當前位置:育文網>教學文檔>說課稿> 勾股定理說課稿

勾股定理說課稿

時間:2022-02-02 16:11:51 說課稿 我要投稿

勾股定理說課稿范文錦集十篇

  作為一名辛苦耕耘的教育工作者,就有可能用到說課稿,借助說課稿我們可以快速提升自己的教學能力。我們該怎么去寫說課稿呢?以下是小編精心整理的勾股定理說課稿10篇,希望能夠幫助到大家。

勾股定理說課稿范文錦集十篇

勾股定理說課稿 篇1

  一、教材分析

  (一)教材所處的地位

  這節(jié)課是九年制義務教育課程標準實驗教科書八年級第十八章第一節(jié)勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

  (二)根據(jù)課程標準,本課的教學目標是:

  1、知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程。

  2、數(shù)學思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結合的思想。

  3、解決問題:①通過拼圖活動,體驗數(shù)學思維的嚴謹性,發(fā)展形象思維。

  ②在探究過程中,學會與人合作并能與他人交流思維的過程和探究的結果。

  4、情感態(tài)度:①通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激發(fā)學生發(fā)奮學習。

 、谠谔骄窟^程中,體驗解決問題方法的多樣性,培養(yǎng)學生的`合作交流意識和探索精神。

  (三)本課的教學重點:探索和證明勾股定理

  本課的教學難點:用拼圖的方法證明勾股定理

  二、教法與學法分析:

  教法分析:針對八年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題實驗操作歸納驗證問題解決鞏固練習課堂小結 布置作業(yè)七部分。

  學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。

  三、教學過程設計

  (一)提出問題:

  首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設問題情境,20xx年在北京召開了第24屆國際數(shù)學家大會,它是最高水平的全球性數(shù)學科學學術會議,被譽為數(shù)學界的奧運會,這就是本屆大會會徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學生的求知欲。

  其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生的學習興趣,激發(fā)學生的求知欲。

勾股定理說課稿 篇2

  一、 教材分析

 。ㄒ唬┙滩牡匚慌c作用

  勾股定理它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 。ǘ┙虒W目標 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。 情感態(tài)度與價值觀: 激發(fā)愛國熱情,體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。

 。ㄈ┙虒W重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的'辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析:

  學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、 教學過程設計

  1、創(chuàng)設情境,提出問題 2、實驗操作,模型構建 3、回歸生活,應用新知 4、知識拓展,鞏固深化5、感悟收獲,布置作業(yè)

  (一)創(chuàng)設情境提出問題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數(shù)學的一枚紀念郵票 大會會標

  設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值。

  (2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié)。

  二、實驗操作模型構建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系? 設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結勾股定理。

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律。

  三;貧w生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。

  基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境 ,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。

  探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè):1、課本習題2、1

  2、搜集有關勾股定理證明的資料。

  板書設計 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2

  設計說明:1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法.

  2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平。

勾股定理說課稿 篇3

  一、教材分析

  勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大,我們的教材在編寫時注意培養(yǎng)大家的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。

  據(jù)此,制定教學目標如下:

  1、理解并且掌握勾股定理及其證明。

  2、能夠靈活地運用勾股定理及其計算。

  3、主要就是培養(yǎng)學生觀察、比較、分析、推理的能力。

  4、通過介紹我們中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學重點:

  勾股定理的證明和應用。

  教學難點:

  勾股定理的證明。

  二、教法和學法

  教法和學法是體現(xiàn)在整個教學過程中的,本課的教法和學法體現(xiàn)如下特點:

  1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

  2、切實體現(xiàn)學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

  三、教學程序

  本節(jié)內容的教學主要體現(xiàn)在學生動手、動腦方面,根據(jù)學生的認知規(guī)律和學習心理,教學程序設計如下:

  (一)創(chuàng)設情境 以古引新

  1、由故事引入,3000多年前有個叫商高的'人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5,小學數(shù)學教案《數(shù)學 - 勾股定理說課稿》。這樣引起學生學習興趣,激發(fā)學生求知欲。

  2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態(tài)。

  3、板書課題,出示學習目標。

 。ǘ┏醪礁兄 理解教材

  教師指導學生自學教材,通過自學感悟理解新知,體現(xiàn)了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。

  (三)質疑解難 討論歸納

  1、教師設疑或學生提疑。如:

  怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現(xiàn)欲。

  2、教師引導學生按照要求進行拼圖,觀察并分析;

 。1)這兩個圖形有什么特點?

 。2)你能寫出這兩個圖形的面積嗎?

  (3)如何運用勾股定理?是否還有其他形式?

  這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

 。ㄋ模╈柟叹毩 強化提高

  1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。

  2、出示例1學生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習,進一步提高學生運用知識的能力,對練習中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

 。ㄎ澹w納總結 練習反饋

  引導學生對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。

  本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的師生關系。加強師生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。

勾股定理說課稿 篇4

  各位專家老師,上午好,今天我說課的課題是《勾股定理》

  一、教材分析

 。ㄒ唬┍竟(jié)內容在全書和章節(jié)的地位

  這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關系,它可以解決直角三角形的主要依據(jù)之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進行運用。

 。ǘ┤S教學目標

  【知識與能力目標】

  ⒈理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

 、餐ㄟ^觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。

  【過程與方法目標】在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數(shù)學思想,并體會數(shù)形結合和從特殊到一般的思想方法。

  【情感態(tài)度與價值觀】通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。

 。ㄈ┙虒W重點、難點

  【教學重點】勾股定理的證明與運用

  【教學難點】用面積法等方法證明勾股定理

  【難點成因】對于勾股定理的得出,首先需要學生通過動手操作,在觀察的基礎上,大膽猜想數(shù)學結論,而這需要學生具備一定的分析、歸納的思維方法和運用數(shù)學的思想意識,但學生在這一方面的可預見性和耐挫折能力并不是很成熟,從而形成困難。

  【突破措施】

 、眲(chuàng)設情景,激發(fā)思維:創(chuàng)設生動、啟發(fā)性的問題情景,激發(fā)學生的問題沖突,讓學生在感到“有趣”、“有意思”的狀態(tài)下進入學習過程;

 、沧灾魈剿,敢于猜想:充分讓自己動手操作,大膽猜想數(shù)學問題的結論,老師是整個活動的組織者,更是一位參入者,學生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;

 、硰垞P個性,展示風采:實行“小組合作制”,各小組中自己推薦一人擔任“發(fā)言人”,一人擔任“書記員”,在討論結束后,由小組的“發(fā)言人”匯報本小組的討論結果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價。這樣既保證討論的有效性,也調動了學生的學習積極性。

  二、教法與學法分析

  【教法分析】數(shù)學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科,因此在教學中,不僅要使學生“知其然”,而且還要使學生“知其所以然”。針對初二年級學生的`認知結構和心理特征,本節(jié)課可選擇“引導探索法”,由淺到深,由特殊到一般的提出問題。引導學生自主探索,合作交流,這種教學理念緊隨新課改理念,也反映了時代精神;镜慕虒W程序是“創(chuàng)設情景-動手操作-歸納驗證-問題解決-課堂小結-布置作業(yè)”六個方面。

  【學法分析】新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用自主探索,合作交流的研討式學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。

  三、教學過程設計

 。ㄒ唬﹦(chuàng)設情景

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  問題的設計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉化為數(shù)學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數(shù)學來源于生活”,學習數(shù)學是為更好“服務于生活”。

 。ǘ﹦邮植僮

 、闭n件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

  學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現(xiàn)SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

 、簿o接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。

 、吃賳枺寒斶呴L不為整數(shù)的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

 。ㄈw納驗證

  【歸納】通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數(shù)學的樂趣,,使學生學會“文字語言”與“數(shù)學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。

  【驗證】先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數(shù)形結合和從特殊到一般的數(shù)學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。

  (四)問題解決

 、弊寣W生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

  ⒉自學課本P101例1,然后完成P102練習。

  (五)課堂小結

  1.小組成員從內容、數(shù)學思想方法、獲取知識的途徑進行小結,后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現(xiàn)最佳。

  2.教師用多媒體介紹“勾股定理史話”

 、佟吨荀滤銖健罚何髦艿纳谈撸ü磺Ф嗄昵埃┌l(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

 、诳滴鯏(shù)學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。

  目的是對學生進行愛國主義教育,激勵學生奮發(fā)向上。

  (六)布置作業(yè)

  課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯(lián)系。

  以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”.謝謝!

勾股定理說課稿 篇5

  尊敬的各位領導、各位老師,大家好:

  我叫李朝紅,是第十四中學的一名教師。我今天說課的題目《勾股定理的逆定理》,選自人教課標實驗版教科書數(shù)學八年級下冊第十八章第二節(jié),本節(jié)課共分兩個課時,我今天分析的是第一個課時,下面我將從教材、教法學法、教學過程、教學反思四個方面進行闡述。

  一、教材分析

  1、教材的地位和作用:

  在學習本節(jié)課之前學生已經學習了勾股定理,全等三角形的判定等相關知識,為本節(jié)課的學習打好了基礎,學習好本節(jié)課不但可以鞏固學生已有的知識,而且為后面利用勾股定理的逆定理判斷一個三角形是否直角三角形等相關知識的學習做好了鋪墊。

  2、教學目標

  教學目標支配著教學過程,教學目標的制定和落實是實施課堂教學的關鍵?紤]到學生已有的認知結構心理特征及本班學生的實際情況,我制定了如下教學目標

  知識與技能:掌握勾股定理的逆定理,會用勾股定理的逆定理判斷一個三角形是否直角三角形。

  過程與方法:通過對勾股定理的逆定理的探索,經歷知識的發(fā)生、發(fā)展與形成

  過程,體會數(shù)形結合和由特殊到一般的數(shù)學思想,進一步提高學生分析問題、解決問題的能力。

  情感、態(tài)度、價值觀:在探究勾股定理的逆定理的活動中,滲透與他人交流、合作的意識和探究精神.

  3、重點難點

  本著課程標準,在吃透教材的基礎上,我確立了如下的教學重、難點

  重點:理解并掌握勾股定理的逆定理,并會應用。

  難點:理解勾股定理的逆定理的推導。

  二、教法學法分析

  八年級學生的特點是思維比較活躍,喜歡發(fā)表自己的見解,善于進行小組合作學習,所以我將采用啟發(fā)教學與誘導教學相結合的方法,老師為主導,學生為主體,充分調動學生的學習積極性,讓學生動手操作,動腦思考,動口表達,積極參與到本節(jié)課的教學過程中來,在鍛煉學生思考、觀察、實踐能力的同時,使其科學文化修養(yǎng)與思想道德修養(yǎng)進一步提升。

  教法學法分析完畢,我再來分析一下教學過程,這是我本次說課的重點。

  三、教學過程分析:

 。ㄒ唬﹦(chuàng)設情景,引入新課

  1、展示圖片:古埃及人制作直角的方法

  2、讓學生試一試用一根繩子確定直角

  設計意圖:通過古埃及人制作直角的方法,提出讓學生動手操作,進而使學生產生好奇心:“這樣就能確定直角嗎”,激發(fā)學生的求知欲,點燃其學習的激情,充分調動學生的學習積極性 ,同時也使學生感受到幾何來源于生活,服務于生活的道理,體會數(shù)學的價值。

 。ǘ﹦邮謾z測,提出假設

  在本環(huán)節(jié)中通過情境中的問題,引導學生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm

  上面三組線段為邊畫出三角形,猜測驗證出其形狀。

  再引導啟發(fā)誘導學生從上面的活動中歸納思考:如果一個三角形的三邊a,b,c滿足a2+b2=c2,那這個三角形是直角三角形嗎?在整個過程的活動中,盡量給學生足夠的時間和空間,以平等身份參與到學生活動中來,對其實踐活動予以指導。讓學生通過作圖、測量等實踐活動,給出合理的假設與猜測。整個環(huán)節(jié)通過設置的問題串,引導學生動手、動腦、動口相結合,激活學生的思維,培養(yǎng)學生嚴謹?shù)目茖W態(tài)度,合理的推測能力,嚴密的邏輯思維能力和靈活的動手實踐能力。

  (三) 探索歸納,證明假設:

  勾股定理逆定理的證明與以往不同,需要構造直角三角形才能完成,如何構造直角三角形就成為解決問題的關鍵。如果直接將問題拋給學生證明,他們定會無從下手,所以為了解決這一問題,突破這個難點,我先

  1、 讓學生畫了一個三邊長度為3cm,4cm,5cm的三角形和一個以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個三角形上看出現(xiàn)了什么情況?并請學生簡單說明理由。通過操作驗證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,

  2、 然后在黑板上畫一個三邊長為a、b、c,且滿足 a2+b2=c2的△ABC,與一個以a、b為直角邊的直角三角形,讓學生觀察它們之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

  在這個過程中,首先讓學生從特殊的實例中動手操作到證明,學生自然地聯(lián)想到了全等三角形的判定,進而由特殊到一般發(fā)現(xiàn)三邊長為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關系。

  設計意圖:讓學生從特殊的實例動手到證明,進而由特殊到一般,順利地利用構建法證明了勾股定理的逆定理,整個過程自然、無神秘感,實現(xiàn)從直觀印象向抽象思維的'轉化,同時學生親身體會了“操作——觀察——猜測——探索——論證”的過程,體驗了“特殊到一般,個性到共性”的偉大數(shù)學思想在實際中的應用。

  這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

  (四)學以致用、鞏固提升

  本著由淺入深的原則,安排了三個題。第一題比較簡單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學生仿照課本上的例題,獨立完成,教師提醒書寫格式。并說明像15,8,17能夠成為直角三角形的三條邊長的正整數(shù),我們稱為勾股數(shù)。第二題我改變題的形式,把一些符合a+b=c的三角形放入網格中讓學生運用勾股定理及其逆定理來說明理由。第三題是求一個不規(guī)則四邊形的面積,讓學生思考如何添加輔助線,把它分成一個直角三角形和一個非直角但能判定是直角的三角形,讓學生運用勾股定理及其逆定理證明并求解。

  設計意圖:采用啟發(fā)教學與誘導教學方法相結合的方法分層練習,由淺入深地逐步提高學生解決實際問題的能力,達到鞏固知識,學以致用的目的

 。ㄎ澹┗仡櫩偨Y,強化認知

  課堂小結以填空體的形式檢測、歸納總結

  設計意圖:讓學生以填空題的形式進行總結,不僅能夠起到檢測的目的,而且?guī)椭鷮W生理清知識脈絡,起到重點強調,產生高度重視的效果。

  (六)作業(yè)布置

  教材33頁練習

  設計意圖:加強學生對勾股定理逆定理的理解,使學生的練習范圍拓展到多個題型。

  教學反思:本節(jié)課以學生為主體、教師為主導,通過啟發(fā)與誘導,使學生動手操作、動腦思考、動口表達,讓學生在實踐與探究中發(fā)揮自我,充分調動了學生的自主性與積極性,整個過程注重了學生課上知識的形成與鞏固,以及學生各方面素質的培養(yǎng)。總之本節(jié)課的知識目標基本達成,能力目標基本實現(xiàn),情感目標基本落實。

  以上是我對本節(jié)課的理解,還望各位老師指正。

勾股定理說課稿 篇6

  課題:勾股定理

  內容:教材分析、教法學法分析、教學過程設計、設計說明

  一、 教材分析

 。ㄒ唬┙滩乃幍牡匚

  這節(jié)課是華師大九年制義務教育課程標準實驗教科書八年級總第19章第2節(jié)探索勾股定理,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 。ǘ└鶕(jù)課程標準,本課的教學目標是:

  1、能說出勾股定理的內容。

  2、會初步運用勾股定理進行簡單的計算和實際運用。

  3、在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結合和特殊到一般的思想方法。

  4、通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

  (三)本課的教學重點:探索勾股定理

  本課的教學難點:以直角三角形為邊的正方形面積的計算。

  二、教法與學法分析

  教法分析:針對初二年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分。

  學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。

  三、 教學過程設計

  (一)數(shù)學史導入

  以畢達哥拉斯發(fā)現(xiàn)勾股定理引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。

  (二)實驗操作

  1、投影課本圖的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關系,從而學生通過正方形面積之間的關系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

  2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。

  3、給出一個邊長單位為5,12,13,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。

  (三)歸納驗證

  1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關系的研究,讓學生用數(shù)學語言概括出一般的結論,盡管學生可能講的`不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。

  2、驗證為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過動手操作拼圖來驗證結論的正確性和廣泛性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育和數(shù)學文化熏陶。

  (四)問題解決

  讓學生解決生活中的實際問題,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數(shù)學是與實際生活緊密相連的。

  (五)課堂小結

  主要通過學生回憶本節(jié)課所學內容,從內容、應用、數(shù)學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。

  (六)布置作業(yè)

  習題19.2(1-5)

  有興趣的同學可以查找另外的證明方法,寫出1-2種出來

  四、 設計說明

  1、本節(jié)課是公式課,根據(jù)學生的知識結構,我采用的教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。

  2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的探索和研究,得出結論。這種一般化的思想方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發(fā)展也有一定的作用。

  3、關于練習的設計,除兩個實際問題和課本習題以外,還讓有興趣的同學可以查找另外的證明方法,寫出1-2種出來

  4、本課小結從內容,應用,數(shù)學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學數(shù)學、用數(shù)學的意識是有很大的裨益的。

勾股定理說課稿 篇7

  課題:“勾股定理”第一課時

  內容:教材分析、教學過程設計、設計說明

  一、 教材分析

  (一)教材所處的地位

  這節(jié)課是九年制義務教育課程標準實驗教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 。ǘ└鶕(jù)課程標準,本課的教學目標是:

  1、 能說出勾股定理的內容。

  2、 會初步運用勾股定理進行簡單的計算和實際運用。

  3、 在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結合和特殊到一般的思想方法。

  4、 通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

  (三)本課的教學重點:探索勾股定理

  本課的教學難點:以直角三角形為邊的正方形面積的計算。

  二、教法與學法分析:

  教法分析:針對初二年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)六部分。

  學法分析:在教師的`組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。

  三、 教學過程設計

  (一)提出問題:

  首先創(chuàng)設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉化成數(shù)學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數(shù)學來源于實際生活,數(shù)學是從人的需要中產生這一認識的基本觀點,同時也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個“數(shù)學化”的過程。

  (二)實驗操作:

  1、投影課本圖1—1,圖1—2的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數(shù)小方格的個數(shù),還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都應予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關系,從而學生通過正方形面積之間的關系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

  2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,圖1—4,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,在剪一剪,拼一拼后學生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習及有幫助。

  3、給出一個邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學生計算是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。

 。ㄈw納驗證:

  1、歸納 通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關系的研究,讓學生用數(shù)學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數(shù)學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。

  2、驗證 為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉化為數(shù)學語言是學習數(shù)學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。

 。ㄋ模﹩栴}解決:

  讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數(shù)學是與實際生活緊密相連的。

勾股定理說課稿 篇8

  一、 教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 。ǘ┙虒W目標

  知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

  過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。

  情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。

  (三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析:

  學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的.能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

  教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、 教學過程設計

  

勾股定理說課稿 篇9

  尊敬的各位評委:

  您們好!我來自明光市張八嶺中學。今天我說課的課題是《勾股定理》。本課選自九年義務教育滬科版八年級下冊初中數(shù)學第十九章第一節(jié)的第一課時。

  下面我從教學背景分析、教材處理、教學策略、教學流程方面對本課的設計進行說明。

  一、教學背景分析

  1、教材分析

  本節(jié)課是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,通過一枚1955年由希臘發(fā)行的郵票上圖案的故事,引入勾股定理,進而探索直角三角形三邊的數(shù)量關系,并應用它解決問題。學好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎,而且為今后學習解直角三角形奠定基礎,同時在實際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質,是幾何中一個非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學情分析

  學生已經學習了有關三角形的一些知識,如三角形的三邊不等關系,三角形全等的判定等。也學過不少利用圖形面積來探求數(shù)式運算規(guī)律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎上,探求直角三角形的又一重要性質——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數(shù)學思維能力得以充分發(fā)揮和發(fā)展。

  3、教學目標:

  根據(jù)八年級學生的認知水平,依據(jù)新課程標準和教學大綱的要求,我制定了如下的教學目標:

  知識與技能:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內容,會用面積法證明勾股定理;培養(yǎng)在實際生活中發(fā)現(xiàn)問題總結規(guī)律的意識和能力.

  過程與方法:在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數(shù)學思想,并體會數(shù)形結合和從特殊到一般的思想方法。

  情感態(tài)度價值觀:感受數(shù)學文化,激發(fā)學生學習的熱情,體驗合作學習成功的喜悅,滲透數(shù)形結合的思想。

  4、教學重點、難點

  通過研究分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實踐中有著廣泛應用。因此我確定本課的教學重點為勾股定理的證明與運用,教學難點為用面積法證明勾股定理

  二、教材處理

  根據(jù)學生情況,為有效培養(yǎng)學生能力,在教學過程中,我先以數(shù)學史中的一個有趣的故事來激發(fā)學生學習興趣,運用直觀教具、多媒體等手段,調動學生學習積極性,并開展以探究活動為主的教學模式,邊設疑,邊講解,邊操作,邊討論,啟發(fā)學生提出問題,分析問題,進而解決問題,以達到突出重點,攻破難點的目的。

  三、教學策略

  1、教法

  “教必有法,而教無定法”,只有方法恰當,才會有效。根據(jù)本課內容特點和八年級學生思維活動特點,我采用了引導發(fā)現(xiàn)教學法,合作探究教學法,逐步滲透教學法和師生共研相結合的方法。

  2、學法

  “授人以魚,不如授人以漁”,通過設計問題序列,引導學生主動探究新知,合作交流,體現(xiàn)學習的自主性,從不同層次發(fā)掘不同學生的不同能力,從而達到發(fā)展學生思維能力的目的,發(fā)掘學生的創(chuàng)新精神。

  3、教學手段

  充分利用多媒體,提高教學效率,增大教學容量;通過多媒體演示,激發(fā)學生學習興趣,啟迪學生思維的發(fā)展;通過直觀教具,進行動手操作,調動學生學習的積極性,培養(yǎng)學生思維的廣闊性。

  4、教學模式

  根據(jù)新課標要求,要積極倡導自主、合作、探究的學習方式,我采用了創(chuàng)設情境——探究新知——反饋訓練的教學模式,使學生獲取知識,提高素質能力。

  四、教學流程

  (一)創(chuàng)設情境,引入新課(時長2~3分鐘)

  我利用多媒體課件,給學生展示一枚1955年由希臘發(fā)行的郵票,并問學生是否想聽這枚郵票背后的故事?

  在20xx多年前,古希臘有一位著名的數(shù)學家——畢達哥拉斯,有次參加一位政要人物邀請的餐會,這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀察和理解的數(shù)學家卻凝視腳下這些排列規(guī)則,美麗的方形瓷磚,畢達哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數(shù)”之間的關系,于是他拿了畫筆并且蹲在地板上,選了一塊瓷磚以它的對角線為邊畫了一個大正方形,同學們,你們知道他發(fā)現(xiàn)了什么嗎?

  對學生的回答進行引導,梳理,總結,可以得到有關三個正方形面積的結論。進而引入本節(jié)課的標題:19.1 勾股定理(板書)

 。ㄒ孕」适录ぐl(fā)學生的興趣,隨后以開放式的問題形式,讓學生觀察猜想。本環(huán)節(jié)體現(xiàn)了人文關懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)

 。ǘ┮龑W生,探究新知(教學時長15~20分鐘)

  1、初步感知定理:

  (1)用什么方法來探求:勾股定理即直角三角形三邊數(shù)量關系呢?

  回憶我們曾經利用圖形面積探索過數(shù)學公式,大家還記得在哪用過嗎?

 。▽W生討論)

  課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式的引出.

  今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數(shù)量關系. (從學生已有的學習經驗出發(fā),將探求邊長之間的關系轉化為探求面積之間的關系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)

 。2)展示課本上圖19—1和圖19—2(1)的圖形,觀察圖中三個正方形有什么關系?

  讓學生通過觀察,計算出三個正方形的面積可以發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AB。

 。ㄟ@樣做有利于學生參與探索,感受數(shù)學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。)

 。3)緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學生可以同樣求出兩個小正方形面積,只是求大正方形的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現(xiàn):對于一般的.以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。

  給出書中的定理(板書)并用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.

  通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數(shù)學思想及學習過程,提高學生的分析問題和解決問題的能力。

  2、證明結論(教學時長8~10分鐘):

  出示書中圖19—3,與學生共同分析證明并板書過程。通過給出定理的證明過程讓學生體會到數(shù)學知識從特殊性到一般性,并對一般性結論進行論證的嚴謹性。

  3、勾股定理簡介:(教學時長1~2分鐘)

  借助多媒體課件,通過介紹古代在勾股定理研究方面取得的成就,感受數(shù)學文化,激發(fā)學生學習的熱情,體會古人偉大的智慧。

  (三)反饋訓練,鞏固新知(教學時長6~8分鐘)

  讓學生完成兩項任務:

  任務一:教材練習第一題;

  任務二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?

  2,?ABC中c為最長邊,a=3,b=4,則c=?

  任務一和任務二中第一題都是基礎題,對于任務二中第二題是提高題,對于做錯的學生進行引導讓其思考,再告知錯誤的原因。通過練習,讓學生更好的體會到,勾股定理揭示的是直角三角形三邊之間的數(shù)量關系,讓學生能夠更好的將數(shù)與形緊密聯(lián)系起來進行思考。

  (四)歸納小結,深化新知(教學時長1~2分鐘)

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的的問題是什么???

  通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

  (五)布置作業(yè),拓展新知(教學時長1~2分鐘)

  讓學生收集有關勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。

 。┌鍟O計,明確新知

  本節(jié)課的板書設計,它分為三塊:一塊是復習引入,一塊是勾股定理;一塊是例題解析。它突出了重點,層次清楚,便于學生掌握,為獲得知識服務。

  以上內容,我僅從教學背景分析、教材處理、教學策略、教學流程方面說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

勾股定理說課稿 篇10

  本節(jié)課設計力求讓學生參與知識的發(fā)現(xiàn)過程,體現(xiàn)以學生為主體,以促進學生發(fā)展為本的教學理念,變知識的傳授者為學生自主探求知識的引導者、指導者、合作者。并利用多媒體,直觀教具演示,營造一個聲像同步,能動能靜的教學情境,給學生提供一個探索的空間,促使學生主動參與,親身體驗勾股定理的探索證明過程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學。努力做到有傳統(tǒng)的教學課堂像實驗課堂轉變,使學生真正成為學習的主人,培養(yǎng)了學生的素質能力,達到了良好的教學效果。

  (一)創(chuàng)設情境,引入新課

  課前首先讓學生閱讀趙爽的弦圖相關知識讓他們體會中國古代科學的發(fā)達。在課堂上緊密結合前面已學的知識進行導入。如提出問題:你見過這個圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規(guī)律嗎?等等一系列的問題激起學生學生的熱情和求知欲,然后順利進入探究。本節(jié)我們就來學習一下直角三角形的三條邊除具備前面的性質外還有什么新的特征。

  (二)引導學生,探究新知

 、俪醪礁兄ɡ恚哼@一環(huán)節(jié)我選擇了教材的圖片,講述畢達哥拉斯到朋友家做客時發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關系,創(chuàng)設感知情境,提出問題,現(xiàn)在請同學觀察,看看有什么發(fā)現(xiàn)?(學案出示)使問題更形象、具體。

 、谔岢霾孪耄涸诨顒1的基礎上,學生已發(fā)現(xiàn)一些規(guī)律,進一步通過活動2進行看一看、填一填、想一想、議一議、做一做,讓學生感受不只是等腰直角三角形才具有這樣的性質,學生再由淺到深,由特殊到一般的提出問題,啟發(fā)學生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。

 、圩C明猜想:是不是所有的直角三角形都有這樣的特點呢?這就需要我們對一個一般的直角三角形進行證明:通過活動3我充分引導學生利用直觀教具,進行拼圖實驗,在動手操中放手讓學生思考、討論、合作、交流、探究問題的`多種方法。,并對學生的做法給予表揚,使學生在學習過程中,感受到自我創(chuàng)造的快樂,從而分散了教學難點,發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。

 、芸偨Y定理:讓學生自己總結,不完善之處由教師補充,在前面探究活動的基礎上,學生容易得出直角三角形的三邊數(shù)量關系即勾股定理。

  (三)反饋訓練,鞏固新知

  學生對所學的知識是否掌握了,達到了什么程度?為了檢測學生對本課的達成情況和加強對學生能力的培養(yǎng),我設計了一組坡有難度的練習題。

  (四)歸納總結,深化新知

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進一步研究的問題是什么?……

  通過小結,使學生進一步明確掌握教學目標,使知識成為體系。

  (五)布置作業(yè)。拓展新知

  讓學生收集有關勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識得到拓展、延伸,培養(yǎng)了學生能力和思維的深刻性,讓學生感受數(shù)學深厚的文化底蘊。

  (六)板書設計,明確新知

【勾股定理說課稿】相關文章:

勾股定理說課稿07-05

《勾股定理》的說課稿06-08

《勾股定理》說課稿12-16

勾股定理說課稿02-11

探索勾股定理說課稿11-04

探索勾股定理說課稿12-06

《勾股定理》優(yōu)秀說課稿01-21

探索《勾股定理》說課稿01-04

初中數(shù)學《勾股定理》說課稿11-25

勾股定理的逆定理說課稿06-25