當(dāng)前位置:育文網(wǎng)>教學(xué)文檔>說(shuō)課稿> 勾股定理說(shuō)課稿

勾股定理說(shuō)課稿

時(shí)間:2022-02-02 13:20:15 說(shuō)課稿 我要投稿

勾股定理說(shuō)課稿范文錦集七篇

  作為一名人民教師,通常需要用到說(shuō)課稿來(lái)輔助教學(xué),說(shuō)課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么大家知道正規(guī)的說(shuō)課稿是怎么寫的嗎?以下是小編收集整理的勾股定理說(shuō)課稿7篇,希望能夠幫助到大家。

勾股定理說(shuō)課稿范文錦集七篇

勾股定理說(shuō)課稿 篇1

  課題:“勾股定理”第一課時(shí)

  內(nèi)容:教材分析、教學(xué)過(guò)程設(shè)計(jì)、設(shè)計(jì)說(shuō)明

  一、教材分析

 。ㄒ唬┙滩乃幍牡匚

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

  (二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

  1、能說(shuō)出勾股定理的內(nèi)容。

  2、會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。

  3、在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

  4、通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

 。ㄈ┍菊n的教學(xué)重點(diǎn):探索勾股定理

  本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。

  二、教法與學(xué)法分析:

  教法分析:針對(duì)初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分。

  學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

  三、教學(xué)過(guò)程設(shè)計(jì)

 。ㄒ唬┨岢鰡(wèn)題:

  首先創(chuàng)設(shè)這樣一個(gè)問(wèn)題情境:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?問(wèn)題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問(wèn)題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程。

  (二)實(shí)驗(yàn)操作:

  1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的'面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)及有幫助。

  3、給出一個(gè)邊長(zhǎng)為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。

 。ㄈw納驗(yàn)證:

  1、歸納通過(guò)對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。

  2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)測(cè)量、計(jì)算來(lái)驗(yàn)證結(jié)論的正確性。這一過(guò)程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育。

 。ㄋ模﹩(wèn)題解決:

  讓學(xué)生解決開頭的實(shí)際問(wèn)題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。

 。ㄎ澹┱n堂小結(jié):

  主要通過(guò)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。

 。┎贾米鳂I(yè):

  課本P6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開放題。

  四、設(shè)計(jì)說(shuō)明

  1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。

  3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問(wèn)題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。

  4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開,既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。

勾股定理說(shuō)課稿 篇2

  尊敬的各位評(píng)委、老師,您們好,我是臨沂市蒼山縣實(shí)驗(yàn)中學(xué)的宋寧。今天我說(shuō)課的內(nèi)容是人教版《數(shù)學(xué)》八年級(jí)下冊(cè)第十八章第一節(jié)《勾股定理》第一課時(shí),我將從教材、教法與學(xué)法、教學(xué)過(guò)程、教學(xué)評(píng)價(jià)以及設(shè)計(jì)說(shuō)明五個(gè)方面來(lái)闡述對(duì)本節(jié)課的理解與設(shè)計(jì)。

  一、教材分析:

  (一) 教材的地位與作用

  從知識(shí)結(jié)構(gòu)上看百度一下,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

  從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;

  勾股定理又是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育的良好素材,因此具備相當(dāng)重要的地位和作用。

  根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問(wèn)題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久文化的情感。

  (二)重點(diǎn)與難點(diǎn)

  為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過(guò)程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引領(lǐng)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。

  二、教學(xué)與學(xué)法分析

  教學(xué)方法 葉圣陶說(shuō)過(guò)“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)!币虼私處熇脦缀沃庇^提出問(wèn)題,引領(lǐng)學(xué)生由淺入深的`探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

  學(xué)法指導(dǎo) 為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過(guò)程。

  三、教學(xué)過(guò)程

  我國(guó)數(shù)學(xué)文化源遠(yuǎn)流長(zhǎng)、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計(jì)為以下五個(gè)環(huán)節(jié)。

  首先,情境導(dǎo)入 古韻今風(fēng)

  給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。(請(qǐng)看視頻)讓學(xué)生觀察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了什么三角形?反映在三邊上,又蘊(yùn)含著什么數(shù)學(xué)奧秘呢?寓教于樂(lè),激發(fā)學(xué)生好奇、探究的欲望。

  第二步 追溯歷史 解密真相

  勾股定理的探索過(guò)程是本節(jié)課的重點(diǎn),依照數(shù)學(xué)知識(shí)的循序漸進(jìn)、螺旋上升的原則,我設(shè)計(jì)如下三個(gè)活動(dòng)。

  從上面低起點(diǎn)的問(wèn)題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長(zhǎng)之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計(jì)算更具說(shuō)服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會(huì)想到用“數(shù)格子”的方法,這種方法雖然簡(jiǎn)單易行,但對(duì)于下一步探索一般直角三角形并不適用,具備局限性。因此教師應(yīng)引領(lǐng)學(xué)生利用“割”和“補(bǔ)”的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。

  突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了“從特殊到一般”的認(rèn)知規(guī)律。教師給出邊長(zhǎng)單位長(zhǎng)度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準(zhǔn)確而產(chǎn)生的錯(cuò)誤,也為下面 “勾三股四弦五”的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點(diǎn)。在求正方形C的面積時(shí),學(xué)生將展示“割”的方法, “補(bǔ)”的方法,有的學(xué)生可能會(huì)發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對(duì)于這兩種新方法教師應(yīng)給于表?yè)P(yáng),肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問(wèn)題的能力。

  使用幾何畫板動(dòng)態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時(shí),改變?nèi)呴L(zhǎng)度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時(shí),三邊關(guān)系就改變了,進(jìn)而強(qiáng)調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對(duì)勾股定理理解的同時(shí)也拓展了學(xué)生的視野。

  以上三個(gè)環(huán)節(jié)層層深入步步引領(lǐng),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語(yǔ)言表達(dá)能力。

  感性認(rèn)識(shí)未必是正確的,推理驗(yàn)證證實(shí)我們的猜想。

  第三步 推陳出新 借古鼎新

  教材中直接給出“趙爽弦圖”的證法對(duì)學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應(yīng)給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對(duì)于不同的拼圖方案給予肯定。從而體現(xiàn)出“學(xué)生是學(xué)習(xí)的主體,教師是組織者、引領(lǐng)者與合作者”這一教學(xué)理念。學(xué)生會(huì)發(fā)現(xiàn)兩種證明方案。

  方案1為趙爽弦圖,學(xué)生講解論證過(guò)程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過(guò)程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過(guò)程,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。對(duì)比“古”、“今”兩種證法,讓學(xué)生體會(huì)“吹盡黃沙始到金”的喜悅,感受到“青出于藍(lán)而勝于藍(lán)”的自豪感。板書勾股定理,進(jìn)而給出字母表示,培養(yǎng)學(xué)生的符號(hào)意識(shí)。

  教師對(duì)“勾、股、弦”的含義以及古今中外對(duì)勾股定理的研究做一個(gè)介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛(ài)國(guó)主義精神。利用勾股樹動(dòng)態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。

  第四步 取其精華 古為今用

  我按照“理解—掌握—運(yùn)用”的梯度設(shè)計(jì)了如下三組習(xí)題。

 。1)對(duì)應(yīng)難點(diǎn),鞏固所學(xué);(2)考查重點(diǎn),深化新知;(3)解決問(wèn)題,感受應(yīng)用

  第五步 溫故反思 任務(wù)后延

  在課堂接近尾聲時(shí),我鼓勵(lì)學(xué)生從“四基”的要求對(duì)本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗(yàn)。

  然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。

  四、教學(xué)評(píng)價(jià)

  在探究活動(dòng)中,教師評(píng)價(jià)、學(xué)生自評(píng)與互評(píng)相結(jié)合,從而體現(xiàn)評(píng)價(jià)主體多元化和評(píng)價(jià)方式的多樣化。

  五、設(shè)計(jì)說(shuō)明

  本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

  采用 “七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。

  以上就是我對(duì)《勾股定理》這一課的設(shè)計(jì)說(shuō)明,有不足之處請(qǐng)?jiān)u委老師們指正,謝謝大家。

勾股定理說(shuō)課稿 篇3

  一、 說(shuō)教材分析

  1. 教材的地位和作用

  華師大版八年級(jí)上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展中起著重要的作用。

  因此他的教育教學(xué)價(jià)值就具體體現(xiàn)在如下三維目標(biāo)中:

  知識(shí)與技能:

  1、經(jīng)歷勾股定理的探索過(guò)程,體會(huì)數(shù)形結(jié)合思想。

  2、理解直角三角形三邊的關(guān)系,會(huì)應(yīng)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  過(guò)程與方法:

  1、經(jīng)歷觀察—猜想—?dú)w納—驗(yàn)證等一系列過(guò)程,體會(huì)數(shù)學(xué)定理發(fā)現(xiàn)的過(guò)程,由特殊到一般的解決問(wèn)題的方法。

  2、在觀察、猜想、歸納、驗(yàn)證等過(guò)程中培養(yǎng)學(xué)生的數(shù)學(xué)語(yǔ)言表達(dá)能力和初步的邏輯推理能力。

  情感、態(tài)度與價(jià)值觀:

  1、通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。

  2、在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生的合作意識(shí)和然所精神。

  3、讓學(xué)生通過(guò)動(dòng)手實(shí)踐,增強(qiáng)探究和創(chuàng)新意識(shí),體驗(yàn)研究過(guò)程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動(dòng)的,自助合作探究的學(xué)習(xí)方式。

  由于八年級(jí)的學(xué)生具有一定分析能力,但活動(dòng)經(jīng)驗(yàn)不足,所以

  本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過(guò)程,并掌握和運(yùn)用它。

  教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。

  二、說(shuō)教法學(xué)法分析:

  要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過(guò)程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:

  先從學(xué)生熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問(wèn)題,同時(shí)也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。

  學(xué)法:我想通過(guò)“操作+思考”這樣方式,有效地讓學(xué)生在動(dòng)手、動(dòng)腦、自主探究與合作交流中來(lái)發(fā)現(xiàn)新知,同時(shí)讓學(xué)生感悟到:學(xué)習(xí)任何知識(shí)的最好方法就是自己去探究。

  三、 說(shuō)教學(xué)程序設(shè)計(jì)

  1、 故事引入新課,激起學(xué)生學(xué)習(xí)興趣。

  牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。

  2、探索新知

  在這里我設(shè)計(jì)了四個(gè)內(nèi)容:

 、偬剿鞯妊苯侨切稳叺年P(guān)系

 、谶呴L(zhǎng)為3、4、5為邊長(zhǎng)的直角三角形的三邊關(guān)系

 、蹖W(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

 、苋厼閍、b、c的直角三角形的三邊的關(guān)系,(證明)

 、莨垂啥ɡ須v史介紹,讓學(xué)生體會(huì)勾股定理的文化價(jià)值。

  體現(xiàn)從特殊到一般的發(fā)現(xiàn)問(wèn)題的過(guò)程。

  3、新知運(yùn)用:

  ①舉出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)

 、谠谥苯侨切沃校阎 B=90° ,AB=6,BC=8,求AC.

 、垡鲆粋(gè)人字梯,要求人字梯的跨度為6米,高為4米,請(qǐng)問(wèn)怎么做?

 、苋鐖D,學(xué)校有一塊長(zhǎng)方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.

  4、小結(jié)本課:

  學(xué)完了這節(jié)課,你有什么收獲?

  老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。數(shù)學(xué)來(lái)源于實(shí)踐,而又應(yīng)用于實(shí)踐。解決一個(gè)問(wèn)題的.方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。

  反思:

  教學(xué)設(shè)計(jì)主要是體現(xiàn)從特殊到一般的知識(shí)形成過(guò)程,探索問(wèn)題的設(shè)計(jì)上有點(diǎn)難,第二個(gè)問(wèn)題應(yīng)加個(gè)3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補(bǔ)全,這樣過(guò)度,降低3,4為直角邊的探索探索;在2,6為直角邊時(shí),這個(gè)問(wèn)題可以不用設(shè)計(jì)進(jìn)去,就為后面的練習(xí)留足時(shí)間。探索時(shí)間較長(zhǎng),整個(gè)課程推行進(jìn)度較慢,練習(xí)較少。

  對(duì)學(xué)生的啟發(fā)不夠,對(duì)學(xué)生的關(guān)注不夠,學(xué)生對(duì)問(wèn)題的思考不能及時(shí)想出來(lái),沒(méi)有及時(shí)很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時(shí)交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因?yàn)閱?wèn)題設(shè)計(jì)的較難,沒(méi)有很好的體現(xiàn)出探究。

  預(yù)期的目標(biāo)沒(méi)有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒(méi)有點(diǎn)燃,思維能力,動(dòng)手能力,探索精神沒(méi)有很好的得到發(fā)展。

勾股定理說(shuō)課稿 篇4

  尊敬的各位評(píng)委:

  您們好!我來(lái)自明光市張八嶺中學(xué)。今天我說(shuō)課的課題是《勾股定理》。本課選自九年義務(wù)教育滬科版八年級(jí)下冊(cè)初中數(shù)學(xué)第十九章第一節(jié)的第一課時(shí)。

  下面我從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面對(duì)本課的設(shè)計(jì)進(jìn)行說(shuō)明。

  一、教學(xué)背景分析

  1、教材分析

  本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過(guò)一枚1955年由希臘發(fā)行的郵票上圖案的故事,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問(wèn)題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),同時(shí)在實(shí)際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來(lái),它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學(xué)情分析

  學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識(shí),如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過(guò)不少利用圖形面積來(lái)探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。

  3、教學(xué)目標(biāo):

  根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

  知識(shí)與技能:了解勾股定理的發(fā)現(xiàn)過(guò)程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問(wèn)題總結(jié)規(guī)律的意識(shí)和能力.

  過(guò)程與方法:在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。

  情感態(tài)度價(jià)值觀:感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

  4、教學(xué)重點(diǎn)、難點(diǎn)

  通過(guò)研究分析可見(jiàn),勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)重點(diǎn)為勾股定理的證明與運(yùn)用,教學(xué)難點(diǎn)為用面積法證明勾股定理

  二、教材處理

  根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過(guò)程中,我先以數(shù)學(xué)史中的一個(gè)有趣的故事來(lái)激發(fā)學(xué)生學(xué)習(xí)興趣,運(yùn)用直觀教具、多媒體等手段,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問(wèn)題,分析問(wèn)題,進(jìn)而解決問(wèn)題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

  三、教學(xué)策略

  1、教法

  “教必有法,而教無(wú)定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級(jí)學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

  2、學(xué)法

  “授人以魚,不如授人以漁”,通過(guò)設(shè)計(jì)問(wèn)題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  3、教學(xué)手段

  充分利用多媒體,提高教學(xué)效率,增大教學(xué)容量;通過(guò)多媒體演示,激發(fā)學(xué)生學(xué)習(xí)興趣,啟迪學(xué)生思維的發(fā)展;通過(guò)直觀教具,進(jìn)行動(dòng)手操作,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的廣闊性。

  4、教學(xué)模式

  根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。

  四、教學(xué)流程

 。ㄒ唬﹦(chuàng)設(shè)情境,引入新課(時(shí)長(zhǎng)2~3分鐘)

  我利用多媒體課件,給學(xué)生展示一枚1955年由希臘發(fā)行的郵票,并問(wèn)學(xué)生是否想聽這枚郵票背后的故事?

  在20xx多年前,古希臘有一位著名的數(shù)學(xué)家——畢達(dá)哥拉斯,有次參加一位政要人物邀請(qǐng)的餐會(huì),這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀察和理解的數(shù)學(xué)家卻凝視腳下這些排列規(guī)則,美麗的方形瓷磚,畢達(dá)哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數(shù)”之間的關(guān)系,于是他拿了畫筆并且蹲在地板上,選了一塊瓷磚以它的對(duì)角線為邊畫了一個(gè)大正方形,同學(xué)們,你們知道他發(fā)現(xiàn)了什么嗎?

  對(duì)學(xué)生的回答進(jìn)行引導(dǎo),梳理,總結(jié),可以得到有關(guān)三個(gè)正方形面積的結(jié)論。進(jìn)而引入本節(jié)課的標(biāo)題:19.1 勾股定理(板書)

  (以小故事激發(fā)學(xué)生的興趣,隨后以開放式的問(wèn)題形式,讓學(xué)生觀察猜想。本環(huán)節(jié)體現(xiàn)了人文關(guān)懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)

  (二)引導(dǎo)學(xué)生,探究新知(教學(xué)時(shí)長(zhǎng)15~20分鐘)

  1、初步感知定理:

 。1)用什么方法來(lái)探求:勾股定理即直角三角形三邊數(shù)量關(guān)系呢?

  回憶我們?cè)?jīng)利用圖形面積探索過(guò)數(shù)學(xué)公式,大家還記得在哪用過(guò)嗎?

 。▽W(xué)生討論)

  課件展示:平方差公式、完全平方公式、單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式的引出.

  今天,讓我們?cè)囈辉囃ㄟ^(guò)計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系. (從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長(zhǎng)之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺(jué)得解決今天問(wèn)題的`方法并不陌生,增強(qiáng)探索問(wèn)題的信心.)

  (2)展示課本上圖19—1和圖19—2(1)的圖形,觀察圖中三個(gè)正方形有什么關(guān)系?

  讓學(xué)生通過(guò)觀察,計(jì)算出三個(gè)正方形的面積可以發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AB。

 。ㄟ@樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。)

 。3)緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學(xué)生可以同樣求出兩個(gè)小正方形面積,只是求大正方形的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。

  給出書中的定理(板書)并用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進(jìn)而給出字母表達(dá)式.

  通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。

  2、證明結(jié)論(教學(xué)時(shí)長(zhǎng)8~10分鐘):

  出示書中圖19—3,與學(xué)生共同分析證明并板書過(guò)程。通過(guò)給出定理的證明過(guò)程讓學(xué)生體會(huì)到數(shù)學(xué)知識(shí)從特殊性到一般性,并對(duì)一般性結(jié)論進(jìn)行論證的嚴(yán)謹(jǐn)性。

  3、勾股定理簡(jiǎn)介:(教學(xué)時(shí)長(zhǎng)1~2分鐘)

  借助多媒體課件,通過(guò)介紹古代在勾股定理研究方面取得的成就,感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體會(huì)古人偉大的智慧。

 。ㄈ┓答佊(xùn)練,鞏固新知(教學(xué)時(shí)長(zhǎng)6~8分鐘)

  讓學(xué)生完成兩項(xiàng)任務(wù):

  任務(wù)一:教材練習(xí)第一題;

  任務(wù)二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?

  2,?ABC中c為最長(zhǎng)邊,a=3,b=4,則c=?

  任務(wù)一和任務(wù)二中第一題都是基礎(chǔ)題,對(duì)于任務(wù)二中第二題是提高題,對(duì)于做錯(cuò)的學(xué)生進(jìn)行引導(dǎo)讓其思考,再告知錯(cuò)誤的原因。通過(guò)練習(xí),讓學(xué)生更好的體會(huì)到,勾股定理揭示的是直角三角形三邊之間的數(shù)量關(guān)系,讓學(xué)生能夠更好的將數(shù)與形緊密聯(lián)系起來(lái)進(jìn)行思考。

 。ㄋ模w納小結(jié),深化新知(教學(xué)時(shí)長(zhǎng)1~2分鐘)

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問(wèn)題是什么???

  通過(guò)小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。

 。ㄎ澹┎贾米鳂I(yè),拓展新知(教學(xué)時(shí)長(zhǎng)1~2分鐘)

  讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

 。┌鍟O(shè)計(jì),明確新知

  本節(jié)課的板書設(shè)計(jì),它分為三塊:一塊是復(fù)習(xí)引入,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)。

  以上內(nèi)容,我僅從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面說(shuō)明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對(duì)本次說(shuō)課提出寶貴的意見(jiàn),謝謝!

勾股定理說(shuō)課稿 篇5

  一、教材分析:

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。

  教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  二、教學(xué)重點(diǎn):

  勾股定理的證明和應(yīng)用。

  三、教學(xué)難點(diǎn):

  勾股定理的證明。

  四、教法和學(xué)法:

  教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

  以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。

  切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

  通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  五、教學(xué)程序

  :本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

  (一)創(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。

  3、板書課題,出示學(xué)習(xí)目標(biāo)。

  (二)初步感知 理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

  (三)質(zhì)疑解難、討論歸納:

  1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的`表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

 。1)這兩個(gè)圖形有什么特點(diǎn)?

 。2)你能寫出這兩個(gè)圖形的面積嗎?

 。3)如何運(yùn)用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。

  (四)鞏固練習(xí) 強(qiáng)化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

  (五)歸納總結(jié) 練習(xí)反饋

  引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂(lè)學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理說(shuō)課稿 篇6

  一、 教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第一節(jié)《探索勾股定理》第一課時(shí),它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo)

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題.

  過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

 。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

  二、教法與學(xué)法分析:

  學(xué)情分析:八年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合八年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

  三、 教學(xué)過(guò)程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  2.實(shí)驗(yàn)操作,模型構(gòu)建

  3.回歸生活,應(yīng)用新知

  4.知識(shí)拓展,鞏固深化5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問(wèn)題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 20xx年國(guó)際數(shù)學(xué) 的一枚紀(jì)念郵票 大會(huì)會(huì)標(biāo) 設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

  (2) 某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié).

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)

  2.一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高.

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律.

  三.回歸生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的`樂(lè)趣和信心.

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題.

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

  基礎(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè): 李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿 1、課本習(xí)題2.1 2、搜集有關(guān)勾股定理證明的資料.

  板書設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿

  設(shè)計(jì)說(shuō)明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.

勾股定理說(shuō)課稿 篇7

  一、 教材分析

  (一)教材地位

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

  (二)教學(xué)目標(biāo)

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。

  過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

  (三)教學(xué)重點(diǎn):

  經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:八年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合八年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、 教學(xué)過(guò)程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,提出問(wèn)題

  2、實(shí)驗(yàn)操作,模型構(gòu)建

  3、回歸生活,應(yīng)用新知

  4、知識(shí)拓展,鞏固深化5。感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問(wèn)題

  樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6。5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2。5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié)。

  實(shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的.面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。

  回歸生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心。

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè):

  這節(jié)課你的收獲是什么?

  1、課本習(xí)題2。1

  2、搜集有關(guān)勾股定理證明的資料。

  板書設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿

  設(shè)計(jì)說(shuō)明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2、讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平。

【勾股定理說(shuō)課稿】相關(guān)文章:

勾股定理說(shuō)課稿02-11

《勾股定理》說(shuō)課稿12-16

《勾股定理》的說(shuō)課稿06-08

勾股定理說(shuō)課稿07-05

《勾股定理》優(yōu)秀說(shuō)課稿01-21

探索勾股定理說(shuō)課稿12-06

探索《勾股定理》說(shuō)課稿01-04

探索勾股定理說(shuō)課稿11-04

精選勾股定理說(shuō)課稿四篇01-13

【精選】勾股定理說(shuō)課稿四篇01-10