當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說課稿> 勾股定理說課稿

勾股定理說課稿

時間:2022-01-23 06:24:59 說課稿 我要投稿

關(guān)于勾股定理說課稿模板集合六篇

  在教學(xué)工作者開展教學(xué)活動前,就有可能用到說課稿,借助說課稿我們可以快速提升自己的教學(xué)能力?靵韰⒖颊f課稿是怎么寫的吧!下面是小編幫大家整理的勾股定理說課稿6篇,僅供參考,大家一起來看看吧。

關(guān)于勾股定理說課稿模板集合六篇

勾股定理說課稿 篇1

  尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學(xué)的宋寧。今天我說課的內(nèi)容是人教版《數(shù)學(xué)》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學(xué)法、教學(xué)過程、教學(xué)評價以及設(shè)計說明五個方面來闡述對本節(jié)課的理解與設(shè)計。

  一、教材分析:

  (一) 教材的地位與作用

  從知識結(jié)構(gòu)上看百度一下,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。

  從學(xué)生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;

  勾股定理又是對學(xué)生進行愛國主義教育的良好素材,因此具備相當(dāng)重要的地位和作用。

  根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級學(xué)生的認知水平我確定如下學(xué)習(xí)目標(biāo):知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。

  (二)重點與難點

  為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引領(lǐng)學(xué)生動手實驗突出重點,合作交流突破難點。

  二、教學(xué)與學(xué)法分析

  教學(xué)方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導(dǎo)!币虼私處熇脦缀沃庇^提出問題,引領(lǐng)學(xué)生由淺入深的探索,設(shè)計實驗讓學(xué)生進行驗證,感悟其中所蘊涵的思想方法。

  學(xué)法指導(dǎo) 為把學(xué)習(xí)的主動權(quán)還給學(xué)生,教師鼓勵學(xué)生采用動手實踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗知識的形成過程。

  三、教學(xué)過程

  我國數(shù)學(xué)文化源遠流長、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計為以下五個環(huán)節(jié)。

  首先,情境導(dǎo)入 古韻今風(fēng)

  給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進行合作拼圖。(請看視頻)讓學(xué)生觀察并思考三個正方形面積之間的關(guān)系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。

  第二步 追溯歷史 解密真相

  勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學(xué)知識的循序漸進、螺旋上升的原則,我設(shè)計如下三個活動。

  從上面低起點的問題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會想到用“數(shù)格子”的`方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具備局限性。因此教師應(yīng)引領(lǐng)學(xué)生利用“割”和“補”的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了“從特殊到一般”的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的錯誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學(xué)生將展示“割”的方法, “補”的方法,有的學(xué)生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應(yīng)給于表揚,肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問題的能力。

  使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時,改變?nèi)呴L度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時,三邊關(guān)系就改變了,進而強調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時也拓展了學(xué)生的視野。

  以上三個環(huán)節(jié)層層深入步步引領(lǐng),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語言表達能力。

  感性認識未必是正確的,推理驗證證實我們的猜想。

  第三步 推陳出新 借古鼎新

  教材中直接給出“趙爽弦圖”的證法對學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點也是重點,教師應(yīng)給學(xué)生充分的自主探索的時間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出“學(xué)生是學(xué)習(xí)的主體,教師是組織者、引領(lǐng)者與合作者”這一教學(xué)理念。學(xué)生會發(fā)現(xiàn)兩種證明方案。

  方案1為趙爽弦圖,學(xué)生講解論證過程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學(xué)的嚴謹性。對比“古”、“今”兩種證法,讓學(xué)生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學(xué)生的符號意識。

  教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。

  第四步 取其精華 古為今用

  我按照“理解—掌握—運用”的梯度設(shè)計了如下三組習(xí)題。

 。1)對應(yīng)難點,鞏固所學(xué);(2)考查重點,深化新知;(3)解決問題,感受應(yīng)用

  第五步 溫故反思 任務(wù)后延

  在課堂接近尾聲時,我鼓勵學(xué)生從“四基”的要求對本節(jié)課進行小結(jié)。進而總結(jié)出一個定理、二個方案、三種思想、四種經(jīng)驗。

  然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。

  四、教學(xué)評價

  在探究活動中,教師評價、學(xué)生自評與互評相結(jié)合,從而體現(xiàn)評價主體多元化和評價方式的多樣化。

  五、設(shè)計說明

  本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

  采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數(shù)學(xué)文化為主線這一設(shè)計理念,展現(xiàn)了我國古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。

  以上就是我對《勾股定理》這一課的設(shè)計說明,有不足之處請評委老師們指正,謝謝大家。

勾股定理說課稿 篇2

  各位專家老師,上午好,今天我說課的課題是《勾股定理》

  一、教材分析

  (一)本節(jié)內(nèi)容在全書和章節(jié)的地位

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。

 。ǘ┤S教學(xué)目標(biāo)

  【知識與能力目標(biāo)】

  ⒈理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運用勾股定理及其計算;

 、餐ㄟ^觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。

  【過程與方法目標(biāo)】在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。

  【情感態(tài)度與價值觀】通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。

 。ㄈ┙虒W(xué)重點、難點

  【教學(xué)重點】勾股定理的證明與運用

  【教學(xué)難點】用面積法等方法證明勾股定理

  【難點成因】對于勾股定理的得出,首先需要學(xué)生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運用數(shù)學(xué)的思想意識,但學(xué)生在這一方面的可預(yù)見性和耐挫折能力并不是很成熟,從而形成困難。

  【突破措施】

 、眲(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學(xué)生的'問題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進入學(xué)習(xí)過程;

 、沧灾魈剿,敢于猜想:充分讓自己動手操作,大膽猜想數(shù)學(xué)問題的結(jié)論,老師是整個活動的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;

 、硰垞P個性,展示風(fēng)采:實行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調(diào)動了學(xué)生的學(xué)習(xí)積極性。

  二、教法與學(xué)法分析

  【教法分析】數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時代精神;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景-動手操作-歸納驗證-問題解決-課堂小結(jié)-布置作業(yè)”六個方面。

  【學(xué)法分析】新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動手”、“動腦”、“動口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計

 。ㄒ唬﹦(chuàng)設(shè)情景

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  問題的設(shè)計有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。這種以實際問題作為切入點導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

  (二)動手操作

 、闭n件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結(jié)論?

  學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學(xué)生用語言進行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。

 、簿o接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動手操作、合作交流,來獲取知識,這樣設(shè)計有利于突破難點,也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。

  ⒊再問:當(dāng)邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計算。這樣設(shè)計的目的是讓學(xué)生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

 。ㄈw納驗證

  【歸納】通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會“文字語言”與“數(shù)學(xué)語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問題。

  【驗證】先后三次驗證“勾股定理”這一結(jié)論,期間學(xué)生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學(xué)生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也有利于培養(yǎng)學(xué)生嚴謹、科學(xué)的學(xué)習(xí)態(tài)度。

 。ㄋ模﹩栴}解決

 、弊寣W(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會到成功的快樂。

 、沧詫W(xué)課本P101例1,然后完成P102練習(xí)。

 。ㄎ澹┱n堂小結(jié)

  1.小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識的途徑進行小結(jié),后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。

  2.教師用多媒體介紹“勾股定理史話”

 、佟吨荀滤銖健罚何髦艿纳谈撸ü磺Ф嗄昵埃┌l(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

 、诳滴鯏(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。

  目的是對學(xué)生進行愛國主義教育,激勵學(xué)生奮發(fā)向上。

 。┎贾米鳂I(yè)

  課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進一步體會定理與實際生活的聯(lián)系。

  以上內(nèi)容,我僅從“說教材”,“說學(xué)情”、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”.謝謝!

勾股定理說課稿 篇3

  一、 教材分析

  1. 教材的地位和作用

  它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。

  因此他的教育教學(xué)價值就具體體現(xiàn)在如下三維目標(biāo)中:

  知識與技能:

  1、經(jīng)歷勾股定理的探索過程,體會數(shù)形結(jié)合思想。

  2、理解直角三角形三邊的關(guān)系,會應(yīng)用勾股定理解決一些簡單的實際問題。

  過程與方法:

  1、經(jīng)歷觀察—猜想—歸納—驗證等一系列過程,體會數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。

  2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學(xué)生們的數(shù)學(xué)語言表達能力和初步的邏輯推理能力。

  情感、態(tài)度與價值觀:

  1、通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。

  2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生們的合作意識和然所精神。

  3、讓學(xué)生們通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學(xué)習(xí)方式。

  由于八年級的學(xué)生們具有一定分析能力,但活動經(jīng)驗不足,所以

  本節(jié)課教學(xué)重點:勾股定理的探索過程,并掌握和運用它。

  教學(xué)難點:分割,補全法證面積相等,探索勾股定理。

  二..教法學(xué)法分析:

  要上好一堂課,就是要把所確定的三維目標(biāo)有機地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:

  先從學(xué)生們熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生們在自主探究與合作交流中解決問題,同時也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生們自己的課堂。

  學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生們在動手、動腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時讓學(xué)生們感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。

  三、 教學(xué)程序設(shè)計

  1、 故事引入新課,激起學(xué)生們學(xué)習(xí)興趣。

  牛頓,瓦特的故事,讓學(xué)生們科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的'現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達哥拉斯的發(fā)現(xiàn)引入新課。

  2、探索新知

  在這里我設(shè)計了四個內(nèi)容:

 、偬剿鞯妊苯侨切稳叺年P(guān)系

 、谶呴L為3、4、5為邊長的直角三角形的三邊關(guān)系

  ③學(xué)生們畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

 、苋厼閍、b、c的直角三角形的三邊的關(guān)系,(證明)

 、莨垂啥ɡ須v史介紹,讓學(xué)生們體會勾股定理的文化價值。

  體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。

  3、新知運用:

 、倥e出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

 、谠谥苯侨切沃,已知∠ B=90° ,AB=6,BC=8,求AC.

  ③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

 、苋鐖D,學(xué)校有一塊長方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.

  4、小結(jié)本課:

  學(xué)完了這節(jié)課,你有什么收獲?

  老師補充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。

勾股定理說課稿 篇4

  課題:勾股定理

  內(nèi)容:教材分析、教法學(xué)法分析、教學(xué)過程設(shè)計、設(shè)計說明

  一、 教材分析

 。ㄒ唬┙滩乃幍牡匚

  這節(jié)課是華師大九年制義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書八年級總第19章第2節(jié)探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。

 。ǘ└鶕(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

  1、能說出勾股定理的內(nèi)容。

  2、會初步運用勾股定理進行簡單的計算和實際運用。

  3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—歸納—驗證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

  4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。

 。ㄈ┍菊n的教學(xué)重點:探索勾股定理

  本課的教學(xué)難點:以直角三角形為邊的正方形面積的計算。

  二、教法與學(xué)法分析

  教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分。

  學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

  三、 教學(xué)過程設(shè)計

  (一)數(shù)學(xué)史導(dǎo)入

  以畢達哥拉斯發(fā)現(xiàn)勾股定理引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學(xué)化”的過程。

  (二)實驗操作

  1、投影課本圖的有關(guān)直角三角形問題,讓學(xué)生計算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學(xué)生用語言進行表達,引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達能力,體會數(shù)形結(jié)合的思想。

  2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的.以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計不僅有利于突破難點,而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。

  3、給出一個邊長單位為5,12,13,這種含小數(shù)的直角三角形,讓學(xué)生計算是否也滿足這個結(jié)論,設(shè)計的目的是讓學(xué)生體會到結(jié)論更具有一般性。

  (三)歸納驗證

  1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運用數(shù)學(xué)語言進行抽象、概括的能力是有益的,同時發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個結(jié)論要好的多。

  2、驗證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結(jié)論的正確性和廣泛性。這一過程有利于培養(yǎng)學(xué)生嚴謹、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進行愛國主義教育和數(shù)學(xué)文化熏陶。

  (四)問題解決

  讓學(xué)生解決生活中的實際問題,學(xué)生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應(yīng)用,數(shù)學(xué)是與實際生活緊密相連的。

  (五)課堂小結(jié)

  主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進行小結(jié),后由教師總結(jié)。

  (六)布置作業(yè)

  習(xí)題19.2(1-5)

  有興趣的同學(xué)可以查找另外的證明方法,寫出1-2種出來

  四、 設(shè)計說明

  1、本節(jié)課是公式課,根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實驗由特殊到一般再到更一般的對直角三角形三邊關(guān)系的探索和研究,得出結(jié)論。這種一般化的思想方法是認識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。

  3、關(guān)于練習(xí)的設(shè)計,除兩個實際問題和課本習(xí)題以外,還讓有興趣的同學(xué)可以查找另外的證明方法,寫出1-2種出來

  4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識是有很大的裨益的。

勾股定理說課稿 篇5

  一、說教材

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學(xué)重點:勾股定理的證明和應(yīng)用。

  教學(xué)難點:勾股定理的證明。

  二、說教法和學(xué)法

  教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓同學(xué)們主動參與學(xué)習(xí)全過程。

  2、切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:

 。ㄒ唬﹦(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個叫商高的'人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。

  3、板書課題,出示學(xué)習(xí)目標(biāo)。

  (二)初步感知 理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。

 。ㄈ┵|(zhì)疑解難 討論歸納

  1、教師設(shè)疑或?qū)W生提疑。如:如何證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)同學(xué)們的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;

 。1)這兩個圖形有什么特點?

 。2)你能寫出這兩個圖形的面積嗎?

 。3)如何運用勾股定理?是否還有其他形式?

  這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

 。ㄋ模╈柟叹毩(xí) 強化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。

  (五)歸納總結(jié) 練習(xí)反饋

  引導(dǎo)同學(xué)們對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),同學(xué)們獨立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。

勾股定理說課稿 篇6

尊敬的各位評委、老師,大家好!

  我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。

  教材分析:

  如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應(yīng)用。

  勾股定理的發(fā)現(xiàn)、驗證和應(yīng)用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

  新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動的特點,我確定本節(jié)教學(xué)目標(biāo)如下:

  1、探索并利用拼圖證明勾股定理。

  2、利用勾股定理解決簡單的數(shù)學(xué)問題。

  3、感受數(shù)學(xué)文化,體會解決問題方法的多樣性和數(shù)形結(jié)合的思想。

  本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點、難點、關(guān)鍵如下:

  勾股定理的證明和簡單應(yīng)用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。

  為了講清重點、突破難點、抓住關(guān)鍵,使學(xué)生達到預(yù)定目標(biāo),我對教法和學(xué)法分析如下:

  教法分析:

  新課程標(biāo)準(zhǔn)強調(diào)要從學(xué)生已有的經(jīng)驗出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的`數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點和初二學(xué)生的認知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動手操作、講解為中心,讓學(xué)生親歷親為,體會做數(shù)學(xué)的過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅實的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動的時間,以導(dǎo)學(xué)案的形式、運用多媒體輔助教學(xué)。

  學(xué)法分析

  學(xué)法是學(xué)生再生知識的法寶,為了把學(xué)生學(xué)習(xí)過程當(dāng)作認知事物的過程來解決,教學(xué)中我首先引導(dǎo)學(xué)生先動手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來,我讓學(xué)生獨立思考,點撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點,指導(dǎo)學(xué)生嚴謹、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語言表達能力。

  為了充分調(diào)動學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進的設(shè)計教學(xué)流程。

  以學(xué)生必讀課本48—52頁,選讀課本55、56頁的課前預(yù)習(xí)為前提,共分四個環(huán)節(jié)來進行教學(xué)

  1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。

  2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對定理的證明。

  3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個性補充和老師適當(dāng)?shù)膫性化追加的形式實現(xiàn)對定理的靈活應(yīng)用。

  4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識、情感兩方面實現(xiàn)對本節(jié)內(nèi)容的鞏固與升華。

  說創(chuàng)新點:

  為了給學(xué)生營造一個和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學(xué)生都能積極的參與進來,培養(yǎng)學(xué)生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。

  教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個性補充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。

  以學(xué)生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時間;同時,我注重對學(xué)生進行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時由“勾股樹”到“智慧樹”的希望寄語。

【勾股定理說課稿】相關(guān)文章:

《勾股定理》的說課稿06-08

《勾股定理》說課稿12-16

勾股定理說課稿02-11

勾股定理說課稿07-05

探索《勾股定理》說課稿01-04

探索勾股定理說課稿12-06

《勾股定理》優(yōu)秀說課稿01-21

探索勾股定理說課稿11-04

勾股定理的逆定理說課稿06-25

勾股定理說課稿精選15篇06-10