīng)當(dāng)放在公式的探索上。至于探索的途徑或方法,我認(rèn)為,主要有兩個(gè):一是轉(zhuǎn)化,把圓柱體轉(zhuǎn)化為長(zhǎng)方體,二是驗(yàn)算,假設(shè)猜想的公式是正確的,利用它算出結(jié)果并設(shè)法檢驗(yàn)。例如,可以將圓柱形固體放到較大的液體量具中,通過(guò)比較圓柱體積的'猜想值與液體體積的增長(zhǎng)量,證明體積計(jì)算的正確性。也可以將圓柱體形狀的橡皮泥捏成長(zhǎng)方體形狀,如果能夠在變形的過(guò)程中保持高的不變,則可以直接證明所猜想公式的正確性,否則,就要通過(guò)計(jì)算來(lái)作出間接的證明。如何理解教材中“堆硬幣”的意圖?我以為,這段教材的用意在于“提出猜想”而非驗(yàn)證猜想。之所以這樣認(rèn)為,原因有二,一是教材的表述,它說(shuō)的是:“從‘堆硬幣’來(lái)看,用‘底面積乘高’可以計(jì)算出圓柱的體積!倍皇钦f(shuō)圓柱的體積就是底面積乘高’。二是如果作為驗(yàn)證方法,在邏輯上就犯了循環(huán)論證的錯(cuò)誤,因?yàn)橛矌疟旧韺?shí)際上也是圓柱,它的體積是否等于底面積乘高,本身就是要待驗(yàn)證的。馮老師在教學(xué)中將其處理為“無(wú)數(shù)個(gè)圓疊加成為圓柱”,則使得它在邏輯上不再循環(huán)(雖然,這里的“積分過(guò)程”包含的極限思想要比“化圓為方”更難為小學(xué)生所理解。)。我認(rèn)為,由于“堆硬幣”的目的在于換一個(gè)角度提出猜想,教學(xué)中當(dāng)學(xué)生能夠提出猜想時(shí),“疊圓成柱”的過(guò)程就顯得不那么非要不可了。而通過(guò)多媒體課件演示圓柱的“化圓為方”的過(guò)程卻是完全必要的。教師與學(xué)生一道經(jīng)歷了把十六等分的曲面三棱柱拼成“準(zhǔn)長(zhǎng)方體”之后,可以引導(dǎo)學(xué)生觀察這個(gè)長(zhǎng)方體的“近似性”,并啟發(fā)他們想象當(dāng)?shù)确值臄?shù)量增大到三十二、六十四、----的情況,在其想象之后,再用課件演示極限化的過(guò)程,大多數(shù)學(xué)生應(yīng)當(dāng)是可以真正理解的。
【小學(xué)六年級(jí)圓柱的體積數(shù)學(xué)教學(xué)反思】相關(guān)文章:
圓柱的體積教學(xué)反思05-16
《圓柱的體積》教學(xué)反思02-13
圓柱的體積的教學(xué)反思02-27
《圓柱的體積》教學(xué)反思05-22
《圓柱的體積》教學(xué)反思【熱】07-05
圓柱的體積教學(xué)反思15篇02-18